完整版二项式定理十大典型问题及例题
- 格式:doc
- 大小:48.04 KB
- 文档页数:16
(1)知识点的梳理1.二项式定理:011()()n n n r n r rn nn n n n a b C a C a b C a b C b n N --*+=+++++∈,2.基本概念:①二项式展开式:右边的多项式叫做()n a b +的二项展开式。
②二项式系数:展开式中各项的系数rn C (0,1,2,,)r n =⋅⋅⋅.③项数:共(1)r +项,是关于a 与b 的齐次多项式④通项:展开式中的第1r +项r n r rn C a b -叫做二项式展开式的通项。
用1r n r rr n T C a b -+=表示。
3.注意关键点:①项数:展开式中总共有(1)n +项。
②顺序:注意正确选择a ,b ,其顺序不能更改。
()n a b +与()n b a +是不同的。
③指数:a 的指数从n 逐项减到0,是降幂排列。
b 的指数从0逐项减到n ,是升幂排列。
各项的次数和等于n .④系数:注意正确区分二项式系数与项的系数,二项式系数依次是012,,,,,,.r n n n n n n C C C C C ⋅⋅⋅⋅⋅⋅项的系数是a 与b 的系数(包括二项式系数)。
4.常用的结论:令1,,a b x == 0122(1)()n r rn nnn n n n x C C x C x C x C x n N *+=++++++∈ 令1,,a b x ==- 0122(1)(1)()n r r n n n nn n n n x C C x C x C x C x n N *-=-+-+++-∈5.性质:①二项式系数的对称性:与首末两端“对距离”的两个二项式系数相等,即0n n n C C =,···1k k n n C C -=②二项式系数和:令1a b ==,则二项式系数的和为0122rnn n n n n n C C C C C ++++++=, 变形式1221r n n nn n n C C C C +++++=-。
项式定理及典型试题知识点一:二项式定理二项式定理:nn n r r n r n n n n n n b C b a C b a C a C b a +++++=+-- 110)( )(*N n ∈其中: ①公式右边的多项式叫做n b a )(+的二项展开式;②展开式中各项的系数r n C (r =0,1,2…n)叫做二项式系数;③式中的第r+1项叫做二项展开式的通项,用1+r T 表示;二项展开式的通项公式为r r n r n r b a C T -+=1.知识点二:二项展开式的特性①项数:有n+1项;②次数:每一项的次数都是n 次,即二项展开式为齐次式;③各项组成:从左到右,字母a 降幂排列,从n 到0;字母b 升幂排列,从0到n ;④二项式系数:依次为nnn n C C C ,,,10 . 知识点三:二项式系数的性质①对称性:二项展开式中,与首末两端“等距离”的两项的二项式系数相等②单调性:二项式系数在前半部分逐渐增大,在后半部分逐渐减小,在中间取得最大值.其中,当n 为偶数时,二项展开式中间一项的二项式系数2n nC 最大;当n 为奇数时,二项展开式中间两项的二项式系数21-n nC, 21+n nC相等,且最大.③二项式系数之和为n2,即n nn n n C C C 210=+++其中,二项展开式中各奇数项的二项式系数之和等于各偶数项的二项式系数之和,即15314202-=+++=+++n n n n n n n C C C C C C④要区别二项式系数与系数。
经典例题1、“n b a )(+展开式例1.求4)13(xx +的展开式;【练习1】求4)13(xx -的展开式2.求展开式中的项例2.已知在n的展开式中,第6项为常数项. (1) 求n ; (2)求含2x 的项的系数;(3)求展开式中所有的有理项.【练习2】若n 展开式中前三项系数成等差数列.求:(1)展开式中含的一次幂的项;(2)展开式中所有x 的有理项.3.二项展开式中的系数例3.已知22)n x 的展开式的二项式系数和比(31)nx -的展开式的二项式系数和大992,求21(2)n x x-的展开式中:(1)二项式系数最大的项;(2)系数的绝对值最大的项(先看例9).[练习3]已知*22)()n n N x∈的展开式中的第五项的系数与第三项的系数之比是10:1. (1)求展开式中含32x 的项;(2)求展开式中系数最大的项和二项式系数最大的项.4、求两个二项式乘积的展开式指定幂的系数例4.72)2)(1-+x x (的展开式中,3x 项的系数是 ;例:设77221073)1()1()1()1()2(-++-+-+=+++x a x a x a a x x (1)求52a a + (2)求721a a a ++5、求可化为二项式的三项展开式中指定幂的系数例5(04安徽改编)3)21(-+xx 的展开式中,常数项是 ; 6、求中间项例6求(103)1xx -的展开式的中间项;7、有理项例7 103)1(xx -的展开式中有理项共有 项;8、求系数最大或最小项(1) 特殊的系数最大或最小问题例8(00上海)在二项式11)1(-x 的展开式中,系数最小的项的系数是 ;例9求84)21(xx +展开式中系数最大的项;例10在(7)y x -的展开式中,系数绝对值最大项是 ;9、利用“赋值法”及二项式性质3求部分项系数,二项式系数和例11.若443322104)32(x a x a x a x a a x ++++=+, 则2312420)()(a a a a a +-++的值为 ;【练习1】若2004221020042004...)21(x x a x a a x ++++=-,【练习2】设0155666...)12(a x a x a x a x ++++=-, 则=++++6210...a a a a ;10、利用二项式定理求近似值例15.求6998.0的近似值,使误差小于001.0;。
解:二项式的展开式的通项公式为:‘ 2n 3rc r丄 >r~4~ C n r X 2前三项的r 0,1,2.得系数为: t 1 1,t 22 2n,t3 c :2 28n(n 1),由已知:2t 2 t 1 t 3 n 1(n1),••• n 816 3r通项公式为Tr1C8P 「01,28,T r 1为有理项,故163r 是4的倍数,81 2 1 2C g -8 xx • 28256说明:本题通过抓特定项满足的条件, 利用通项公式求出了 r 的取值,得到了有理项.类• r 0,4,8.依次得到有理项为T iX4,T 5 C 8^4X ^^X ,T 9 2 8 似地,(■: 2 3 3)100的展开式中有多少项是有理项?可以通过抓通项中r 的取值,得到共有典型例题四310R1 6例4( 1 )求(1 X) (1 X)展开式中X 的系数;(2)求(X 2)展开式中的常数项.X分析:本题的两小题都不是二项式展开,但可以转化为二项式展开的问题, 视为两个二项展开式相乘;(2)可以经过代数式变形转化为二项式.(1)可以解:(1) (1 x)3(1 x)10展开式中的X 5可以看成下列几种方式得到,然后合并同类项:用(1 X)3展开式中的常数项乘以 (1 X)10展开式中的 X 5项,可以得到C 10X 5 ; 用 (1 x)3展开式中的一次项乘以(1 X)10展开式中的X 4项可得到(3x)(C :o X 4)3C 4°X 5 ;3210用(1 X)中的X 乘以(1 X)展开式中的3 2 x 可得到3x33 3 5 mC 10X3C 10X ;用 (1 3X)中的X 3项乘以 (1 X)10展开式中的X2项可得到C 32 23x C 10 xC 20X 5,合并同类项得 X 5 项为:(C 0C 4。
3C 3。
