福建省高考数学 第20题优美解
- 格式:doc
- 大小:69.04 KB
- 文档页数:2
2023年福建省高考数学真题及参考答案一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}21012,,,,--=M ,{}062>--=x x x N ,则M ∩=N ()A .{}1012,,,--B .{}2,1,0C .{}2-D .{}22.已知iiz 221+-=,则=-z z ()A .i -B .iC .0D .13.已知向量()1,1=a,()1,1-=b .若()()b a b a μλ+⊥+,则()A .1=+μλB .1-=+μλC .1=λμD .1-=λμ4.设函数()()a x x x f -=2在区间()1,0单调递减,则a 的取值范围是()A .(]2-∞-,B .[)0,2-C .(]2,0D .[)∞+,25.设椭圆12221=+y a x C :()1>a ,14222=+y x C :的离心率分别21,e e .若123e e =,则=a ()A .332B .2C .3D .66.过点()20-,与圆01422=--+x y x 相切的两条直线的夹角为α,则=αsin ()A .1B .415C .410D .467.记n S 为数列{}n a 的前n 项和,设甲:{}n a 为等差数列;乙:⎭⎫⎩⎨⎧n S n 为等差数列,则()A .甲是乙的充分条件但不是必要条件B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件8.已知()31sin =-βα,61sin cos =βα,则()=+βα22cos ()A .97B .91C .91-D .97-二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.有一组样本数据621,,x x x ,其中1x 是最小值,6x 是最大值,则()A .5432,,,x x x x 的平均数等于621,,x x x 的平均数B .5432,,,x x x x 的中位数等于621,,x x x 的中位数C .5432,,,x x x x 的标准差不小于621,,x x x 的标准差D .5432,,,x x x x 的极差不大于621,,x x x 的极差10.噪声污染问题越来越受到重视,用声压级来度量声音的强弱,定义声压级lg20p pL p ⨯=,其中常数()000>p p 是听觉下线的阈值,p 是实际声压.下表为不同声源的声压级:已知在距离燃油汽车、混合动力汽车、电动汽车10m 处测得实际声压分别为321,,p p p ,则()A .21p p >B .3210p p >C .03100p p =D .21100p p <11.已知函数()x f 的定义域为R ,()()()y f x x f y xy f 22+=,则()A .()00=fB .()01=f C .()x f 是偶函数D .0=x 为()x f 的极小值点12.下列物体中,能够被整体放入棱长为1(单位:m)的正方体容器(容器壁厚度忽略不计)内的有()A .直径为m 99.0的球体B .所有棱长均为m 4.1的四面体C .底面直径为m 01.0,高为m 8.1的圆柱体D .底面直径为m 2.1,高为m 01.0的圆柱体声源与声源的距离/m 声压级/dB 燃油汽车1060~90混合动力汽车1050~60电动汽车1040三、填空题:本大题4小题,每小题5分,共20分.13.某学校开设了4门体育类选修课和4门艺术类选修课,学生需从这8门课中选修2门或3门课,并且每类选修课至少选修1门,则不同的选修方案共有种(用数字作答).14.在正四棱台1111D C B A ABCD -中,2=AB ,111=B A ,21=AA ,则该棱台的体积为.15.已知函数()()01cos >-=ωωx x f 在区间[]π2,0有且仅有3个零点,则ω的取值范围是.16.已知双曲线()0012222>>=-b a by a x C ,:的左、右焦点分别为21F F ,,点A 在C 上.点B 在y 轴上,B F A F 11⊥,B F A F 2232-=,则C 的离心率为.四、解答题:本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤.17.已知在ABC ∆中,C B A 3=+,()B C A sin sin 2=-.(1)求A sin ;(2)设5=AB ,求AB 边上的高.18.如图,在正四棱柱1111D C B A ABCD -中,2=AB ,41=AA .点2222,,,D C B A 分别在棱1111,,,DD CC BB AA 上,12=AA ,222==DD BB ,32=CC .(1)证明:2222D A C B ∥;(2)点P 在棱1BB 上,当二面角222D C A P --为150°时,求P B 2.19.已知函数()()x a e a x f x-+=.(1)讨论()x f 的单调性;(2)证明:当0>a 时,()23ln 2+>a x f .20.设等差数列{}n a 的公差为d ,且1>d ,令nn a nn b +=2,记n n T S ,分别为数列{}n a ,{}n b 的前n 项和.(1)若31223a a a +=,2133=+T S ,求{}n a 的通项公式;(2)若{}n b 为等差数列,且999999=-T S ,求d .21.甲乙两人投篮,每次由其中一人投篮,规则如下:若命中则此人继续投篮,若未命中则换为对方投篮.无论之前投篮情况如何,甲每次投篮的命中率均为6.0,乙每次投篮的命中率均为8.0,由抽签决定第一次投篮的任选,第一次投篮的人是甲、乙的概率各为5.0.(1)求第2次投篮的人是乙的概率;(2)求第i 次投篮的人是甲的概率;(3)已知:若随机变量i X 服从两点分布,且()()i i i q X P X P ==-==011,n i ,,2,1 =,则()∑∑===ni i ni i q X E11,记前n 次(即从第1次到第n 次投篮)中甲投篮的次数为Y ,求()Y E .22.在直角坐标系xOy 中,点P 到x 轴的距离等于点P 到点⎪⎭⎫ ⎝⎛210,的距离,记动点P 的轨迹为W .(1)求W 的方程;(2)已知矩形ABCD 有三个顶点在W 上,证明:矩形ABCD 的周长大于33.参考答案一、选择题12345678CADDABCB1.解:(][)∞+⋃-∞-∈,,32N ,∴{}2=⋂N M 2.解:i i i z 21221-=+-=,∴i z z -=-3.解:()()b a b aμλ+⊥+∵,∴()()()01222=+=+⋅++λμλμμλb b a a ,∴1-=λμ4.解:由复合函数的单调性可知()a x x y -=在区间()1,0单调递减,∴12≥a,∴a 的取值范围是[)∞+,2.5.解:由题意得:a a e 121-=,232=e ,得2112=-a a ,解得332=a .6.解:易得()5222=+-y x ,故圆心()0,2B ,5=R 记()20-,A ,设切点为N M ,,则22=AB ,5=BM ,可得3=AM 223sin 2sin==∠=AB AM MBA α,2252cos =α∴4152cos 2sin 2sin ααα=7.解:甲:∵{}n a 为等差数列,设其首项为1a ,公差为d ,则()d n n na S n 211++=,∴222111d a n d d n a n S n -+=-+=,211d n S n S n n =-++,故⎭⎬⎫⎩⎨⎧n S n 为等差数列,则甲是乙的充分条件;反之,⎭⎫⎩⎨⎧n S n 为等差数列,即()()()1111111+-=++-=-++++n n S na n n S n nS n S n S n n n n n n 为常数,设为t ,即()t n n S na nn =+-+11,故()11+⋅-=+n n t na S n n ,故()()111-⋅--=-n n t a n S n n ,2≥n ,两式相减有:()tn n a na a n n n 211---=+,即t a a n n 21=-+,对1=n 也成立,故{}n a 为等差数列,∴甲是乙的必要条件综上,甲是乙的充要条件.8.解:∵()31sin cos cos sin sin =-=-βαβαβα,61sin cos =βα,则21cos sin =βα,故()326131sin cos cos sin sin =+=+=+βαβαβα.()()913221sin 2122cos 22=⎪⎭⎫⎝⎛⨯-=+-=+βαβα.二、选择题9101112BDACDABCABD10.解:∵0lg 20lg 20lg2021020121≥⨯=⨯-⨯=-p p p p p p L L ,∴121≥p p,即21p p >∴A 正确;10lg 203232>⨯=-p p L L ,即21lg 32>p p ,∴213210>p p ,∴B 错误;∵40lg20033=⨯=p p L ,∴10010203==p p,∴C 正确;405090lg202121=-≤⨯=-p p L L ,∴2lg 21≤p p ,∴10021≤p p,∴D 正确.11.