《等差数列》是北师大版教材《数学》必修5 第一章第二节的内容
• 教材分析 • 教法与学法分析 • 教学过程
• 板书设计
• 教学评价
教材分析
教材的地位与作用
一、等差数列是对数列知识的进一步深入和
拓展
二、等差数列作为一种特殊的函数与函数思
想密不可分,有着广泛的实际应用. 依据
三、为后面学习等比数列提供了学习对比的
(5)1,2,4,7 …… ×
公差 d 可以是正数、负数,也可以是0。 定义:公差为0的等差数列叫做常数列。
新课探究
等差数列通项公式
推导公式
[提出问题]:如果等差数列{ a n}首项是 a1,公差是 d ,那么 如何表示出这个数列的第4项? 如何表示出这个数列的第40项? 如何表示出这个数列的第n项? 小组讨论,探索新知
an a1 (n 1)d , n 1, n 不完全归纳法 N
第n项 首项 项数 公差
练习训练
加深理解
:已知等差数列8,5,3‥‥‥,求解下列问题, 看看你们团队可以闯几关? 第一关:求公差 d 。 第二关:求通项公式 a n 。 第三关:求 a16 。 第四关:已知 an -19,求项数n。 第五关:求 an am 。
引例二
某品牌手机的价格一路走低,以下是该品牌手机今年 的价格走势
原价:2600 第一次降价后:2450 第二次降价后:2300
第三次降价后:2150
第四次降价后:2000
得到数列:2600,2450,2300,2150,2000
(1)4 , 5 , 6 , 7 , 8 , 9 , 10
(3)2600,2450,2300,2150,2000
归纳: 1.已知 突破难点 2. 通项公式中共有四个变量,知三可求一。