C 0)X 563X 5 .(2)(X121X •由X1x12展开式的通项公式T r' 2)12C12X6 r,可得展开式的常数项为 C :2 924二项式定理典型例题典型例题一n例1在二项式 x 1的展开式中前三项的系数成等差数列, 求展开式中所有有理项.分析:典型的特定项问题,涉及到前三项的系数及有理项,可以通过抓通项公式解决.说明:问题(2)中将非二项式通过因式分解转化为二项式解决•这时我们还可以通过 合并项转化为二项式展开的问题来解决.典型例题五例5 求(1 X 2 6 5X )展开式中X 5的系数.分析 :(1 X2X 1 O )不是二二项式,我们通过1 2X X(1 X) X 2 或1 (XX )展开解: 方法一: (1 X X 2 )6(1X26x) X(1 X 6)6(1 x)5x 2 15(1 4 4x) X其中含X 5的项为 C :x 5 6C ;x 5 15C 14X 5 6x 5 .含 x 5项的系数为 6.方法一二: (1 X 2\6X )1 (X2、6X )1 6(x x 2) 15(x2、22、3x ) 20(x x )15(x x 2 )46(x x2\5/)(x6X )5555其中含X 5的项为20( 3)x 15( 4)x 6x 6x .二x 5项的系数为6.方法3:本题还可通过把(1 xX 2)6看成6个1 xX 2相乘,每个因式各取一项相乘可得到乘积的一项, x 5项可由下列几种可能得到. 5个因式中取x , —个取1得到C 6x 5.31323个因式中取x , —个取 x 2,两个取1得到C 6 C 3X ( x ). 1个因式中取X ,两个取 x 2,三个取1得到C 6 C 5x ( x ) •合并同类项为(C ; c l c ; C6C 5)X 5 6x 5, X 5项的系数为6•典型例题六例 6 求证:(1) Cn 2C : nV n 2n 1 ;(2)c o [c n 垃丄c n 丄⑵1 1)•2 3 n 1 n 1分析:二项式系数的性质实际上是组合数的性质,我们可以用二项式系数的性质来证 明一些组合数的等式或者求一些组合数式子的值.解决这两个小题的关键是通过组合数公式1 2C n C n C n2n.解: (1)n! n!k -k!(n k)! (k 1)!( n k)!(n 1)!(k 1)!(n k)!nc n•••左边nC:1 n c n 1nc n1n(C01 C;1 c n 1) n 2n 1右边.将等式左边各项变化的等数固定下来,从而使用二项式系数性质求解.此外,有些组合数的式子可以直接作为某个二项式的展开式, 但这需要逆用二项式定理才能完成,所以需仔细观察,我们可以看下面的例子:求22C 10 10的结果.仔细观察可以发现该组合数的式与10 10 0 1 2 2(1 2)10的展开式接近,但要注意:(12) C W C 10 2 C 10 2从而可以得到:10 2C W28C ;O FC尹 1)•典型例题七例7利用二项式定理证明:32n 2 8n 9是64的倍数.32n 2 8n 9是82的倍数,为了使问题向二项说明:禾U 用本题的方法和技巧不仅可以用来证明整除问题, 复杂的指数式除以一个数的余数.典型例题八1 2 10 22C 20 29C ;O 210C 1012(10 2C 2O 28C 9O29C 10)式定理贴近,变形 32n2 9n1 (8 1)n 将其展开后各项含有 8k ,与82的倍数联系起来.解:•/ 32n 2 8n 9n18nn 1(8 1) 8n 8n1C n8n c n 1 82 c n8n1 C n 18n c n 1 82 8(n1) 1 8 n 98n1 c n 1 8nc n 1 82(8n18nn 1C n 1)64是64的倍数.例8展开2x3 52x 2•分析1:用二项式定理展开式. 解法1:2x 32x 2C 50(2x)5314C 5(2x)4323药C 5(2x)23 2 x 2n! n! k!(n(k k)!(n 1)! (k 1)!( n k)!1 k 1 c n 1•n 1_c n 1C n 1 n 11C 1nn 1 丄Cn1n 1说明:本题的两个小题都是通过变换转化成二项式系数之和,再用二项式系数的性质•••左边 n 1C 2 c :1c n 1)(2n 1 1)右边.29C 10 28C:O 27C ;OC O 29 C 10 210分析:64是8的平方,问题相当于证明而且可以用此方程求一些180 135 405243 ~x ~x^ ~8x r 32x 10分析2:对较繁杂的式子,先化简再用二项式定理展开.解法2:53 53 (4x 3) 1rc0/‘ 3、5 小1/‘ 3、4/ 小2/‘ 3、3/22x10C 5(4) C 5(4 ) ( 3) C 5(4 ) ( 3)C/(4x 3)2( 3)3 C 54(4x 3)1( 3)4 C/( 3)5]180 135 405 243f 炭 32x 10说明:记准、记熟二项式(a b )n 的展开式,是解答好与二项式定理有关问题的前提条 件•对较复杂的二项式,有时先化简再展开会更简便.典型例题九例9 若将(x y 1 z )展开为多项式,经过合并同类项后它的项数为(A • 11B • 33C . 55D • 66分析 :(x y 10 z )看作二项式 10[(x y) z]展开.解: 我们把xy z 看成(x y ) z ,按二项式展开,共有 11 “项”,即(x ioy z)[(x 10y) z]10k 10 k kC io (x y) z •k 0这时,由于“和”中各项 z 的指数各不相同,因此再将各个二项式 (x y )10 k 展开,不同的乘积C 10(x y )10 k z k ( k 0,1 ,,10 )展开后,都不会出现同类项.下面,再分别考虑每一个乘积 C 1'0(x y )10 k z k ( k 0,1,, 10) •其中每一个乘积展开后的项数由(x y )10 k 决定,而且各项中x 和y 的指数都不相同,也不会出现同类项•故原式展开后的总项数为11 10 9 1 66 ,•••应选D •典型例题十3Cd)2 /c ;(2x)2x 2C ;32x 5 120x 2 132x 10(1024x 15 3840x 12 5760x 9 4320x 6 1620x 3 2437)32x 5 120x 2 1例10若x -n2 的展开式的常数项为 20,求 n •2n1--- ,其通项为典型例题十二解:设连续三项是第k 、k 1、k 2项(k N 且k 1),则有C :1:。
( 1 )知识点的梳理1.二项式定理:(a b)n C n0a n C n1a n 1b L C n r a n r b r L C n n b n(n N ) ,2.基本概念:①二项式展开式:右边的多项式叫做(a b)n的二项展开式②二项式系数:展开式中各项的系数C n r (r 0,1,2, ,n).③项数:共(r 1)项,是关于a与b的齐次多项式1 项 C n r a n r b r叫做二项式展开式的通项。
用④通项:展开式中的第 rT r 1 C n r a n r b r表示。
3 .注意关键点:①项数:展开式中总共有(n 1)项。
②顺序:注意正确选择a,b,其顺序不能更改。
(a b)n与(b a)n是不同的。
③指数:a的指数从n逐项减到0,是降幕排列。
b的指数从0逐项减到n,是升幂排列。
各项的次数和等于 n.④系数:注意正确区分二项式系数与项的系数,二项式系数依次是c0,c;,c2, C, ,C;.项的系数是a与b的系数(包括二项式系数)。
4.常用的结论:令 a 1,b x, (1 x)n C n0C n1x C n2x2L C n r x r L C n n x n (n N )令 a 1,b x, (1 x)n C n0C n1x C n2x2L C n r x r L ( 1)n C n n x n(n N )5.性质:①二项式系数的对称性:与首末两端“对距离”的两个二项式系数相等,即C n k③奇数项的二项式系数和=偶数项的二项式系数和: 在二项式定理中,令 a 1,b 1,则 C c n Cn C 3 L ( 1)n c :(1 1)n 0, 从而得到:C 0 C ; Cn Cn rC n C 3L c ;r 1- 2n 2n 1 2④ 奇数项的系数和与偶数项的系数和:(a x)n c ;a n 0 x C ;a n 1 x C ;a n ;; x L n 0 n C n a x a ° 1 a 〔x ;1 n a x L a x (x a)n 昨 0 n x C ;ax n 1 C ;a ; n ; x L C :n 0 n a x a n xL ; 1 a ;x a 〔x 令x 1,则 a o a 1 a ; a s L a n (a 1)n①令x 1,则 a o a 1 a ; a s L a n (a 1)n②① ②得,a o a ; a 4L a n (a 1)n (a ;1)r1-(奇数项的系数和) ① ②得,a 1 a s a 5 L a n (a 1)n (a ;1)n (偶数项的系数和 ) ⑤ 二项式系数的最大项:如果二项式的幕指数 n 是偶数时,则中间一项的二项式②二项式系数和 b 1 ,则二项式 系数的和为变形式C : C ; Lc n2n,c nC n : 2n1n 系数C2取得最大值。