解:选项A ,令0==y x ,则()()()000000=⨯+⨯=f f f ,故A 正确;选项B ,令1==y x ,则()()()11111f f f ⨯+⨯=,则()01=f 故B 正确;选项C,令1-==y x ,则()()()()()1111122-⨯-+-⨯-=f f f ,则()01=f ,再令1-=y ,则()()()()1122-+⨯-=-f x x f x f ,即()()x f x f =-,故C 正确;选项D,对式子两边同时除以22yx ()022≠y x,得到:()()()2222xx f y y f y x xy f +=,故可设()()0ln 2≠=x x x x f ,故可以得到()⎩⎨⎧=≠=0,00,ln 2x x x x x f ,故D 错误.12.解:选项A,球直径为199.0<,故球体可以放入正方体容器内,故A 正确;选项B,连接正方体的面对角线,可以得到一个正四面体,其棱长为4.12>,故B 正确;选项C,底面直径m 01.0,可以忽略不计,但高为38.1>,3为正方体的体对角线的长,故C 不正确;选项D,底面直径为32.1<,高为m 01.0的圆柱体,其高度可以忽略不计,故D 正确.三、填空题13.64;14.667;15.32<≤ω;16.55313.解:当从这8门课中选修2门课时,共有161414=C C ;当从这8门课中选修3门课时,共有4814242414=+C C C C ;综上共有64种.14.解:如图,将正四棱台1111D C B A ABCD -补成正四棱锥,则2=AO ,22=SA ,261=OO ,故()()667261212313122222121=⋅⋅++=++=h S S S S V .15.解:令()01cos =-=x x f ω得1cos =x ω,又[]π2,0∈x ,则[]ωπω2,0∈x ,∴ππωπ624<≤,即32<≤ω.16.解:由B F A F 2232-=32=,设x A F 22-=,x B F 32=.由对称性可得x 3=,由定义可得,a x 22+=x 5=,设θ=∠21AF F ,则5353sin ==x x θ,∴xax 52254cos +==θ,解得a x =,∴a x AF 221+=,a AF 22=,在21F AF ∆中,由余弦定理可得54164416cos 2222=-+=a c a a θ,即2295a c =可得553=e .四、解答题17.解:(1)由题意得C B A 3=+,∴,π==++C C B A 4,∴4π=C ∴A C A B -=--=43ππ,∵()B C A sin sin 2=-,∴⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-A A ππ43sin 4sin 2,即A A A A sin 22cos 22cos 22sin 222+=⎪⎪⎭⎫⎝⎛-,整理得:A A cos 3sin =又∵1cos sin 22=+A A ,()π,0∈A ∴0sin >A ,∴0cos >A 解得10103sin =A ,1010cos =A (2)∵()552sin cos cos sin sin sin =+=+=C A C A C A B 由正弦定理可知C c B b sin sin =,即22510103=b ,解得102=b 设AB 边上的高为h ,∵ch A bc S 21sin 21==,∴6sin ==A b h 18.解:以C 为原点,CD 为x 轴,CB 为y 轴,1CC 为z 轴建立空间直角坐标系则()2,2,02B ,()3,0,02C ,()1,222,A ,()2,0,22D (1)∵()1,2022-=,C B ,()12022,,-=D A ∴=22C B 22D A ,∴2222D A C B ∥(2)设()t P ,2,0,其中42≤≤t ∴()t P A -=1022,,,()t PC --=3,202,,()1,0,222-=C D ,()12,022-=,A D .设平面22C P A 的一个法向量为()z y x m ,,= ,则⎪⎩⎪⎨⎧=⋅=⋅022PC m P A m 即()()⎩⎨⎧=-+-=-+032012z t y z t x ,令2=z ,则()2,3,1t t m --=.设平面222C A D 的一个法向量为()z y x n '''=,, ,则⎪⎩⎪⎨⎧=⋅=⋅02222C D n A D n即⎩⎨⎧=-'=+'-0202z y z x ,令2=z ,则()2,1,1=n .∵二面角222D C A P --为150°,∴2314826150cos 2=+-=︒⇒=t t ,解得:1=t (舍去)或3=t .∴12=P B 19.解:(1)由题可得()1-='xae x f ①当0≤a 时,()0<'x f ,()x f 在()∞+∞-,单调递减;②当0>a 时,令()0='x f 得ax ln -=∴当()a x ln ,-∞-∈时,()0<'x f ,()x f 在()a ln ,-∞-单调递减;当()∞+-∈,a x ln 时,()0>'x f ,()x f 在()∞+-,a ln 单调递增.(2)由(1)得当0>a 时,()()a a a f x f ln 1ln 2min ++=-=.设()21ln 23ln 2ln 122--=⎪⎭⎫ ⎝⎛+-++=a a a a a a g ,则()a a a g 12-=',令()0='a g 可得22=a ∴当⎪⎪⎭⎫ ⎝⎛∈22,0a 时,()0<'a g ,()a g 在⎪⎪⎭⎫⎝⎛22,0上单调递减;当⎪⎪⎭⎫ ⎝⎛∞+∈,22a 时,()0>'a g ,()a g 在⎪⎪⎭⎫⎝⎛∞+,22上单调递增.∴()02ln 22min >=⎪⎪⎭⎫⎝⎛=g a g ,故()0>a g ,∴当0>a 时,()23ln 2+>a x f .20.解:(1)∵31223a a a +=,∴d a a d 2313+==,即d a =1,nd a n =故nd a n =,∴d n a n n b n n 12+=+=,()21d n n S n +=,()dn n T n 23+=,又2133=+T S ,即21263243=⨯+⨯dd ,即03722=+-d d ,解得3=d 或21=d (舍),故{}n a 的通项公式为:n a n 3=.(2)若{}n b 为等差数列,则3122b b b +=,即da a d a 24321322111+⨯+⨯=+⨯⋅,即0232121=+-d d a a ,∴d a =1或d a 21=,当d a =1时,nd a n =,故()21d n n S n +=,()dn n T n 23+=.又999999=-T S ,即99210299210099=⨯-⨯dd ,即051502=--d d ,∴5051=d 或1=d (舍).当d a 21=时,()d n a n 1+=,d n b n =,故()23d n n S n +=,()dn n T n 21+=.又999999=-T S ,即99210099210299=⨯-⨯dd ,即050512=--d d ,∴5051-=d (舍)或1=d (舍).综上所述:5051=d .21.解:(1)第二次是乙的概率为6.08.05.04.05.0=⨯+⨯.(2)第i 次投篮的人是甲的概率为i p ,则第i 次投篮的人是甲的概率为i p -1,则()2.04.012.06.01+=-+=+i i i i p p p p ,构造等比数列()λλ+=++i i p p 521,解得31-=λ,则⎪⎭⎫ ⎝⎛-=-+3152311i i p p ,又211=p ,∴61311=-p ∴1526131-⎪⎭⎫ ⎝⎛⋅=-i i p ,则3152611+⎪⎭⎫⎝⎛⋅=-i i p .(3)当*∈N n 时,()352118535215216121n n p p p Y E n nn +⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-=+-⎪⎭⎫ ⎝⎛-⋅=+++= .11当0=n 时,()0=Y E ,符合上式,故()3521185n Y E n+⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫⎝⎛-=.22.解:(1)设()y x P ,,∵点P 到x 轴的距离等于点P 到点⎪⎭⎫ ⎝⎛210,的距离,∴2221⎪⎭⎫ ⎝⎛-+=y x y ,化简得412+=x y .故W 的方程为412+=x y .(2)不妨设D B A ,,三点在W 上,且有DA BA ⊥.设⎪⎭⎫ ⎝⎛+41,2a a A ,设DA BA ,的斜率分别为kk 1-,,由对称性不妨设1≤k ,则直线BA 的方程为:()412++-=a a x k y 联立()⎪⎪⎩⎪⎪⎨⎧++-=+=414122a a x k y x y ,整理可得:022=-+-a ka kx x ,则kx x B A =+∴()()ak k y y x x AB B A B A 21222-+=-+-=同理可得:a kk AD 21112++=∴CD AB +a k k 212-+=a kk 21112+++()232221112121k k k k k a k a k k +=⎪⎭⎫ ⎝⎛++≥⎪⎪⎭⎫ ⎝⎛++-+≥设()()313123+++=+=m m m mm m f ,则()()()222112132m m m m m m f +-=-+=',可知()m f 在⎪⎭⎫ ⎝⎛210,上单调递减,在⎪⎭⎫ ⎝⎛021,上单调递增,∴()m f 在()10,上最小值为42721=⎪⎭⎫ ⎝⎛f ,∴()3232≥=+kf CD AB ,由于两处相等的条件不一致,∴矩形ABCD 的周长为()332>+CD AB .。