选修2-3 :二项式定理常见题型第 1 页共9 页11.二项式定理:n 0 n 1 n 1 r n r r n n(a b) C a C a b C a b C b (n N ) ,n n n n2.基本概念:n ①二项式展开式:右边的多项式叫做(a b) 的二项展开式。
②二项式系数:展开式中各项的系数rC (r 0,1,2, ,n) .n③项数:共n+1 项,是关于a与b 的齐次多项式④通项:展开式中的第r 1项r n r r r n r rC a b 叫做二项式展开式的通项。
用T 1 C a b 表示。
n r n3.性质:①二项式系数的对称性:与首末两端“对距离”的两个二项式系数相等,即k n kC n C .n②二项式系数和:令 a b 1,可得二项式系数的和为0 1 2 2r n nC C C C C ,n n n n n变形式 1 22 1 r n nC C C C 。
n n n n③奇数项的二项式系数和=偶数项的二项式系数和:在二项式定理中,令 a 1,b 1,则0 1 2 3 ( 1)n n (1 1)n 0C C C C C ,n n n n n从而得到:0 2 4 2 1 3 2 1 1 1r r n nC C C C C C C 2 2n n n n n n n2n④二项式系数的最大项:如果二项式的幂指数n是偶数时,则中间一项的二项式系数 2C 取得最大值。
nn 1 n 1如果二项式的幂指数n 是奇数时,则中间两项的二项式系数C 2 ,n C 2 同时取得最大值。
nn⑤系数的最大项:求( )a bx 展开式中最大的项,一般采用待定系数法。
设展开式中各项系数分别为A1, A2 , , A n 1 ,设第r 1项系数最大,应有A Ar 1 rA Ar 1 r 2,从而解出r 来。
⑥题型一:二项式定理的逆用;例: 1 2 6 3 62 n 6n 1 .C C C Cn n n n解:n 0 1 2 2 3 3 n n(1 6) C C 6 C 6 C 6 C 6n n n n n1 2 3 2 1 1 1 2 2n n n nC C 6 C 6 C 6 (C 6 C 6 C 6 )n n n n n n n61 1 10 1 2 2 n n n n(C C 6 C 6 C 6 1) [(1 6) 1] (7 1)n n n n6 6 6第 2 页共9 页2练:13 29 331 .nn CC CCnnnn解: n 431题型二:利用通项公式求nx 的系数;例:在二项式4 13 2( x ) xn 的展开式中倒数第 3项的系数为 45,求含有 3x 的项的系数?解:由条件知 n 2 45C ,即 n2 45C,n290 0nn,解得 n 9(舍去)或n 10 ,由1 210 r 2 rrrrr103434T1C 10 (x ) (x ) C 10 x,由题意r10 r 2 43r 3,解得r6 ,则含有3 x 的项是第 7 项 633T 6 1C 10 x 210 x ,系数为 210 。
Y.P.M 数学竞赛讲座 1竞赛中的二项式定理二项式定理是数学竞赛的热点之一.1.常数项[例1]:(2003年全国高中数学联赛安徽初赛试题)在(4x 2-2x-5)(1+21x)5的展开式中,常数项为 .[解析]:[类题]:1.①(2008年全国高中数学联赛贵州初赛试题)(x 2-x1)6的展开式中常数项为 (用数字作答). ②(2009年全国高中数学联赛浙江初赛试题)(x-61x)2009的二项展开式中常数项是 .2.①(2012年全国高中数学联赛四川初赛试题)(x 2+x-x1)6的展开式中的常数项是 (用具体数字作答). ②(1997年全国高中数学联赛上海初赛试题)展开式(1+x+x1)7的常数项是_____. 3.(2010年全国高中数学联赛黑龙江初赛试题)若二项式(a x -x1)6的展开式中的常数项为-160,则⎰-adx x 02)13(= .2.通项公式[例2]:(2000年全国高中数学联赛试题)设a n 是(3-x )n的展开式中x 项的系数(n=2,3,4,…),则∞→n lim (223a +333a +…+ nna 3)= . [解析]:[类题]:1.(2006年全国高中数学联赛江苏初赛试题)(x-3x 2)3的展开式中,x 5的系数为 2.①(1998年全国高中数学联赛湖南初赛试题)若(x x -x 1)6展开式中第5项的值为215,则∞→n lim (x -1+x -2+…+x -n)= . ②(2000年全国高中数学联赛湖南初赛试题)若(x x -x 1)6展开式中第5项的值为5,则∞→n lim (x -1+x -3+…+x -1-2n)= .3.(2010年全国高中数学联赛吉林初赛试题)已知 (ax+1)n=a n x n+a n-1x n-1+…+a 1x+a 0(n ∈N *),点列A i (i,a i )(i=0,1,2…,n)部分图象如图所示, 则实数a 的值为________.3.通项分析[例3]:(2002年全国高中数学联赛试题)将二项式(x +421x)n的展开式按x 的降幂排列,若前三项系数成等差数列,则该展开式中x 的幂指数是整数的项共有__________个.[解析]:[类题]:2 Y.P.M 数学竞赛讲座1.(《中等数学》.2008年第3期.数学奥林匹克高中训练题(106))在(53+35)100的展开式中共有 个项为有理数.2.①(2011年全国高中数学联赛安徽初赛试题)设展开式(5x+1)n=a 0+a 1x+…+a n x n,n ≥2011,若a 2011=max{a 0,a 1,…,a n },则n= .②(2010年全国高中数学联赛浙江初赛试题)若x ∈R +,则(1+2x)15的二项式展开式中系数最大的项为( ) (A)第8项 (B)第9项 (C)第8项和第9项 (D)第11项3.(1988年全国高中数学联赛试题)(x +2)2n+1的展开式中,x 的整数次幂的各项系数之和为_________.4.赋值方法[例4]:(2005年全国高中数学联赛浙江初赛试题)设(1+x+x 2)n =a 0+a 1x+…+a 2n x 2n ,则a 2+a 4+…+a 2n 的值为 . [解析]:[类题]:1.①(2010年全国高中数学联赛辽宁初赛试题)设(3+x+2x 2)n=a 0+a 1x+a 2x 2+…+a 2n x 2n(n ∈N +)对x ∈R 恒成立,则a 1+a 2+…+a 2n-1= .②(2008年全国高中数学联赛吉林初赛试题)已知多项式(1+x)+(1+x)2+(1+x)3+…+(1+x)n=b 0+b 1x+b 2x 2+…+b n x n,且满 足:b 0+b 1+…+b n =26,则正整数n 的一个可能值为 .③(2009年全国高中数学联赛湖南初赛试题)已知多项式(1+x)+(1+x)2+(1+x)3+…+(1+x)n=b 0+b 1x+b 2x 2+…+b n x n,且满足: b 0+b 1+…+b n =1013,则正整数n 的一个可能值为 .2.①(2006年全国高中数学联赛四川初赛试题)若(2x-1)8=a 8x 8+a 7x 7+…+a 1x+a 0,则a 8+a 6+a 4+a 2= .②(2009年全国高中数学联赛四川初赛试题)设二项式(3x-1)2n=a 2n x 2n+a 2n-1x 2n-1+…+a 2x 2+a 1x+a 0,记T n =a 0+a 2+…+a 2n ,R n =a 1+ a 3+…+a 2n-1,则∞→n limnnR T = . ③(2006年全国高中数学联赛山西初赛试题)若(2x+4)2n=a 0+a 1x+a 2x 2+…+a 2n x 2n(n ∈N +),则a 2+a 4+…+a 2n 被3除的余数是 .2.①(2009年第20届全国希望杯高二数学邀请赛试题)已知f(x)=x 2-2x-3,f(g(x))=4x 4+4x 3-7x 2-4x,则g(x)的各项系数(包括常数项)的和等于 .②(2006年全国高中数学联赛黑龙江初赛试题)已知f(x)=3x 2-x+4,f(g(x))=3x 4+18x 3+50x 2+69x+48,那么,整系数多项式函数g(x)的各项系数的和等于 .③(2005年全国高中数学联赛试题)将关于x 的多项式f(x)=1-x+x 2-x 3+…-x 19+x 20表为关于y 的多项式g(y)=a 0+a 1y +a 2y 2+…+a 19y 19+a 20y 20,其中y=x-4,则a 0+a 1+…+a 20= .④(2006年全国高中数学联赛河南初赛试题)设函数f(x)=x 2+6x+8.如果f(bx+c)=4x 2+16x+15,那么,c-2b= . ⑤(2010年全国高中数学联赛北京初赛试题)满足方程f(x)+(x-2)f(1)+3f(0)=x 3+2(x ∈R)的函数f(x)= .5.微积方法[例5]:(2008年全国高中数学联赛湖北初赛试题)设(x 2+2x-2)6=a 0+a 1(x+2)+a 2(x+2)2+...+a 12(x+2)12,其中a i (i=1,2, (12)为实常数,则a 0+a 1+2a 2+…+12a 12= .[解析]:[类题]:1.①(2008年全国高中数学联赛陕西初赛试题)若x 5+3x 3+1=a 0+a 1(x-1)+a 2(x-1)2+ ⋯+a 5(x-1)5对任意实数x 都成立,则a 3的 值是 (用数字作答).②(2008年全国高中数学联赛上海初赛试题)已知恒等式x 4+a 1x 3+a 2x 2+a 3x+a 4=(x+1)4+b 1(x+1)3+b 2(x+1)2+b 3(x+1)+b 4,则用a 1、a 2、a 3、a 4来表示b 3有b 3=_______________________.③(2003年湖南高中数学夏令营试题)由等式x 4+a 1x 3+a 2x 2+a 3x+a 4=(x+2)4+b 1(x+2)3+b 2(x+2)2+b 3(x+2)+b 4,定义映射 f:(a 1,a 2,a 3,a 4)→(b 1,b 2,b 3,b 4),则f[(10,30,38,21)]= .2.①(2011年全国高中数学联赛辽宁初赛试题)设(1+x-x 2)10=a 0+a 1x+a 2x 2+…+a 20x 20,则a 0+a 1+2a 2+3a 3+…+20a 20= .Y.P.M 数学竞赛讲座 3②(《中等数学》.2010年第4期.数学奥林匹克高中训练题(128))设(2+x-2x 2)1005=a 0+a 1x+a 2x 2+…+a 2010x 2010,则a 1+3a 3+5a 5+…+2009a 2009= .3.(1998年全国高中数学联赛上海初赛试题)计算:1011C +2111C +3211C +…+121111C = .6.多截公式[例6]:(2001年全国高中数学联赛试题)若(1+x+x 2)100的展开式为a 0+a 1x+a 2x 2+a 3x 3+…+a 2000x 2000,则a 0+a 3+a 6+a 9+…+a 1998的值为 .[解析]:[类题]:1.(2007年全国高中数学联赛甘肃初赛试题)设(1+x+x 2)n=a 0+a 1x+a 2x 2+…+a 2n x 2n(n ∈N +),则a 0+a 3a 6+…+]32[[3n a 的值为 (其中,[x]表示不超过x 的最大整数).2.①(《中等数学》.2005年第4期.数学奥林匹克高中训练题(75))C 20040-C 20042+C 20044-C 20046+…-C 20042002+C 20042004= .解:在(1+x)2004=C 20040+xC 20041+x 2C 20042+…+x2004C 20042004中,令x=i 得:(1+i)2004=(C 20040-C 20042+C 20044-C 20046+…-C 20042002+C 20042004)+i(C 20041-C 20043+C 20045-C 20047+…+C 20042001-C 20042003).又(1+i)2004=(2i)1002=-21002⇒C 20040-C 20042+C 20044-C 20046+…-C 20042002+C 20042004=-21002.②(1990年全国高中数学联赛试题)设n=1990,则n21(1-3C n 2+32C n 4-33C n 6+…+3994C n 1988-3995C n1990)= .3.(《中等数学》.2010年第7期.数学奥林匹克高中训练题(75))设f(x)=(x+231i -)2010=∑=20100k k a x k +i ∑=2010k k b x k,其中,a k ,b k∈R,k=0,1,2,…,2010,则)(367003k k k b a +∑== .7.计数思想[例7]:(2009年全国高中数学联赛福建初赛试题)集合{1,2,3,…,2009}的元素和为奇数的非空子集的个数为 . [解析]:[类题]:1.(2005年全国高中数学联赛安徽初赛试题)在(x 2+3x+2)5的展开式中,含x 项的系数是 . 2.(《中等数学》.2011年第7期.P3例题)在(x+1)(x+2)…(x+n)的展开式中,含x n-2项的系数是 . 3.(2008年全国高中数学联赛湖南初赛试题)多项式(1+x+x 2+…+x 100)3的展开式在合并同类项后,x 150的系数为 (用数字作答).8.对偶思想[例8]:(2009年全国高中数学联赛吉林初赛试题)(2+3)2010的小数点后一位数字是 .[解析]:[类题]:1.(2010年全国高中数学联赛河南初赛试题)记M=(5+24)2n (n ∈N *),N 是M 的小数部分,则M(1-N)的值是 . 2.(2011年全国高中数学联赛四川初赛试题)已知(1+3)n=a n +b n 3,其中a n ,b n 是整数,则∞→n limnnb a = . 3.①(2009年全国高中数学联赛新疆初赛试题)数(3+8)2n (n ∈N *),且n ≥2009,设[x]为x 的整数部分,则[(3+8)2n]除以8的余数是 .②(2006年第七届北方数学奥林匹克邀请赛试题)数(3+2)4022(n ∈N +)的整数部分的个位数字是 .9.二项应用4 Y.P.M 数学竞赛讲座 [例9]:(2003年江苏省数学夏令营数学竞赛试题)x 10+1除以(x-1)2的余式是 . [解析]:[类题]:1.(1986年全国高中数学联赛上海初赛试题)21000除以13的余数是 .2.(《中等数学》.2011年第12期.数学奥林匹克高中训练题(148))整数列{a n }定义如下:a 0=0,a 1=1,a n =2a n-1+a n-2(n>1).则满足22012|a n 的最小正整数n 为 .10.逆向应用[例10]:(2006年全国高中数学联赛试题)数码a 1,a 2,a 3,…,a 2006中有奇数个9的2007位十进制数20063212a a a a ⋅⋅⋅的个数为 .[解析]:[类题]:1.(2005年全国高中数学联赛山东初赛试题)611+C 111610+C 11269+…+C 11106-1被8除所得余数是 .2.(2003年全国高中数学联赛湖南初赛试题)已知n 为自然数,多项式P(x)=∑=nh hn C 0x n-h(x-1)h可展开成x 的升幂排列a 0+a 1x+a 2x 2+…+a n x n,则|a 0|+|a 1|+|a 2|+…+|a n |= .3.(2010年全国高中数学联赛上海初赛试题)满足0<a 1<a 2<…<a n (n ≥2,n ∈N +)的2n-1位十进制正整数121121a a a a a a a n n n ⋅⋅⋅⋅⋅⋅-- 共有 个(用数值作答).11.组合等式[例11]:(2006年全国高中数学联赛安徽初赛试题)2∑=n k k 13C n k-3n ∑=nk k 12C n k +n 2∑=nk k 1C n k = .[解析]: [类题]:1.(1989年全国高中数学联赛上海初赛试题)计算∑=-121111k k k C = .2.(2009年全国高中数学联赛湖南初赛试题)对于n ∈N +,计算C 4n+11+C 4n+15+…+C 4n+14n+1= .12.质数指数勒让德(Legendre)定理:n !中含质数p 的指数k=[p n]+[2p n ]+[3pn ]+…. 推论:在C n 0,C n 1,C n 2,…,C n n中,奇数个数是)(2n S ,其中S(n)是n 的二进制数玛的和.[例12]:(2011年全国高中数学联赛试题)已知a n =C 200n (36)200-n (21)n(n=1,2,…,95),则数列{a n }中整数项的个数为 .[解析]:[类题]:1.(2008年安徽高考试题)设(1+x)8=a 0+a 1x+…+a 8x 8,则a 0,a 1…,a 8中奇数的个数为 . 2.(2008年全国高中数学联赛安徽初赛试题)(1+x)2008=a 0+a 1x+…+a 2008x 2008,则a 0,a 1…,a 2008中奇数的个数为 .3.(1991年日本数学奥林匹克试题)满足0≤r ≤n ≤63的全部数组(n,r)中,二项式系数C n r为偶数的个数是 .Y.P.M 数学竞赛讲座 1竞赛中的二项式定理高中联赛中的向量问题具有纯粹性,着重于对向量本质特征--“数形二重性”的考察,需要充分挖掘蕴含的几何本质. 