2020年全国高考数学一卷(理)20题解法赏析陈志年(安徽省合肥市肥西中学㊀231200)摘㊀要:本文给出2020年全国高考数学一卷(理)20题的多种解法及评析.关键词:解析几何ꎻ直线过定点ꎻ引进参数ꎻ参数的去留.中图分类号:G632㊀㊀㊀㊀㊀㊀文献标识码:A㊀㊀㊀㊀㊀㊀文章编号:1008-0333(2020)31-0038-02收稿日期:2020-08-05作者简介:陈志年(1962.4-)ꎬ男ꎬ安徽人ꎬ本科ꎬ中学高级教师ꎬ从事高中数学教学研究.㊀㊀2020年全国高考数学一卷(理)20题是一道解析几何题ꎬ其中第二问是证明直线过定点.虽然是一类常见常考的题型ꎬ但是解决起来有一定的难度.难点在于:引进一个参数ꎬ思路简单ꎬ可运算量大ꎬ要求运算流畅㊁准确ꎻ引进多个参数ꎬ最后涉及到参数的消去与保留ꎬ要求思维灵活㊁缜密.下面给出该题的多种解法及评析ꎬ欣赏一题多解的妙趣ꎻ领略难点突破的秘诀.题目㊀已知AꎬB分别为椭圆E:x2a2+y2=1(a>1)的左右顶点ꎬG为E的上顶点ꎬAGң GBң=8.P为直线x=6上的动点ꎬPA与E的另一交点为CꎬPB与E的另一交点为D.(1)求E的方程ꎻ(2)证明:直线CD过定点.解㊀(1)由题设得A(-aꎬ0)ꎬB(aꎬ0)ꎬG(0ꎬ1)ꎬ则AGң=(aꎬ1)ꎬGBң=(aꎬ-1).由AGң GBң=8得a2-1=8ꎬ即a=3.所以E的方程为x29+y2=1.(2)解法1㊀由(1)知A(-3ꎬ0)ꎬB(3ꎬ0)ꎬ设P(6ꎬt)则PA的方程为y=t9(x+3).将y=t9(x+3)代入x29+y2=1得(t2+9)x2+6t2x+9t2-81=0ꎬ则-3xc=9t2-81t2+9ꎬ所以xc=-3t2+27t2+9ꎬC点的坐标为(-3t2+27t2+9ꎬ6tt2+9)ꎻ同样求得D点坐标为(3t2-3t2+1ꎬ-2tt2+1).当t2ʂ3时ꎬ直线CD的斜率kCD=4t-3t2+9ꎬ直线CD的方程为y+2tt2+1=4t-3t2+9(x-3t2-3t2+1)ꎬ即y=4t-3t2+9(x-32)ꎻ当t2=3时ꎬ直线CD的方程为x=32.综上ꎬ直线CD过定点(32ꎬ0).评析㊀本解法两次将直线方程代入椭圆方程得到关于x的一元二次方程ꎬ有一定的运算量ꎬ要求零失误ꎻ利用韦达定理求得C㊁D的坐标ꎬ是一个技巧ꎻ写出直线CD的方程还需要化简整理ꎬ方能得到所要证的结论.解法2㊀由(1)知A(-3ꎬ0)ꎬB(3ꎬ0)ꎬ设P(6ꎬt)ꎬC(3cosαꎬsinα)ꎬD(3cosβꎬsinβ)ꎬ则ACң=(3cosα+3ꎬsinα)ꎬAPң=(9ꎬt)ꎬBDң=(3cosβ-3ꎬsinβ)ꎬBPң=(3ꎬt).因为ACңʊAPңꎬBDңʊBPңꎬ所以(3cosα+3)t-9sinα=0ꎬ(3cosβ-3)t-3sinβ=0.当tʂ0时ꎬ则t=3tanα2ꎬt tanβ2=-1ꎬ从而tanα2tanβ2=-13.若cosαʂcosβꎬ直线CD的方程为y-sinα=sinα-sinβ3cosα-3cosβ(x-3cosα)ꎬ即y=sinα-sinβ3cosα-3cosβ(x-3sin(α-β)sinα-sinβ)ꎬ即y=sinα-sinβ3cosα-3cosβ(x-3cosα-β2cosα+β2)ꎬ即y=sinα-sinβ3cosα-3cosβ(x-3(1+tanα2tanβ2)1-tanα2tanβ2).将tanα2 tanβ2=83-13代入得直线CD的方程y=sinα-sinβ3cosα-3cosβ(x-32).若cosα=cosβꎬ由tanα2 tanβ2=-13ꎬ不妨设tanα2=33ꎬtanβ2=-33ꎬ所以cosα=cosβ=12ꎬ直线CD的方程为x=32.当t=0时ꎬ直线CD的方程为y=0.综上ꎬ直线CD过定点(32ꎬ0).评析㊀本解法利用椭圆的参数方程设点的坐标ꎬ减少了参数的个数ꎻ整个解答过程中ꎬ利用了多个三角公式ꎬ如:同角三角函数基本关系公式ꎬ两角和与差公式ꎬ二倍角公式及通过角的变换推导的 和差化积 公式等ꎬ可以说三角公式的运用得到了极致.解法3㊀由(1)知A(-3ꎬ0)ꎬB(3ꎬ0).设P(6ꎬt)ꎬ根据对称性直线CD所过定点在x轴上.当tʂ0时ꎬ设直线CD的方程为my=x-nꎬC(my1+nꎬy1)ꎬD(my2+nꎬy2)ꎬ则ACң=(my1+n+3ꎬy1)ꎬAPң=(9ꎬt)ꎬBDң=(my2+n-3ꎬy2)ꎬBPң=(3ꎬt).因为ACңʊAPңꎬBDңʊBPңꎬ所以(my1+n+3)t-9y1=0ꎬ(my2+n-3)t-3y2=0.消去t得y2(my1+n+3)=3y1(my2+n-3).即2my1y2+3(n-3)y1-(n+3)y2=0.把x=my+n代入x29+y2=1得(m2+9)y2+2mny+n2-9=0.把y1y2=n2-9m2+9代入2my1y2+3(n-3)y1-(n+3)y2=0ꎬ得2m(n2-9)m2+9+3(n-3)y1-(n+3)y2=0ꎬ把2mm2+9=-y1+y2n代入2m(n2-9)m2+9+3(n-3)y1-(n+3)y2=0消去m得-(n2-9)(y1+y2)+3n(n-3)y1-n(n+3)y2=0ꎬ即(2n2-9n+9)y1-(2n2+3n-9)y2=0.所以2n2-9n+9=0ꎬ2n2+3n-9=0ꎬ从而n=32ꎬ直线CD的方程为my=x-32.当t=0时ꎬ直线CD的方程为y=0.综上ꎬ直线CD过定点(32ꎬ0).评析㊀本解法引进多个参数ꎬ初心是利用韦达定理消去y1和y2保留mꎬ实际把y1y2=n2-9m2+9代入2my1y2+3(n-3)y1-(n+3)y2=0ꎬ结合y1+y2=-2mnm2+9ꎬ发现易消去mꎬ保留y1和y2ꎬ利用y1和y2的任意性就可求得n.解题过程中得到启发㊁灵感ꎬ适时调整我们的解题思路ꎬ体现了思维的多向性和灵活性.解法4㊀由(1)知A(-3ꎬ0)ꎬB(3ꎬ0)ꎬ设C(x1ꎬy1)ꎬD(x2ꎬy2)ꎬP(6ꎬt)ꎬ则ACң=(x1+3ꎬy1)ꎬAPң=(9ꎬt)ꎬBDң=(x2-3ꎬy2)ꎬBPң=(3ꎬt).因为ACңʊAPңꎬBDңʊBPңꎬ所以(x1+3)t-9y1=0ꎬ(x2-3)t-3y2=0.消去t得3y1(x2-3)=y2(x1+3)ꎬ所以9y21(x2-3)2=y22(x1+3)2.又y21=9-x219ꎬy22=9-x229ꎬ从而得9(x1-3)(x2-3)=(x1+3)(x2+3)ꎬ即4x1x2-15(x1+x2)+36=0.根据对称性直线CD所过定点在x轴上.当直线CD的斜率存在时ꎬ设直线CD的方程为y=k(x-n)ꎬ把y=k(x-n)代入x29+y2=1得(9k2+1)x2-18k2nx+9k2n2-9=0.把x1+x2=18k2n9k2+1ꎬx1x2=9k2n2-99k2+1代入4x1x2-15(x1+x2)+36=0得k2(2n2-15n+18)=0ꎬ所以2n2-15n+18=0ꎬ解得n=32或n=6(舍去)ꎬ直线CD的方程为y=k(x-32).当直线CD的斜率不存在时ꎬ则x1=x2ꎬ又4x1x2-15(x1+x2)+36=0ꎬ所以x1=x2=32或x1=x2=6(舍去)ꎬ直线CD的方程为x=32.综上ꎬ直线CD过定点(32ꎬ0).评析㊀本解法引进更多的参数ꎬ利用C㊁D在椭圆上ꎬ我们首先消去y1和y2ꎬ得到4x1x2-15(x1+x2)+36=0ꎬ至此应用韦达定理解答显而易见ꎬ水到渠成.解析几何中ꎬ设而不求㊁加强韦达定理的应用是解答问题的重要方法.㊀㊀㊀参考文献:[1]2020年普通高等学校招生全国统一考试数学Ⅰ卷.㊀[责任编辑:李㊀璟]93。
2024年福建省高考数学真题及参考答案一、单项选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项符合题目要求。
1.已知集合{}553<<-=x x A ,{}3,2,0,13--=,B ,则=B A ()A.{}0,1-B.{}32, C.{}0,13--, D.{}2,0,1-2.若i z z+=-11,则=z ()A.i --1B.i +-1C.i -1D.i +13.已知向量()1,0=a,()x b ,2= ,若()a b b 4-⊥,则=x ()A.2- B.1- C.1D.24.已知()m =+βαcos ,2tan tan =βα,则()=-βαcos ()A.m3- B.3m -C.3m D.m35.已知圆柱和圆锥的底面半径相等,侧面积相等,且它们的高均为3,则圆锥的体积为()A.π32 B.π33 C.π36 D.π396.已知函数()()⎪⎩⎪⎨⎧≥++<---=0,1ln 0,22x x e x a ax x x f x 在R 上单调递增,则a 的取值范围是()A.(]0,∞-B.[]0,1-C.[]1,1-D.[)∞+,07.当[]π2,0∈x 时,曲线x y sin =与⎪⎭⎫⎝⎛-=63sin 2πx y 的交点个数为()A.3B.4C.6D.88.已知函数()x f 定义域为R ,()()()21-+->x f x f x f ,且当3<x 时,()x x f =,则下列结论中一定正确的是()A.()10010>fB.()100020>fC.()100010<f D.()1000020<f二、多项选择题:本题共3小题,每小题6分,共18分,在每小题给出的四个选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,由选错的得0分.9.为了解推动出口后的亩收入(单位:万元)情况,从该种植区抽取样本,得到推动出口后亩收入的样本均值1.2=x ,样本方差01.02=S ,已知该种植区以往的亩收入X 服从正态分布()21.08.1,N ,假设失去出口后的亩收入Y 服从发正态分布()2,S x N ,则()(若随机变量Z 服从正态分布()2,σμN ,则()8413.0≈+<σμZ P )A.()2.02>>X PB.()5.0<>Z X PC.()5.0>>Z Y P D.