二项式定理的应用有三个方面:一是通项公式T k+1=C n k a n-k b k的应用,如求某一指定的项、或其系数、常数项、有理项、系数为有理数.T k+1最大⇔T k ≤T k+1且T k+2≤T k+1等;二是赋值法,在二项式的展开式中,通常通过赋值1,0,-1,可求a 0,a n ,a 0+a 1+…+a n ,a 0+a 2+…,a 1+a 3+…;特殊情况下,求某一项的系数,我们还可以通过逐次求导,再赋值于零,来求解;三是组合数的性质.一、知识结构1.三角形的四心表示:⑴静态形式:二、典型问题1.常数项[例1]:(2003年全国高中数学联赛安徽初赛试题)在(4x 2-2x-5)(1+21x)5的展开式中,常数项为 .[解析]:(1+21x)5展开式的通项T k+1=C 5k x -2k⇒[类题]:(2009年全国高中数学联赛浙江初赛试题)(x-61x)2009的二项展开式中常数项是 .(2008年全国高中数学联赛贵州初赛试题)(x 2-x1)6的展开式中常数项为 (用数字作答). 1.(2012年全国高中数学联赛四川初赛试题)(x 2+x-x1)6的展开式中的常数项是 (用具体数字作答). -51.(1997年全国高中数学联赛上海初赛试题)展开式(1+x+x1)7的常数项是_____. 1.(2010年全国高中数学联赛黑龙江初赛试题)若二项式(a x -x1)6的展开式中的常数项为-160,则⎰-adx x 02)13(= .2.通项公式[例2]:(2000年全国高中数学联赛试题)设a n 是(3-x )n的展开式中x 项的系数(n=2,3,4,…),则∞→n lim (223a +333a +…+ nna 3)= . [解析]:[类题]:1.(2006年全国高中数学联赛江苏初赛试题)(x-3x 2)3的展开式中,x 5的系数为 (1998年全国高中数学联赛湖南初赛试题)若(x x -x 1)6展开式中第5项的值为215,则∞→n lim (x -1+x -2+…+x -n)= . (2000年全国高中数学联赛湖南初赛试题)若(x x -x 1)6展开式中第5项的值为5,则∞→n lim (x -1+x -3+…+x -1-2n)= .3.(2010年全国高中数学联赛吉林初赛试题)已知 (ax+1)n=a n x n+a n-1x n-1+…+a 1x+a 0(n ∈N *),点列A i (i,a i )(i=0,1,2…,n)部分图象如图所示, 则实数a 的值为________.3.通项分析[例3]:(2002年全国高中数学联赛试题)将二项式(x +421x)n的展开式按x 的降幂排列,若前三项系数成等差数列,则该展开式中x 的幂指数是整数的项共有__________个.[解析]:[类题]:1.(《中等数学》.2008年第3期.数学奥林匹克高中训练题(106))在(53+35)100的展开式中共有 个项为有理数.解:T k+1=C 100k 3)100(5153k k -为有理数⇔5|(100-k),3|k ⇔5|k,3|k ⇔15|k(0≤k ≤100)⇔k=0×15,1×15,2×15,…,6×15,计7个.3.(1988年全国高中数学联赛试题)(x +2)2n+1的展开式中,x 的整数次幂的各项系数之和为_________.解:(2011年全国高中数学联赛安徽初赛试题)设展开式(5x+1)n=a 0+a 1x+…+a n x n,n ≥2011,若a 2011=max{a 0,a 1,…,a n },则n= .1.(2010年全国高中数学联赛浙江初赛试题)若x ∈R +,则(1+2x)15的二项式展开式中系数最大的项为( ) (A)第8项 (B)第9项 (C)第8项和第9项 (D)第11项4.赋值方法[例4]:(2005年全国高中数学联赛浙江初赛试题)设(1+x+x 2)n =a 0+a 1x+…+a 2n x 2n ,则a 2+a 4+…+a 2n 的值为 . [解析]:[类题]:1.(2006年全国高中数学联赛四川初赛试题)若(2x-1)8=a 8x 8+a 7x 7+…+a 1x+a 0,则a 8+a 6+a 4+a 2= .1.(2010年全国高中数学联赛辽宁初赛试题)设(3+x+2x 2)n =a 0+a 1x+a 2x 2+…+a 2n x 2n (n ∈N +)对x ∈R 恒成立,则a 1+a 2+…+a 2n-1= . 1.(2009年全国高中数学联赛四川初赛试题)设二项式(3x-1)2n=a 2n x 2n+a 2n-1x 2n-1+…+a 2x 2+a 1x+a 0,记T n =a 0+a 2+…+a 2n ,R n =a 1+a 3+ …+a 2n-1,则∞→n lim nnR T = .1.(2008年全国高中数学联赛吉林初赛试题)已知多项式(1+x)+(1+x)2+(1+x)3+…+(1+x)n=b 0+b 1x+b 2x 2+…+b n x n,且满足:b 0+ b 1+…+b n =26,则正整数n 的一个可能值为 .(2009年全国高中数学联赛湖南初赛试题)已知多项式(1+x)+(1+x)2+(1+x)3+…+(1+x)n=b 0+b 1x+b 2x 2+…+b n x n,且满 足:b 0+b 1+…+b n =1013,则正整数n 的一个可能值为 .1.(2006年全国高中数学联赛山西初赛试题)若(2x+4)2n =a 0+a 1x+a 2x 2+…+a 2n x 2n (n ∈N +),则a 2+a 4+…+a 2n 被3除的余数是 . 解:a 0=42n,a 0+a 2+a 4+…+a 2n =21[(2+4)2n +(-2+4)2n ]=21[62n +22n ]⇒a 2+a 4+…+a 2n =21(62n +22n )-42n =22n-1(32n +1)-(3+1)2n(mod3)≡(3-1)2n-1-1(mod3)≡(-1)2n-1-1(mod3)≡-2(mod3)≡1(mod3).(2005年全国高中数学联赛试题)将关于x 的多项式f(x)=1-x+x 2-x 3+…-x 19+x 20表为关于y 的多项式g(y)=a 0+a 1y +a 2y 2+…+a 19y 19+a 20y 20,其中y=x-4,则a 0+a 1+…+a 20= .解:由题设知,f(x)和式中的各项构成首项为1,公比为-x 的等比数列,由等比数列的求和公式,得:f(x)=1((1)(21----x x = 1121++x x ,令x=y+2,得g(y)=51)4(21+++y y ,取y=1,有a 0+a 1+…+a 20=g(1)=61521+. 1.(2010年全国高中数学联赛北京初赛试题)满足方程f(x)+(x-2)f(1)+3f(0)=x 3+2(x ∈R)的函数f(x)= . 解:令x=0,1:4f(0)-2f(1)=2,3f(0)=3⇒f(0)=1,f(1)=1⇒f(x)=x 3-x+1.2.①(2009年第20届全国希望杯高二数学邀请赛试题)已知f(x)=x 2-2x-3,f(g(x))=4x 4+4x 3-7x 2-4x,则g(x)的各项系数(包括常数项)的和等于 .0或2②(2006年全国高中数学联赛黑龙江初赛试题)已知f(x)=3x 2-x+4,f(g(x))=3x 4+18x 3+50x 2+69x+48,那么,整系数多项式函数g(x)的各项系数的和等于 . 8 解:3.(2006年全国高中数学联赛河南初赛试题)设函数f(x)=x 2+6x+8.如果f(bx+c)=4x 2+16x+15,那么,c-2b= . 解:取x=-2,有f(c-2b)=16-16×2+15=-1.而当x 2+6x+8=-1时,有x=-3.所以,c-2b=-3.5.微积方法[例5]:(2008年全国高中数学联赛湖北初赛试题)设(x 2+2x-2)6=a 0+a 1(x+2)+a 2(x+2)2+...+a 12(x+2)12,其中a i (i=1,2, (12)为实常数,则a 0+a 1+2a 2+…+12a 12= .[解析]:[类题]:(2003年湖南高中数学夏令营试题)由等式x 4+a 1x 3+a 2x 2+a 3x+a 4=(x+2)4+b 1(x+2)3+b 2(x+2)2+b 3(x+2)+b 4,定义映射f:(a 1,a 2, a 3,a 4)→(b 1,b 2,b 3,b 4),则f[(10,30,38,21)]= .