()8.0<>Z Y P 10.设函数()()()412--=x x x f ,则()A.3=x 是()x f 的极小值点B.当10<<x 时,()()2xf x f <C.当21<<x 时,()0124<-<-x f D.当01<<-x 时,()()x f x f >-211.造型可以看作图中的曲线C 的一部分,已知C 过坐标原点O ,且C 上的点满足横坐标大于2-,到点()02,F 的距离与到定直线()0<=a a x 的距离之积为4,则()A .2-=aB .点()022,在C 上C .C 在第一象限的点的纵坐标的最大值为1D .当点()00,y x 在C 上时,2400+≤x y三、填空题:本题共3小题,每小题5分,共15分.12.设双曲线()0,012222>>=-b a by a x C :的左右焦点分别为21,F F ,过2F 作平行于y 轴的直线交C 于B A ,两点,若131=A F ,10=AB ,则C 的离心率为.13.若曲线x e y x+=在点()1,0处的切线也是曲线()a x y ++=1ln 的切线,则=a .14.甲、乙两人各有四张卡片,每张卡片上标有一个数字,甲的卡片分别标有数字1,3,5,7,乙的卡片上分别标有数字2,4,6,8,两人进行四轮比赛,在每轮比赛中,两个各自从自己特有的卡片中随机选一张,并比较所选卡片的数字的大小,数字大的人得1分,数字小的人得0分,然后各自弃置此轮所选的卡片(弃置的卡片在此后的轮次中不能使用).则四轮比赛后,甲的总得分小于2的概率为.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)记ABC ∆的内角C B A ,,的对边分别为c b a ,,.已知B C cos 2sin =,ab c b a 2222=-+.(1)求B ;(2)若ABC ∆的面积为33+,求c .16.(15分)已知()30,A 和⎪⎭⎫⎝⎛233,P 为椭圆()012222>>=+b a b y a x C :上两点.(1)求C 的离心率;(2)若过P 的直线l 交C 于另一点B ,且ABP ∆的面积为9,求l 的方程.17.(15分)如图,四棱锥ABCD P -中,⊥P A 底面ABCD ,2==PC P A ,1=BC ,3=AB .(1)若PB AD ⊥,证明:∥AD 平面PBC ;(2)若DC AD ⊥,且二面角D CP A --的正弦值为742,求AD .18.(17分)已知函数()()312ln-++-=x b ax xx x f .(1)若0=b ,且()0≥'x f ,求a 的最小值;(2)证明:曲线()x f y =是中心对称图形;(3)若()2->x f ,当且仅当21<<x ,求b 的取值范围.19.(17分)设m 为正整数,数列242.1,,,+m a a a 是公差不为0的等差数列,若从中删去两项i a 和()j i <后剩余的m 4项可被平均分为m 组,且每组的4个数都能构成等差数列,则称数列242.1,,,+m a a a 是()j i ,一一可分数列.(1)写出所有的()j i ,,61≤<≤j i ,使数列62.1,,,a a a 是()j i ,一一可分数列;(2)当3≥m 时,证明:数列242.1,,,+m a a a 是()13,2一一可分数列;(3)从242,1+m ,, 中一次任取两个数i 和j ()j i <,记数列242.1,,,+m a a a 是()j i ,一一可分数列的概率的概率为m P ,证明:81>m P .参考答案一、单项选择题1.A解析:∵553<<-x ,∴3355<<-x .∵2513<<,∴1523-<-<-.∴{}0,1-=B A .2.C解析:∵i z z +=-11,∴()()i i i z i iz z i z -=+=⇒+=⇒-+=11111.3.D 解析:()4,24-=-x a b ,∵()a b b4-⊥,∴()044=-+x x ,∴2=x .4.A解析:∵()m =+βαcos ,2tan tan =βα,∴()()32121tan tan 1tan tan 1sin sin cos cos sin sin cos cos cos cos -=-+=-+=-+=+-βαβαβαβαβαβαβαβα.∴()m 3cos -=-βα.5.B解析:由32⋅==r rl S ππ侧可得32=l ,∴3=r .∴ππ33393131=⋅⋅==Sh V .6.B由()()0,1ln ≥++=x x e x f x为增函数,故此分段函数在R 上递增,只需满足:⎪⎩⎪⎨⎧≤-≥-=--1022a a a,解得01≤≤-a .7.C解析:∴32π=T .8.B解析:()()()123f f f +>,()22=f ,()11=f .()()()()()122234f f f f f +>+>,()()()()()1223345f f f f f +>+>,……()()()8912123410>+>f f f ,……,()()()9871233237715>+>f f f ,()()()15971377261016>+>f f f .∴()100020>f .二、多项选择题9.BC 解析:已知()21.08.1~,N X ,由题目所给条件:若随机变量Z 服从正态分布,()8413.0≈+<σμZ P ,则()8413.09.1≈<X P ,易得()1587.08413.012≈-<>X P .故A 错误,B 正确;对于C:()21.01.2~,N Y ,∴()5.01.2=>Y P ,即()()5.01.22=>>>Y P Y P ,故C正确;对于D:同上易得()8413.02.2≈<Y P .由正态密度曲线的对称性可知()()8.08412.02.22>≈<=>Y P Y P .故D 错误.10.ACD解析:对于A:()()()()()()31314122--=-+--='x x x x x x f .令()0='x f ,解得11=x ,32=x .x 变化时,()x f '与()x f 变化如下表:故A 正确;对于B:当10<<x 时,102<<<x x ,又()x f 在()1,0上单调递增,所以()()x f xf <2,故B 错误;对于C :令()2112<<-=x x t ,则31<<x .()x f 在()3,1上单调递减,()()()13f t f f <<,()43-=f ,()11=f ,即()0121<-<-x f .故C 正确;对于D:()()()412--=x x x f ,()()()()()21421222---=---=-x x x x x f .∴()()()()()32122212-=--=--x x x x f x f .当01<<-x 时,()013<-x ,∴()()x f x f -<2成立.故D 正确.11.ABD解析:对于A:O 点在曲线C 上,O 到F 的距离和到a x =的距离之积为4,即42=⨯a ,解得2±=a .又∵0<a ,∴2-=a ,故A 正确;对于B:由图象可知曲线C 与x 轴正半轴相交于一点,不妨设B 点.设()0,m B ,其中2>m ,由定义可得()()422=+-m m ,解得22±=m .又∵2>m ,∴22=m ,故B 正确;对于C:设C 上一点()y x P ,,()()42222=++-x y x ,其中2->x .化简得曲线C 的轨迹方程为()()2222216--+=x x y ,其中2->x .已知2=x 时,12=y ,对x 求导()()2223232--+-=x x y .2122-==x y ,则在2=x 是下降趋势,即存在2<x 时,1>y 成立,故C 错误;对于D:()()2222216--+=x x y ,∵()022≥-x ,∴()22216+≤x y .∴240+≤x y .又∵20->x ,2400+≤x y ,则24000+≤≤x y y ,故D 正确.三、填空题12.23解析:作图易得131=A F ,52=AF ,且212F F AF ⊥,12222121=-=AF A F F F .由双曲线定义可得:8221=-=AF A F a ,6221==F F c ,则23==a c e .13.2ln 解析:1+='xe y ,20='==x y k ,切线l 的方程:12+=x y .设l 与曲线()a x y ++=1ln 的切点横坐标为0x ,110+='x y ,则2110=+=x k ,解得210-=x .代入12+=x y 可得切点为⎪⎭⎫⎝⎛-021,,再代入()a x y ++=1ln ,a +=21ln 0,即2ln =a .14.21解析:不妨确定甲的出牌顺序为7,5,3,1.乙随机出牌有2444=A 种基本事件.甲的数字1最小,乙的数字8最大.若数字1和数字8轮次不一致,乙最少得2分,甲最多2分.站在甲的视角下,分四种情况:①8对1,则7必得分(1)若得3分:3,5都得分,3对2,5对4(1种情况)(2)若得2分:3,5只有一个得分(ⅰ):5得分,3不得分:5对2,3对4或6(2种情况);5对4,3对6(1种情况);(ⅱ):3得分,5不得分:3对2,5对6(1种情况);②8对3,7必得分5得分:5对2,4,7对应2种情况,共有422=⨯种情况;③8对5,7必得分3得分:3对2,7对应2中情况,共有221=⨯种情况;④8对7,最多得2分3得分,5得分:3对2,5对4(1种情况).共有12种情况,甲总得分不小于2的概率为212412=.四、解答题15.解:(1)∵ab c b a 2222=-+,∴22222cos 222==-+=ab ab ab c b a C .∴22cos 1sin 2=-=C C .又∵B C cos 2sin =,∴22cos 2=B ,∴21cos =B ,∴3π=B .(2)∵33sin 21+==∆Bac S ABC ,∴333sin 21+=ac π.即434+=ac ……①由(1)易知4π=C ,3π=B .由正弦定理C c A a sin sin =,()CcC B a sin sin =+.∴4sin43sin πππc a =⎪⎭⎫ ⎝⎛+,∴224269c =+,∴c a 213+=.代入①式解得22=c .16.解:(1)将()30,A ,⎪⎭⎫⎝⎛233,P 代入椭圆12222=+b y a x 得:⎪⎪⎩⎪⎪⎨⎧=+=149919222b a b ,可得⎪⎩⎪⎨⎧==91222b a ,∴3222=-=b a c ,∴32=a ,3=c .∴离心率21323===a c e .(2)①当l 斜率不存在时,29332121=⨯⨯=-⋅=∆A P ABP x x PB S ,不符,舍去.②当l 斜率存在时,设l 方程:()323-=-x k y .联立()⎪⎪⎩⎪⎪⎨⎧=+-=-191232322y x x k y 可得:()()()02736212342222=--++-++k k x k k x k.由韦达定理:()34273622+--=⋅k k k x x B P ,又3=P x ,∴()3491222+--=k k k x B .∵BP 与y 轴交点⎪⎭⎫ ⎝⎛+-233,0k ,∴()9349123323213232122=+---⋅+=-+⋅=∆k k k k x x k S B P ABP 解得21=k 或23,∴l 方程x y 21=或0623=--y x .17.解:(1)证明:∵⊥P A 底面ABCD ,∴AD P A ⊥.又∵PB AD ⊥,∴⊥AD 平面P AB ,则AB AD ⊥.又∵1,32===BC AB AC ,,∴222BC AB AC +=,则BC AB ⊥,∴BC AD ∥.∵⊄AD 平面PBC ,⊂BC 平面PBC ,∴∥AD 平面PBC .(2)以D 为原点,DA 为x 轴正方向建立如图所示空间直角坐标系.设0,0,,>>==q p q DC p DA ,满足4222==+AC q p ,则()()()()0,0,0,0,,0,20,0,0,D q C p P p A ,,.设平面APC 法向量为()111,,z y x m =,∴()()0,,200q p AC AP -==,,,.∴⎪⎩⎪⎨⎧=+-=⋅==⋅002111qy px m AC z m AP ,取()0,,p q m = .设平面DPC 法向量为()()()0,,0,2,0,,,,222q DC p DP z y x n ===.∴⎪⎩⎪⎨⎧==⋅=+=⋅002222qy n DC z px n AP ,取()p n -=,0,2 .∴2222742142,cos ⎪⎪⎭⎫⎝⎛-=+⋅+=p q p qn m .∴7142=+p q .又∵422=+q p ,∴3=p ,即3=AD .18.解:(1)0=b 时,()ax x x x f +-=2ln,∴()()022≥+-⋅='a x x x f .∴()22-≥x x a .又∵()2,0∈x ,设()()22-=x x x h ,当()2,0∈x 时,()2max -=x h ,∴2-≥a .∴a 的最小值为2-.(2)由题意可知()x f 的定义域为()20,.()()()()()a x b x a xx bx x a x x x f x f 2111ln 111ln1133=-+-++-++++-+=-++.∴()x f 关于()a ,1中心对称.(3)()212ln 3->-++-x b ax xx ,即()0212ln3>+-++-x b ax x x 即()()02112ln 3>++-+-+-a x b x a xx.令1-=x t ,则()1,0∈t ,()0211ln 3>++++-+=a bt at tt t g .()t g 关于()a +2,0中心对称,则当且仅当()1,0∈t 时,()0>t g 恒成立.需02=+a ,即2-=a ,()0≥'t g 在()1,0恒成立.()()()()22222212231223032112t t t b t bt bt t t t g --≥⇒--≥⇒≥+--+='.令2t m =,则()1,0∈m ,()()12122-=--=m m m m m h .()2max -=m h ,∴23-≥b ,即32-≥b .∴⎪⎭⎫⎢⎣⎡+∞-∈,32b .19.解:(1)从1,2,3,4,5,6中删去()j i ,剩下的四个数从小到大构成等差数列,记为{}k b ,41≤≤k .设{}k b 公差为d ,已知1=d ,否则,若2≥d ,则6314≥=-d b b ,又51614=-≤-b b ,故矛盾,∴1=d ,则{}k b 可以为{}4,3,2,1,{}5,4,3,2,{}6,5,4,3,则对应()j i ,分别为()()()2,16,16,5,,.(2)证明:只需考虑前14项在去掉()13,2后如何构成3组4项的等差数列,后面剩下的()34124-=-m m 可自然依序划分为3-m 组等差数列.则只需构造{}14,12,11,10,9,8,7,6,5,4,3,1的一组划分,使划分出的3组数均成等差数列,取{}{}{}14,11,8,512,9,6,310,7,4,1,,,这单租数均为公差为3的等差数列,对于剩下的()34-m 个数,按每四个相邻数一组,划分为3-m 组即可.由此可见去掉()13,2后,剩余的m 4个数可以分为m 组,每组均为等差数列,故3≥m 时,24,2,1+m 是()13,2可分数列,即2421,,,+m a a a 是()13,2可分数列.(3)证明:用数学归纳法证明:共有不少于12++m m 中()j i ,的取法使24,2,1+m 是()j i ,可分数列,①当1=m 时,由(1)知,有11132++=种()j i ,的取法,②假设当n m =时,有至少12++n n 种()j i ,的取法,则当1+=n m 时,考虑数列{}64,,2,1+n 下对于()j i ,分三种情况讨论:1°当1=i 时,取()1,,,2,1,0,24+=+=n n k k j 则j i ,之间(不含j i ,)有k k 41124=--+个连续的自然数,可按形如{}{}{}14,4,14,249,8,7,65,4,3,2+--k k k k ,,, 划分,剩下的64,,44,34+++n k k ,也可按每四个连续自然数划分得到相应的等差数列,∵1,,,2,1,0+=n n k ,∴这种情况有2+n 种()j i ,的取法.2°当2=i 时,取()1,,,2,14+=+=n n k k j ,现以k 为公差构造划分为:{}13,12,11+++k k k ,,{}33,32,3,3+++k k k ,……{}14,13,12,1----k k k k ,{}k k k k 4,3,22,,{}24,23,22,2++++k k k k (注意当2=k 时,只有{}{}10,8,6,47,5,3,1,这两组)剩下的64,,44,34+++n k k ,也可按每四个连续自然数划分得到相应的等差数列,∵1,,,2+=n n k ,∴这种情况有n 种()j i ,的取法.3°当2>i 时,考虑{}64,,7,6,5+n 共24+n 个数,由归纳假设里n m =时,有至少12++n n 种()j i ,的取法.综合1°2°3°,当1+=n m 时,至少有()()()()1111222++++=+++++n n n n n n 中取法,由①②及数学归纳法原理,值共有不少于12++m m 种()j i ,的取法使24,2,1+m 为()j i ,可分数列,那么()()8188811681121411222222242=++++>++++=++++=++≥+m m m m m m m m m m m m C m m P m m ,∴81>m P .。
2012年福建省高考数学试卷(理科)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出分四个选项中,只有一项是符合题目要求的.1.(2012•福建)若复数z满足zi=1﹣i,则z等于()A.﹣1﹣i B.1﹣i C.﹣1+i D.1+i2.(2012•福建)等差数列{a n}中,a1+a5=10,a4=7,则数列{a n}的公差为()A.1B.2C.3D.43.(2012•福建)下列命题中,真命题是()A.∃x0∈R,≤0B.∀x∈R,2x>x2C.a+b=0的充要条件是=﹣1D.a>1,b>1是ab>1的充分条件4.(2012•福建)一个几何体的三视图形状都相同,大小均相等,那么这个几何体不可以是()A.球B.三棱锥C.正方体D.圆柱5.(2012•福建)下列不等式一定成立的是()A.lg(x2+)>lgx(x>0)B.sinx+≥2(x≠kx,k∈Z)C.x2+1≥2|x|(x∈R)D.(x∈R)6.(2012•福建)如图所示,在边长为1的正方形OABC中任取一点P,则点P恰好取自阴影部分的概率为()A.B.C.D.7.(2012•福建)设函数则下列结论错误的是()A.D(x)的值域为{0,1}B.D(x)是偶函数C.D(x)不是周期函数D.D(x)不是单调函数8.(2012•福建)已知双曲线的右焦点与抛物线y2=12x的焦点重合,则该双曲线的焦点到其渐近线的距离等于()A.B.C.3D.59.(2012•福建)若函数y=2x图象上存在点(x,y)满足约束条件,则实数m的最大值为()A.B.1C.D.210.