解:x 4+10x 3+30x 2+38x+21=(x+2)4+b 1(x+2)3+b 2(x+2)2+b 3(x+2)+b 4,令x=-2⇒b 4=1,4x 3+30x 2+60x+38=4(x+2)3+3b 1(x+2)2+2b 2(x +2)+b 3⇒b 3=6,12x 2+60x+60=12(x+2)2+6b 1(x+2)+2b 2⇒b 2=1.(2008年全国高中数学联赛陕西初赛试题)若x 5+3x 3+1=a 0+a 1(x-1)+a 2(x-1)2+ ⋯+a 5(x-1)5对任意实数x 都成立,则a 3的值是 (用数字作答).在x 5+3x 3+1=[(x-1)+1]5+3[(x-1)+1]3+1的展开式中,(x-1)3项的系数为C 52+3=13.1.(2008年全国高中数学联赛上海初赛试题)已知恒等式x 4+a 1x 3+a 2x 2+a 3x+a 4=(x+1)4+b 1(x+1)3+b 2(x+1)2+b 3(x+1)+b 4,则用a 1、a 2、a 3、a 4来表示b 3有b 3=_______________________.1.(2011年全国高中数学联赛辽宁初赛试题)设(1+x-x 2)10=a 0+a 1x+a 2x 2+…+a 20x 20,则a 0+a 1+2a 2+3a 3+…+20a 20= . 1.(《中等数学》.2010年第4期.数学奥林匹克高中训练题(128))设(2+x-2x 2)1005=a 0+a 1x+a 2x 2+…+a 2010x 2010,则a 1+3a 3+5a 5+…+2009a 2009= .解:(2+x-2x 2)1005=a 0+a 1x+a 2x 2+…+a 2010x 2010⇒1005(2+x-2x 2)1004(1-4x)=a 1+2a 2x+3a 3x 2+…+a 2010x 2009.令x=1⇒a 1+2a 2+3a 3+…+2010a 2010=1005(-3);令x=1⇒a 1-2a 2+3a 3+…-2010a 2010=1005×5⇒a 1+3a 3+5a 5+…+2009a 2009=1005.1.(1998年全国高中数学联赛上海初赛试题)计算:1011C +2111C +3211C +…+121111C = .解:由(1+x)n=1+xC n 1+x 2C n 2+…+x nC n n⇒⎰+10)1(nx =)1(2211nn n n n C x C x xC +⋯+++⎰,注意到f(x)=x k的原函数F(x)=k+11x k+1⇒ F(1)-F(0)=k +11⇒10n C +21n C +32n C +…+1+n C nn =11+n ×2n+1-11+n . 6.多截公式[例6]:(2001年全国高中数学联赛试题)若(1+x+x 2)100的展开式为a 0+a 1x+a 2x 2+a 3x 3+…+a 2000x 2000,则a 0+a 3+a 6+a 9+…+a 1998的值为 .[解析]:[类题]:1.(2007年全国高中数学联赛甘肃初赛试题)设(1+x+x 2)n=a 0+a 1x+a 2x 2+…+a 2n x 2n(n ∈N +),则a 0+a 3a 6+…+]32[[3n a 的值为 (其中,[x]表示不超过x 的最大整数).2.(《中等数学》.2005年第4期.数学奥林匹克高中训练题(75))C 20040-C 20042+C 20044-C 20046+…-C 20042002+C 20042004= .解:在(1+x)2004=C 20040+xC 20041+x 2C 20042+…+x2004C 20042004中,令x=i 得:(1+i)2004=(C 20040-C 20042+C 20044-C 20046+…-C 20042002+C 20042004)+i(C 20041-C 20043+C 20045-C 20047+…+C 20042001-C 20042003).又(1+i)2004=(2i)1002=-21002⇒C 20040-C 20042+C 20044-C 20046+…-C 20042002+C 20042004=-21002.3.(1990年全国高中数学联赛试题)设n=1990,则n21(1-3C n 2+32C n 4-33C n 6+…+3994C n 1988-3995C n1990)= .1.(《中等数学》.2010年第7期.数学奥林匹克高中训练题(75))设f(x)=(x+231i -)2010=∑=20100k k a x k +i ∑=2010k k b x k,其中,a k ,b k∈R,k=0,1,2,…,2010,则)(367003k k k b a +∑== .解:f(x)=(x+231i -)2010=(x-ω)2010=(-ω)2010(1-ωx)2010=(1-ωx)2010=∑=-201002010)(k k k k x C ϖ=-∑=670332010i i ix C -ω136690132010+=+∑i i i x C +ω2236690232010+=+∑i i i xC ⇒∑=6703k k b =0,∑=67003k k a =-∑=67032010i iC .令g(x)=(1+x)2010=C 20100+xC 20101+x 2C 20102+x 3C 20103+…+x 2010C 20102010⇒g(1)=C 20100+C 20101+C 20102+C 20103+…+C 20102010,g(ω)=C 20100+ωC 20101+ω2C 20102+ω3C 20103+…+ω2010C 20102010,g(ω2)=C 20100+ω2C 20101+ω4C 20102+ω6C 20103+…+ω4020C 20102010⇒g(1)+g(ω)+g(ω2)=3∑=670032010i iC ,g(1)+g(ω)+g(ω2)=22010+(1+ω)2010+(1+ω2)2010=22010+(-ω2)2010+(-ω)2010=22010+2.7.计数思想[例7]:(2009年全国高中数学联赛福建初赛试题)集合{1,2,3,…,2009}的元素和为奇数的非空子集的个数为 . [解析]:令f(x)=(1+x)(1+x 2)(1+x 3)…(1+x 2009),则问题中要求的答案为f(x)的展开式中x 的奇次项的系数和.故所求的答案为21[f(1)-f(-1)]=22008. [类题]:1.(2005年全国高中数学联赛安徽初赛试题)在(x 2+3x+2)5的展开式中,含x 项的系数是 . 2.(《中等数学》.2011年第7期.P3例题)在(x+1)(x+2)…(x+n)的展开式中,含x n-2项的系数是 .解:(x+1)(x+2)…(x+n)的展开式中,含x n-2项的系数A ⇔1,2,…,n 中任意两数积的和,由(1+2+…+n)2=12+22+…+n 2+2A ⇒ A=241(n-1)n(n+1)(3n+2). 3.(2008年全国高中数学联赛湖南初赛试题)多项式(1+x+x 2+…+x 100)3的展开式在合并同类项后,x 150的系数为 (用数字作答).解:由多项式乘法法则可知,可将问题转化为求方程s+t+r=150 ①的不超过100的自然数解的组数.显然,方程①的自然数解的组数为C 1522.下面求方程①的超过100自然数解的组数.因其和为150,故只能有一个数超过100,不妨设s>100.将方程①化为(s-101)+t+r=49.记x=s-101,则方程x+s+t=49的自然数解的组数为C 512.因此,x 150的系数为C 1522-C 31C 512=7651.8.对偶思想[例8]:(2009年全国高中数学联赛吉林初赛试题)(2+3)2010的小数点后一位数字是 .[解析]:因(2+3)2010+(2-3)2010为整数,则(2+3)2010的小数部分为1-(2-3)2010,又因0<(2-3)2010<0.21005<0.008300,所以0.9<1-(2-3)2010<1,可知(2+3)2010的小数点后一位数字是9.[类题]:1.(2010年全国高中数学联赛河南初赛试题)记M=(5+24)2n (n ∈N *),N 是M 的小数部分,则M(1-N)的值是 . 解:因(5+24)2n +(5-24)2n 是整数,且0<(5-24)2n <1⇒N=1-(5-24)2n ⇒M(1-N)=(5+24)2n (5-24)2n=1. 2.(2011年全国高中数学联赛四川初赛试题)已知(1+3)n=a n +b n 3,其中a n ,b n 是整数,则∞→n limnnb a = . 解:由(1+3)n =a n +b n 3⇒(1-3)n=a n -b n 3⇒a n =21[(1+3)n +(1-3)n ],b n =321[(1+3)n +(1-3)n]⇒∞→n lim n n b a = 3.3.(2009年全国高中数学联赛新疆初赛试题)数(3+8)2n (n ∈N *),且n ≥2009,设[x]为x 的整数部分,则[(3+8)2n]除以8的余数是 .(2006年第七届北方数学奥林匹克邀请赛试题)数(3+2)4022(n ∈N +)的整数部分的个位数字是 .解:(3+2)2n =(5+26)n ,令a n =(5+26)n +(5-26)n ,由5+26,5-26是方程x 2=10x-1的根⇒a n+2=10a n+1-a n ,a 1=10⇒ a 2n+1为10的倍数,又0<(5-26)n <1⇒(3+2)4022=a 2011-(3-2)4022的个位数字是9.9.二项应用[例9]:(2003年江苏省数学夏令营数学竞赛试题)x 10+1除以(x-1)2的余式是 . [解析]:x 10+1=[(x-1)+1]10+1=[类题]:1.(1986年全国高中数学联赛上海初赛试题)21000除以13的余数是 .3.(《中等数学》.2011年第12期.数学奥林匹克高中训练题(148))整数列{a n }定义如下:a 0=0,a 1=1,a n =2a n-1+a n-2(n>1).则满足22012|a n 的最小正整数n 为 .解:由a 0=0,a 1=1,a n =2a n-1+a n-2⇒a 2=2,a 3=5,a 4=12,a 5=29,a 6=70,a 7=169,a 8=408,猜测2k|k a 2.用数学归纳法证明:①2|a 2,即n=1时,2k|k a 2;②假设2k|k a 2.由a n =42[(1+2)n -(1-2)n ]⇒a 2n =42[(1+2)2n -(1-2)2n ]=[(1+2)n +(1-2)n] 42[(1+2)n -(1-2)n ]=[(1+2)n +(1-2)n ]a n =2(C n 0+2C n 2+…)a n ⇒2k+1|12+k a ,且C n 0+2C n 2+…为奇数⇒最小正整数n 为22012.10.逆向应用[例10]:(2006年全国高中数学联赛试题)数码a 1,a 2,a 3,…,a 2006中有奇数个9的2007位十进制数20063212a a a a ⋅⋅⋅的个数为 .[解析]:出现奇数个9的十进制数个数有C 2006192005+C 2006392003+…+C 200620059.又由于(9+1)2006=∑=200602006k kC 92006-k ,以及(9-1)2006=∑=200602006k kC (-1)k 92006-k,从而得C 2006192005+C 2006392003+…+C 200620059=21(102006-82006).[类题]:1.(2005年全国高中数学联赛山东初赛试题)611+C 111610+C 11269+…+C 11106-1被8除所得余数是 . 解:2.(2003年全国高中数学联赛湖南初赛试题)已知n 为自然数,多项式P(x)=∑=nh hn C 0x n-h(x-1)h可展开成x 的升幂排列a 0+a 1x+a 2x 2+…+a n x n,则|a 0|+|a 1|+|a 2|+…+|a n |= .解:P(x)=∑=n h h n C 0x n-h(x-1)h=(2x-1)n=∑=n k k n C 0(2x)k(-1)n-k⇒|a 0|+|a 1|+|a 2|+…+|a n |=∑=nk k n C 02k=3n.3.(2010年全国高中数学联赛上海初赛试题)满足0<a 1<a 2<…<a n (n ≥2,n ∈N +)的2n-1位十进制正整数121121a a a a a a a n n n ⋅⋅⋅⋅⋅⋅-- 共有 个(用数值作答).解:因n ≤9,满足0<a 1<a 2<…<a n (n ≥2,n ∈N +)的2n-1位十进制正整数有C 9n,共有C 92+C 93+…+C 99=(1+1)9-(C 90+C 91)=29-10=502.11.组合等式[例11]:(2006年全国高中数学联赛安徽初赛试题)2∑=n k k 13C n k-3n ∑=nk k 12C n k +n 2∑=nk k 1C n k = .[解析]:因(1+x)n =C n 0+xC n 1+x 2C n 2+…+x k C n k +…+x n C n n ⇒n(1+x)n-1=C n 1+2xC n 2+…+kx k-1C n k +…+nx n-1C n n ⇒n(n-1)(1+x)n-2=2C n 2+…+k(k-x k-2C n k+…+n(n-1)x n-2C n n⇒C n 1+2C n 2+…+kC n k+…+nC n n=n ×2n-1,2×(2-1)C n 2+…+k(k-1)C n k+…+n(n-1)C n n=n(n-1)×2n-2⇒ 12C n 1+22C n 2+…+k 2C n k+…+n 2C n n=n(n-1)×2n-2+n ×2n-1=n(n+1)×2n-2.2∑=n k k 13C n k=2∑=n k k 12nC n-1k-1=2n ∑=n k k 12C n-1k-1=2n[∑=-n k k 12)1(C n-1k-1+∑=-nk k 1)12(C n-1k-1]=2n[(n-1)n ×2n-3+2×(n-1)2n-2-2n-1]=2n 2(n+3)×2n-3.所以,2∑=nk k 13C n k-3n ∑=nk k 12C nk+n2∑=nk k 1Cn k =2n 2(n+3)×2n-3-3n ×n(n+1)×2n-2+n 2×n ×2n-1=0.[类题]:1.(1989年全国高中数学联赛上海初赛试题)计算∑=-121111k k k C = . 解: (2009年全国高中数学联赛湖南初赛试题)对于n ∈N +,计算C 4n+11+C 4n+15+…+C 4n+14n+1= . 解:24n-1-(-1)n 22n-1.12.质数指数勒让德(Legendre)定理:n !中含质数p 的指数k=[p n ]+[2p n ]+[3p n ]+…. 推论:在C n 0,C n 1,C n 2,…,C n n 中,奇数个数是)(2n S ,其中S(n)是n 的二进制数玛的和.[例12]:(2011年全国高中数学联赛试题)已知a n =C 200n (36)200-n (21)n(n=1,2,…,95),则数列{a n }中整数项的个数为 . [解析]:[类题]: 1.(2008年安徽高考试题)设(1+x)8=a 0+a 1x+…+a 8x 8,则a 0,a 1…,a 8中奇数的个数为 . 解:因8=(1000)2⇒S(8)=1,所以a i 中,共有21=2个奇数.3.(1991年日本数学奥林匹克试题)满足0≤r ≤n ≤63的全部数组(n,r)中,二项式系数C n r 为偶数的个数是 . 解:满足0≤r ≤n ≤63的二项式系数C n r 的个数是1+2+3+…+64=2080.因63=(111111)2⇒S(63)=6⇒0≤S(n)≤6,其中, S(n)=k(k=0,1,2,3,4,5,6),有C 6k 种(如k=2:(000011)2→n=3;(000101)2→n=5;(001001)→n=9;(010001)2→n=17;…,有C 62种)⇒奇数的个数为∑=6062k k k C =(1+2)6=729⇒偶数的个数是2080-729=1351.。
最全的二项式定理题型及典型试题
1
最全的二项式定理题型总结及练习
1、“n b a )(+展开式
例1.求4)1
3(x x +的展开式;
【练习1】求4)1
3(x x -
的展开式
2.求展开式中的项
例2.已知在331
)2-(n x x 的展开式中,第6项为常数项.
(1)求n ;(2)求含2x 的项的系数;(3)求展开式中所有的有理项.
【练习2】若41()2n x x
+展开式中前三项系数成等差数列.求:
(1)展开式中含x 的一次幂的项;(2)展开式中所有x 的有理项.
3.二项展开式中的系数
例3.已知223()n x x +的展开式的二项式系数和比(31)n x -的展开式的二项式系数和大992,求21(2)
n x x -的展开式中:(1)二项式系数最大的项;(2)系数的绝对值最大的项(先看例9).
[练习3]已知*22()()n x n N x
-∈的展开式中的第五项的系数与第三项的系数之比是10:1.(1)求展开式中含3
2x 的项;(2)求展开式中系数最大的项和二项式系数最大的项.