(2012•福建)函数f(x)在[a,b]上有定义,若对任意x1,x2∈[a,b],有则称f(x)在[a,b]上具有性质P.设f(x)在[1,3]上具有性质P,现给出如下命题:①f(x)在[1,3]上的图象是连续不断的;②f(x2)在[1,]上具有性质P;③若f(x)在x=2处取得最大值1,则f(x)=1,x∈[1,3];④对任意x1,x2,x3,x4∈[1,3],有[f(x1)+f(x2)+f(x3)+f(x4)]其中真命题的序号是()A.①②B.①③C.②④D.③④二、填空题:本大题共5小题,每小题4分,共20分,把答案填在答题卡的相应位置.11.(2012•福建)(a+x)4的展开式中x3的系数等于8,则实数a=_________.12.(2012•福建)阅读图所示的程序框图,运行相应地程序,输出的s值等于_________.13.(2012•福建)已知△ABC得三边长成公比为的等比数列,则其最大角的余弦值为_________.14.(2012•福建)数列{a n}的通项公式a n=ncos+1,前n项和为S n,则S2012=_________.15.(2012•福建)对于实数a和b,定义运算“﹡”:a*b=设f(x)=(2x﹣1)﹡(x﹣1),且关于x的方程为f(x)=m(m∈R)恰有三个互不相等的实数根x1,x2,x3,则x1x2x3的取值范围是_________.三、解答题:本大题共5小题,共80分,解答题写出文字说明,证明过程或演算步骤.16.(2012•福建)受轿车在保修期内维修费等因素的影响,企业产生每辆轿车的利润与该轿车首次出现故障的时间有关,某轿车制造厂生产甲、乙两种品牌轿车,保修期均为2年,现从该厂已售出的两种品牌轿车中随机抽取50辆,统计书数据如下:品牌甲乙首次出现故障时间x(年)0<x<1 1<x≤2 x>2 0<x≤2 x>2轿车数量(辆) 2 3 45 5 45每辆利润(万元) 1 2 3 1.8 20.9将频率视为概率,解答下列问题:(I)从该厂生产的甲品牌轿车中随机抽取一辆,求首次出现故障发生在保修期内的概率;(II)若该厂生产的轿车均能售出,记住生产一辆甲品牌轿车的利润为X1,生产一辆乙品牌轿车的利润为X2,分别求X1,X2的分布列;(III)该厂预计今后这两种品牌轿车销量相当,由于资金限制,只能生产其中一种品牌轿车,若从经济效益的角度考虑,你认为应该产生哪种品牌的轿车?说明理由.17.(2012•福建)某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数.(1)sin213°+cos217°﹣sin13°cos17°(2)sin215°+cos215°﹣sin15°cos15°(3)sin218°+cos212°﹣sin18°cos12°(4)sin2(﹣18°)+cos248°﹣sin2(﹣18°)cos48°(5)sin2(﹣25°)+cos255°﹣sin2(﹣25°)cos55°(Ⅰ)试从上述五个式子中选择一个,求出这个常数(Ⅱ)根据(Ⅰ)的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论.18.(2012•福建)如图,在长方体ABCD﹣A1B1C1D1中AA1=AD=1,E为CD中点.(Ⅰ)求证:B1E⊥AD1;(Ⅱ)在棱AA1上是否存在一点P,使得DP∥平面B1AE?若存在,求AP的行;若存在,求AP的长;若不存在,说明理由.(Ⅲ)若二面角A﹣B1E﹣A1的大小为30°,求AB的长.19.(2012•福建)如图,椭圆E:的左焦点为F1,右焦点为F2,离心率e=.过F1的直线交椭圆于A、B两点,且△ABF2的周长为8.(Ⅰ)求椭圆E的方程.(Ⅱ)设动直线l:y=kx+m与椭圆E有且只有一个公共点P,且与直线x=4相较于点Q.试探究:在坐标平面内是否存在定点M,使得以PQ为直径的圆恒过点M?若存在,求出点M的坐标;若不存在,说明理由.20.(2012•福建)已知函数f(x)=e x+ax2﹣ex,a∈R.(Ⅰ)若曲线y=f(x)在点(1,f(1))处的切线平行于x轴,求函数f(x)的单调区间;(Ⅱ)试确定a的取值范围,使得曲线y=f(x)上存在唯一的点P,曲线在该点处的切线与曲线只有一个公共点P.四、选考题(题设有(1)、(2)、(3)三个选考题,每题7分,请考生任选2题作答,满分14分。
2023年全国高考数学新课标1卷第20题解答2023年全国高考数学新课标1卷第20题要求解决一个与函数有关的问题。
下面将逐步解答这道题目,希望能帮助大家更好地理解题目要求和解题方法。
题目描述:已知函数$f(x)=x^3-3x^2-9x+5$,则曲线$y=f(x)$在点$(1,2)$处的切线方程是________。
解题步骤:1. 首先,根据题目给出的函数$f(x)$,我们需要求出曲线$y=f(x)$在点$(1,2)$处的切线方程。
要求切线方程,我们需要先求出曲线的斜率。
2. 曲线的斜率可以通过求函数$f(x)$的导数来得到。
导数的定义是函数在某一点的切线的斜率。
我们可以利用导数的定义求出函数$f(x)$的导数。
3. 对于函数$f(x)=x^3-3x^2-9x+5$,我们需要对每一项分别求导数。
根据求导法则,我们可以得到:$f'(x)=3x^2-6x-9$。
4. 然后,我们将点$(1,2)$的横坐标代入函数$f'(x)$,得到切线的斜率。
代入得到:$f'(1)=3(1)^2-6(1)-9=-12$。
5. 知道了切线的斜率,我们可以利用点斜式来求切线方程。
点斜式的一般形式为:$y-y_1=m(x-x_1)$,其中$m$为斜率,$(x_1,y_1)$为直线上一点的坐标。
6. 我们已经求得切线的斜率为$-12$,且已知点$(1,2)$在切线上。
将斜率和点的坐标代入点斜式,得到切线方程:$y-2=-12(x-1)$。
7. 现在,我们可以对切线方程进行化简,得到标准形式。
首先,将方程展开,得到:$y-2=-12x+12$。
8. 然后,将方程移项,得到:$y=-12x+14$。
9. 最后,我们得到曲线$y=f(x)$在点$(1,2)$处的切线方程为$y=-12x+14$。
总结:通过以上步骤,我们成功解答了2023年全国高考数学新课标1卷第20题。
题目要求我们求解曲线$y=f(x)$在点$(1,2)$处的切线方程。
2021福建省高考数学试卷及答案解析本试卷共4页,22小题,满分150分,考试时间120分钟。
注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。
用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上,将条形码横贴在答题卡右上角“条形码粘贴处”。
2.作答选择题时,选出每小题答案后,用2B 铅笔在答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目制定区域内相应位置上,如需改动,先划掉原来答案,然后再写上新答案,不准使用铅笔和涂改液。
不按以上要求作答无效。
4.考生必须保持答题卡的整洁,考试结束后,将试卷和答题卡一并交回。
一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合{}42<<x x A -=,{}5432,,,=B ,则B A ⋂=()A.{}2 B.{}3,2 C.{}4,3 D.{}4,3,22.已知i z -=2,则()=+i z z ()A.i26- B.i24- C.i26+ D.i24+3.已知圆锥的底面半径为2,其侧面展开图为一个半圆,则该圆锥的母线长为()A.2B.22 C.4D.244.下列区间中,函数()⎪⎭⎫⎝⎛-=6sin 7πx x f 单调递增的区间是()A.⎪⎭⎫ ⎝⎛20π, B.⎪⎭⎫⎝⎛ππ,2 C.⎪⎭⎫ ⎝⎛23ππ, D.⎪⎭⎫⎝⎛ππ223,5.已知1F ,2F 是椭圆149:22=+y x C 的两个焦点,点M 在C 上,则21MF MF ⋅的最大值为()A.13B.12C.9D.66.若2tan -=θ,则()=++θθθθcos sin 2sin 1sin ()A.56-B.52-C.52 D.567.若过点()b a ,可以左曲线xe y =的两条切线,则()A.ae b< B.be a< C.bea <<0 D.aeb <<08.有6个相同的球,分别标有数字1,2,3,4,5,6,从中有放回的随机取两次,每次取1个球,甲表示事件“第一次取出的球的数字是1”,乙表示事件“第二次取出的球的数字是2”,丙表示事件“两次取出的数字之和是8”,丁表示事件“两次取出的球的数字之和是7”,则()A.甲与丙相互独立B.甲与丁相互独立C.乙与丙相互独立D.丙与丁相互独立二、选择题:本题共4小题,每小题5分,共20分。