4、求两个二项式乘积的展开式指定幂的系数
例4.在72)2)(1-+x x (的展开式中,3
x 项的系数是;
[练习4]在2
61+x+x )(x )x
-(2的展开式中常数项是5、求可化为二项式的三项展开式中指定幂的系数例5.在3)21(-+
x
x 的展开式中,常数项是________ [练习5]在28+x-x )(2的展开式中含1x 的项是
6、求中间项。
解:二项式的展开式的通项公式为:‘ 2n 3rc r丄 >r~4~ C n r X 2前三项的r 0,1,2.得系数为: t 1 1,t 22 2n,t3 c :2 28n(n 1),由已知:2t 2 t 1 t 3 n 1(n1),••• n 816 3r通项公式为Tr1C8P 「01,28,T r 1为有理项,故163r 是4的倍数,81 2 1 2C g -8 xx • 28256说明:本题通过抓特定项满足的条件, 利用通项公式求出了 r 的取值,得到了有理项.类• r 0,4,8.依次得到有理项为T iX4,T 5 C 8^4X ^^X ,T 9 2 8 似地,(■: 2 3 3)100的展开式中有多少项是有理项?可以通过抓通项中r 的取值,得到共有典型例题四310R1 6例4( 1 )求(1 X) (1 X)展开式中X 的系数;(2)求(X 2)展开式中的常数项.X分析:本题的两小题都不是二项式展开,但可以转化为二项式展开的问题, 视为两个二项展开式相乘;(2)可以经过代数式变形转化为二项式.(1)可以解:(1) (1 x)3(1 x)10展开式中的X 5可以看成下列几种方式得到,然后合并同类项:用(1 X)3展开式中的常数项乘以 (1 X)10展开式中的 X 5项,可以得到C 10X 5 ; 用 (1 x)3展开式中的一次项乘以(1 X)10展开式中的X 4项可得到(3x)(C :o X 4)3C 4°X 5 ;3210用(1 X)中的X 乘以(1 X)展开式中的3 2 x 可得到3x33 3 5 mC 10X3C 10X ;用 (1 3X)中的X 3项乘以 (1 X)10展开式中的X2项可得到C 32 23x C 10 xC 20X 5,合并同类项得 X 5 项为:(C 0C 4。
3C 3。
C 0)X 563X 5 .(2)(X121X •由X1x12展开式的通项公式T r' 2)12C12X6 r,可得展开式的常数项为 C :2 924二项式定理典型例题典型例题一n例1在二项式 x 1的展开式中前三项的系数成等差数列, 求展开式中所有有理项.分析:典型的特定项问题,涉及到前三项的系数及有理项,可以通过抓通项公式解决.说明:问题(2)中将非二项式通过因式分解转化为二项式解决•这时我们还可以通过 合并项转化为二项式展开的问题来解决.典型例题五例5 求(1 X 2 6 5X )展开式中X 5的系数.分析 :(1 X2X 1 O )不是二二项式,我们通过1 2X X(1 X) X 2 或1 (XX )展开解: 方法一: (1 X X 2 )6(1X26x) X(1 X 6)6(1 x)5x 2 15(1 4 4x) X其中含X 5的项为 C :x 5 6C ;x 5 15C 14X 5 6x 5 .含 x 5项的系数为 6.方法一二: (1 X 2\6X )1 (X2、6X )1 6(x x 2) 15(x2、22、3x ) 20(x x )15(x x 2 )46(x x2\5/)(x6X )5555其中含X 5的项为20( 3)x 15( 4)x 6x 6x .二x 5项的系数为6.方法3:本题还可通过把(1 xX 2)6看成6个1 xX 2相乘,每个因式各取一项相乘可得到乘积的一项, x 5项可由下列几种可能得到. 5个因式中取x , —个取1得到C 6x 5.31323个因式中取x , —个取 x 2,两个取1得到C 6 C 3X ( x ). 1个因式中取X ,两个取 x 2,三个取1得到C 6 C 5x ( x ) •合并同类项为(C ; c l c ; C6C 5)X 5 6x 5, X 5项的系数为6•典型例题六例 6 求证:(1) Cn 2C : nV n 2n 1 ;(2)c o [c n 垃丄c n 丄⑵1 1)•2 3 n 1 n 1分析:二项式系数的性质实际上是组合数的性质,我们可以用二项式系数的性质来证 明一些组合数的等式或者求一些组合数式子的值.解决这两个小题的关键是通过组合数公式1 2C n C n C n2n.解: (1)n! n!k -k!(n k)! (k 1)!( n k)!(n 1)!(k 1)!(n k)!nc n•••左边nC:1 n c n 1nc n1n(C01 C;1 c n 1) n 2n 1右边.将等式左边各项变化的等数固定下来,从而使用二项式系数性质求解.此外,有些组合数的式子可以直接作为某个二项式的展开式, 但这需要逆用二项式定理才能完成,所以需仔细观察,我们可以看下面的例子:求22C 10 10的结果.仔细观察可以发现该组合数的式与10 10 0 1 2 2(1 2)10的展开式接近,但要注意:(12) C W C 10 2 C 10 2从而可以得到:10 2C W28C ;O FC尹 1)•典型例题七例7利用二项式定理证明:32n 2 8n 9是64的倍数.32n 2 8n 9是82的倍数,为了使问题向二项说明:禾U 用本题的方法和技巧不仅可以用来证明整除问题, 复杂的指数式除以一个数的余数.典型例题八1 2 10 22C 20 29C ;O 210C 1012(10 2C 2O 28C 9O29C 10)式定理贴近,变形 32n2 9n1 (8 1)n 将其展开后各项含有 8k ,与82的倍数联系起来.解:•/ 32n 2 8n 9n18nn 1(8 1) 8n 8n1C n8n c n 1 82 c n8n1 C n 18n c n 1 82 8(n1) 1 8 n 98n1 c n 1 8nc n 1 82(8n18nn 1C n 1)64是64的倍数.例8展开2x3 52x 2•分析1:用二项式定理展开式. 解法1:2x 32x 2C 50(2x)5314C 5(2x)4323药C 5(2x)23 2 x 2n! n! k!(n(k k)!(n 1)! (k 1)!( n k)!1 k 1 c n 1•n 1_c n 1C n 1 n 11C 1nn 1 丄Cn1n 1说明:本题的两个小题都是通过变换转化成二项式系数之和,再用二项式系数的性质•••左边 n 1C 2 c :1c n 1)(2n 1 1)右边.29C 10 28C:O 27C ;OC O 29 C 10 210分析:64是8的平方,问题相当于证明而且可以用此方程求一些180 135 405243 ~x ~x^ ~8x r 32x 10分析2:对较繁杂的式子,先化简再用二项式定理展开.解法2:53 53 (4x 3) 1rc0/‘ 3、5 小1/‘ 3、4/ 小2/‘ 3、3/22x10C 5(4) C 5(4 ) ( 3) C 5(4 ) ( 3)C/(4x 3)2( 3)3 C 54(4x 3)1( 3)4 C/( 3)5]180 135 405 243f 炭 32x 10说明:记准、记熟二项式(a b )n 的展开式,是解答好与二项式定理有关问题的前提条 件•对较复杂的二项式,有时先化简再展开会更简便.典型例题九例9 若将(x y 1 z )展开为多项式,经过合并同类项后它的项数为(A • 11B • 33C . 55D • 66分析 :(x y 10 z )看作二项式 10[(x y) z]展开.解: 我们把xy z 看成(x y ) z ,按二项式展开,共有 11 “项”,即(x ioy z)[(x 10y) z]10k 10 k kC io (x y) z •k 0这时,由于“和”中各项 z 的指数各不相同,因此再将各个二项式 (x y )10 k 展开,不同的乘积C 10(x y )10 k z k ( k 0,1 ,,10 )展开后,都不会出现同类项.下面,再分别考虑每一个乘积 C 1'0(x y )10 k z k ( k 0,1,, 10) •其中每一个乘积展开后的项数由(x y )10 k 决定,而且各项中x 和y 的指数都不相同,也不会出现同类项•故原式展开后的总项数为11 10 9 1 66 ,•••应选D •典型例题十3Cd)2 /c ;(2x)2x 2C ;32x 5 120x 2 132x 10(1024x 15 3840x 12 5760x 9 4320x 6 1620x 3 2437)32x 5 120x 2 1例10若x -n2 的展开式的常数项为 20,求 n •2n1--- ,其通项为典型例题十二解:设连续三项是第k 、k 1、k 2项(k N 且k 1),则有C :1:。