2023年新高考数学一卷第20题题目:已知函数$f(x) = \frac{1}{3}x^{3} - x^{2} + a$,其中$a \in\mathbf{R}$.(1)若$f(x)$在区间$( - 1,3)$上有且仅有一个零点,求实数$a$的取值范围;(2)若$\exists x_{0} \in ( - 1,3),f(x_{0}) > 0$,求实数$a$的取值范围.【分析】(1)求出函数的导数,通过讨论$a$的范围,求出函数的单调区间,从而求出函数的极值,利用函数在区间$( - 1,3)$上有且仅有一个零点,列出不等式,求出$a$的范围即可;(2)利用特称命题转化为存在性问题,利用导数求出函数的极值,求出函数的最大值,得到关于$a$的不等式,求出$a$的范围即可.【解答】(1)由题意得:$f^{\prime}(x) = x^{2} - 2x = x(x - 2)$,由$f^{\prime}(x) > 0$得:$x < 0$或$x > 2$,由$f^{\prime}(x) < 0$得:$0 < x < 2$,故函数$f(x)$在$( - 1,0)$上单调递增,在$(0,2)$上单调递减,在$(2,3)$上单调递增,故函数在区间$( - 1,3)$上的极大值为:$f(0) = a$,极小值为:$f(2)= \frac{4}{3} - 4 + a = \frac{4}{3} - 4 + a = a - \frac{8}{3}$,若函数在区间$( - 1,3)$上有且仅有一个零点,则满足:$\left\{ \begin{matrix} a > 0 \\a \leqslant 0或a - \frac{8}{3} \geqslant 0 \\\end{matrix} \right$.,解得:$0 < a \leqslant \frac{8}{3}$或$a\leqslant 0$;(2)由$(1)$知:函数在区间$( - 1,3)$上的极大值为:$f(0) = a$,极小值为:$f(2) = a - \frac{8}{3}$,若$\exists x_{0} \in ( - 1,3),f(x_{0}) > 0$,则满足:$\left\{ \begin{matrix} a > 0 \\a \geqslant f(2) \\\end{matrix} \right$.,即满足:$\left\{ \begin{matrix} a > 0 \\a \geqslant a - \frac{8}{3} \\\end{matrix} \right$.,解得:$a > 0$.。
2021年福建省高考数学试卷(理科)答案与解析2021年福建省高考数学试卷(理科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分.在每个题给出的四个选项中,只有一项是符合要求的.1.(5分)(2021?福建)复数z=(3��2i)i的共轭复数等于() 2+3i A.��2��3i B.��2+3i C. 2��3i D.考点:复数代数形式的乘除运算.专题:数系的扩充和复数.分析:直接由复数代数形式的乘法运算化简z,则其共轭可求.解答:解:∵z=(3��2i)i=2+3i,∴.故选:C.点评:本题考查了复数代数形式的乘法运算,考查了复数的基本概念,是基础题. 2.(5分)(2021?福建)某空间几何体的正视图是三角形,则该几何体不可能是() A.圆柱 B.圆锥C.四面体 D.三棱柱考点:由三视图还原实物图.专题:计算题;空间位置关系与距离.分析:直接从几何体的三视图:正视图和侧视图或俯视图判断几何体的形状,即可.解答:解:圆柱的正视图为矩形,故选:A 点评:本题考查简单几何体的三视图,考查逻辑推理能力和空间想象力,是基础题. 3.(5分)(2021?福建)等差数列{an}的前n项和为Sn,若a1=2,S3=12,则a6等于() 8 10 12 14A.B. C. D.考点:等差数列的前n项和.专题:等差数列与等比数列.分析:由等差数列的性质和已知可得a2,进而可得公差,可得a6 解答:解:由题意可得S3=a1+a2+a3=3a2=12,解得a2=4,∴公差d=a2��a1=4��2=2,∴a6=a1+5d=2+5×2=12,故选:C.点评:本题考查等差数列的通项公式和求和公式,属基础题. 4.(5分)(2021?福建)若函数y=logax(a>0,且a≠1)的图象如图所示,则下列函数图象正确的是()1A.B. C. D.考点:对数函数的图像与性质.专题:函数的性质及应用.分析:由题意可得a=3,由基本初等函数的图象和性质逐个选项验证即可.解答:解:由题意可知图象过(3,1),故有1=loga3,解得a=3,选项A,y=a=3=3��x��x单调递减,故错误;选项B,y=x,由幂函数的知识可知正确; 33选项C,y=(��x)=��x,其图象应与B关于x轴对称,故错误;选项D,y=loga(��x)=log3(��x),当x=��3时,y=1,但图象明显当x=��3时,y=��1,故错误.故选:B.点评:本题考查对数函数的图象和性质,涉及幂函数的图象,属基础题. 5.(5分)(2021?福建)阅读如图所示的程序框图,运行相应的程序,输出的S的值等于()18 A.20 B. 21 C. 240 D.考点:循环结构.专题:计算题;算法和程序框图. 12n分析:算法的功能是求S=2+2+…+2+1+2+…+n的值,计算满足条件的S值,可得答案. 12n解答:解:由程序框图知:算法的功能是求S=2+2+…+2+1+2+…+n的值,12123∵S=2+2+1+2=2+4+1+2=9<15,S=2+2+2+1+2+3=2+4+8+1+2+3=20≥15.∴输出S=20.故选:B.点评:本题考查了直到型循环结构的程序框图,根据框图的流程判断算法的功能是解题的关键. 6.(5分)(2021?福建)直线l:y=kx+1与圆O:x+y=1相交于A,B 两点,则“k=1”是“△OAB的面积为”的()A.充分而不必要条件 B.必要而不充分条件充分必要条件 C.D.既不充分又不必要条件考点:必要条件、充分条件与充要条件的判断;直线与圆相交的性质.专题:直线与圆;简易逻辑.分析:根据直线和圆相交的性质,结合充分条件和必要条件的定义进行判断即可得到结论. 22解答:解:若直线l:y=kx+1与圆O:x+y=1相交于A,B 两点, 22则圆心到直线距离d=,|AB|=2,若k=1,则|AB|=即充分性成立.,d=,则△OAB的面积为×=成立,若△OAB的面积为,则S=解得k=±1,则k=1不成立,即必要性不成立.故“k=1”是“△OAB的面积为”的充分不必要条件.=×2×==,故选:A.点评:本题主要考查充分条件和必要条件的判断,利用三角形的面积公式,以及半径半弦之间的关系是解决本题的关键. 7.(5分)(2021?福建)已知函数f(x)= A.f(x)是偶函数 f(x)是周期函数 C.考点:余弦函数的单调性.,则下列结论正确的是()B. f(x)是增函数 D. f(x)的值域为[��1,+∞) 3专题:函数的性质及应用.分析:由三角函数和二次函数的性质,分别对各个选项判断即可.解答:解:由解析式可知当x≤0时,f(x)=cosx为周期函数,当x>0时,f(x)=x+1,为二次函数的一部分,故f(x)不是单调函数,不是周期函数,也不具备奇偶性,故可排除A、B、C,对于D,当x≤0时,函数的值域为[��1,1],当x >0时,函数的值域为值域为(1,+∞),故函数f(x)的值域为[��1,+∞),故正确.故选:D 点评:本题考查分段函数的性质,涉及三角函数的性质,属基础题. 8.(5分)(2021?福建)在下列向量组中,可以把向量=(3,2)表示出来的是() A. C.=(0,0),=(3,5),=(1,2) =(6,10) B. D. =(��1,2),=(2,��3),=(5,��2) =(��2,3) 2 考点:平面向量的基本定理及其意义.专题:平面向量及应用.分析:根据向量的坐标运算,,计算判别即可.解答:解:根据,选项A:(3,2)=λ(0,0)+μ(1,2),则 3=μ,2=2μ,无解,故选项A不能;选项B:(3,2)=λ(��1,2)+μ(5,��2),则3=��λ+5μ,2=2λ��2μ,解得,λ=2,μ=1,故选项B能.选项C:(3,2)=λ(3,5)+μ(6,10),则3=3λ+6μ,2=5λ+10μ,无解,故选项C不能.选项D:(3,2)=λ(2,��3)+μ(��2,3),则3=2λ��2μ,2=��3λ+3μ,无解,故选项D不能.故选:B.点评:本题主要考查了向量的坐标运算,根据列出方程解方程是关键,属于基础题. 9.(5分)(2021?福建)设P,Q分别为圆x+(y��6)=2和椭圆Q两点间的最大距离是() A.B. 5 + 考点:椭圆的简单性质;圆的标准方程.专题:圆锥曲线的定义、性质与方程. 22+y=1上的点,则P,2C. 7+ D. 6 4分析:求出椭圆上的点与圆心的最大距离,加上半径,即可得出P,Q两点间的最大距离.解答:解:设椭圆上的点为(x,y),则22∵圆x+(y��6)=2的圆心为(0,6),半径为,∴椭圆上的点(x,y)到圆心(0,6)的距离为==≤5,∴P,Q两点间的最大距离是5+=6.故选:D.点评:本题考查椭圆、圆的方程,考查学生分析解决问题的能力,属于基础题. 10.(5分)(2021?福建)用a代表红球,b代表蓝球,c代表黑球,由加法原理及乘法原理,从1个红球和1个蓝球中取出若干个球的所有取法可由(1+a)(1+b)的展开式1+a+b+ab表示出来,如:“1”表示一个球都不取、“a”表示取出一个红球,而“ab”则表示把红球和蓝球都取出来.以此类推,下列各式中,其展开式可用来表示从5个无区别的红球、5个无区别的蓝球、5个有区别的黑球中取出若干个球,且所有的蓝球都取出或都不取出的所有取法的是() 23455523455A.B.(1+a5)(1+a+a+a+a+a)(1+b)(1+c)(1+b+b+b+b+b)(1+c) 552345(1+a)5(1+b+b2+b3+b4+b5)C. 1+a5)(1+c) D.((1+b)(1+c+c+c+c+c)考点:归纳推理;进行简单的合情推理.专题:推理和证明.分析:根据“1+a+b+ab表示出来,如:“1”表示一个球都不取、“a”表示取出一个红球,而“ab”则表示把红球和蓝球都取出来”,分别取红球蓝球黑球,根据分步计数原理,分三步,每一步取一种球,问题得以解决.解答:解:从5个无区别的红球中取出若干个球,可以1个球都不取、或取1个、2个、32345个、4个、5个球,共6种情况,则其所有取法为1+a+a+a+a+a;从5个无区别的5蓝球中取出若干个球,由所有的蓝球都取出或都不取出,得其所有取法为1+b;从5个有区别的黑球中取出若干个球,可以1个球都不取、或取1个、2个、3个、4个、5个球,共6种情况,则其所有取法为1+c+c+2c+233c+454c=(1+c),根据5555分步乘法计数原理得,适合要求的所有取法是(1+a+a+a+a+a)(1+b)(1+c).故选:A.点评:本题主要考查了分步计数原理和归纳推理,合理的利用题目中所给的实例,要遵循其规律,属于中档题.二、填空题:本大题共5小题,每小题4分,共20分.把答案填在答题卡的相应位置11.(4分)(2021?福建)若变量 x,y满足约束条件,则z=3x+y的最小值为 1 .考点:简单线性规划. 5感谢您的阅读,祝您生活愉快。
绝密★启用前2024年福建省高考数学试卷(新高考Ⅰ)学校:___________姓名:___________班级:___________考号:___________注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上,写在试卷上无效。
3.考试结束后,本试卷和答题卡一并交回。
第I 卷(选择题)一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.已知集合A ={x|−5<x 3<5},B ={−3,−1,0,2,3},则A ∩B =( ) A. {−1,0} B. {2,3} C. {−3,−1,0} D. {−1,0,2}2.若z z−1=1+i ,则z =( )A. −1−iB. −1+iC. 1−iD. 1+i3.已知向量a ⃗=(0,1),b ⃗⃗=(2,x),若b ⃗⃗⊥(b ⃗⃗−4a ⃗⃗),则x =( ) A. −2B. −1C. 1D. 24.已知cos(α+β)=m ,tanαtanβ=2,则cos(α−β)=( ) A. −3mB. −m3C. m3D. 3m5.已知圆柱和圆锥的底面半径相等,侧面积相等,且它们的高均为√ 3,则圆锥的体积为( ) A. 2√ 3πB. 3√ 3πC. 6√ 3πD. 9√ 3π6.已知函数为f(x)={−x 2−2ax −a,x <0,e x +ln(x +1),x ≥0在R 上单调递增,则a 取值的范围是( )A. (−∞,0]B. [−1,0]C. [−1,1]D. [0,+∞)7.当x ∈[0,2π]时,曲线y =sinx 与y =2sin(3x −π6)的交点个数为( ) A. 3B. 4C. 6D. 88.已知函数为f(x)的定义域为R ,f(x)>f(x −1)+f(x −2),且当x <3时,f(x)=x ,则下列结论中一定正确的是( ) A. f(10)>100B. f(20)>1000C. f(10)<1000D. f(20)<10000二、多选题:本题共3小题,共18分。
㊀㊀㊀㊀㊀㊀2023年高考数学全国乙卷理科第20题的种证法及推广2023年高考数学全国乙卷理科第20题的6种证法及推广Һ贾方正㊀(安徽省颍上第一中学,安徽㊀阜阳㊀236200)㊀㊀ʌ摘要ɔ对高考试题的研究既有利于教师明确考试重点和命题方向,也有利于学生总结解题技巧与方法,对高考备考具有非常积极的影响.2023年高考数学全国乙卷理科第20题 解析几何综合题考查了直线与圆锥曲线的位置关系及其运算,具有很好的区分度.笔者对其进行了深入探究,给出该题的6种证明方法,并对试题进行推广,希望借此帮助相关教师总结教法,帮助学生提高解题效率.ʌ关键词ɔ2023年高考;全国乙卷;解析几何;推广试题承担着对较高水平考生的鉴别任务,通过增加思维强度来选拔拔尖创新人才.2023年高考试题对考生的能力要求较高,呈现出 反刷题 的现象,要求考生从 机械刷题 和 题海战术 中跳出来.其中的全国乙卷理科第20题,以高等几何中的极点与极线为命题背景,注重对数学本质及其应用性的考查,具有很好的选拔功能.一㊁真题再现2023年高考数学全国乙卷理科第20题如下:已知椭圆C:y2a2+x2b2=1(a>b>0)的离心率是53,点A(-2,0)在C上.(1)求C的方程;(2)过点(-2,3)的直线交C于P,Q两点,直线AP,AQ与y轴的交点分别为M,N,证明:MN的中点为定点.二㊁证法探究(1)由题意得b=2,a2-b2a=53,解得a2=9.所以C的方程为y29+x24=1.下面重点探究第(2)问.证法1㊀如图所示,设P(x1,y1),M(0,yM),则直线AP:y=y1x1+2(x+2),yM=2y1x1+2.设Q(x2,y2),N(0,yN),同理可得yN=2y2x2+2.设直线PQ:y=k(x+2)+3,MN的中点D(0,yD),则yD=yM+yN2=k(x1+2)+3x1+2+k(x2+2)+3x2+2=2k+3(x1+2+x2+2)(x1+2)(x2+2).由y=k(x+2)+3,y29+x24=1ìîíïïï得(4k2+9)㊃(x+2)2+12(2k-3)(x+2)+36=0,所以(x1+2)+(x2+2)=12(3-2k)4k2+9,(x1+2)(x2+2)=364k2+9,所以yD=2k+3(x1+2+x2+2)(x1+2)(x2+2)=3.因此线段MN的中点为定点(0,3).证法2㊀设P(x1,y1),Q(x2,y2),显然k存在,故设直线PQ:y=k(x+2)+3.由y=kx+2k+3,y29+x24=1ìîíïïï得(4k2+9)x2+(16k2+24k)x+16k2+48k=0.因为Δ=-1728k>0,所以k<0.不妨令x1>x2,故x1=-8k2-12k+12-3k4k2+9,x2=-8k2-12k-12-3k4k2+9.㊀㊀㊀㊀㊀所以y1=-8k3-12k2+12k-3k4k2+9+2k+3=18k+27+12k-3k4k2+9,同理y2=18k+27-12k-3k4k2+9.于是直线AP:y=18k+27+12k-3k4k2+9-8k2-12k+12-3k4k2+9+2(x+2),化简,得y=18k+27+12k-3k18-12k+12-3k(x+2).令x=0,则点M的纵坐标为36k+54+24k-3k18-12k+12-3k.同理得点N的纵坐标为36k+54-24k-3k18-12k-12-3k.所以36k+54+24k-3k18-12k+12-3k+36k+54-24k-3k18-12k-12-3k=2ˑ(36k+54)(18-12k)+6ˑ288k2(18-12k)2+432k=6(4k2+9)4k2+9=6.因此线段MN的中点为定点(0,3).证法3㊀设P(x1,y1),M(0,yM),Q(x2,y2),N(0,yN),直线AP:y=k1(x+2),直线AQ:y=k2(x+2),显然k1,k2存在且k1ʂk2,则yM=2k1,yN=2k2.由y=k1(x+2),y29+x24=1,ìîíïïï得(4k21+9)x2+16k21x+16k21-36=0.故-2x1=16k21-364k21+9,x1=18-8k214k21+9,y1=36k14k21+9.同理x2=18-8k224k22+9,y2=36k24k22+9.因为直线PQ过点(-2,3),所以(y1-3)(x2+2)=(y2-3)(x1+2).所以36k14k21+9-3æèçöø÷18-8k224k22+9+2æèçöø÷=36k24k22+9-3æèçöø÷18-8k214k21+9+2æèçöø÷,化简,得[3-(k1+k2)](k1-k2)=0,即k1+k2=3.故2k1+2k22=3.因此线段MN的中点为定点(0,3).证法4㊀(同构方法)设T(-2,3),lAM:y=m(x+2),lAN:y=n(x+2),则M(0,2m),N(0,2n),MN的中点为(0,m+n),问题等价于证明m+n为定值.联立y=m(x+2)与y29+x24=1,得P18-8m24m2+9,36m4m2+9æèçöø÷.同理得Q18-8n24n2+9,36n4n2+9æèçöø÷,ʑTPң=364m2+9,3(12m-4m2-9)4m2+9æèçöø÷.同理TQң=364n2+9,3(12n-4n2-9)4n2+9æèçöø÷.由T,P,Q三点共线,得到12m-4m2-9=12n-4n2-9,即(m-n)(m+n-3)=0,又mʂn,所以m+n=3.所以线段MN的中点是(0,3),即MN的中点为定点.点评:上述证法用了同构的思想,看起来过程比较多,实际上只算了点P和TPң,而点Q与TQң都是类比得到的.同时可知,MN的中点为定点等价于kAP+kAQ为定值.证法5㊀(曲线系方法)设lAP:y=m(x+2),lAQ:y=n(x+2),则M(0,2m),N(0,2n),MN的中点为(0,m+n),问题等价于证明m+n为定值.经过A,P,Q三点的二次曲线方程为[y-m(x+2)][y-n(x+2)]=0,即y2-(m+n)(x+2)y+mn(x+2)2=0.椭圆方程y29+x24=1可化为y2=94(2+x)(2-x),消去y2,得94(x+2)(2-x)-(m+n)(x+2)y+mn(x+2)2=0,再消去一个(x+2),得94(2-x)-(m+n)y+mn㊃(x+2)=0,这就是直线PQ的方程,又直线PQ经过(-2,3),所以9-3(m+n)=0,即m+n=3.所以线段MN的中点是(0,3),即MN的中点为定点.点评:该题的本质是证明直线AP,AQ的斜率之和为定值,而二次曲线系是证明两直线的斜率之和为定值的 利器 .证法6㊀(齐次化方法)易知直线AP,AQ的斜率存在,分别设为k1,k2,则lAP:y=k1(x+2),lAQ:y=k2(x+2),令y=0得M(0,2k1),N(0,2k2),所以线段MN的㊀㊀㊀㊀㊀㊀中点坐标为(0,k1+k2).下面证明k1+k2为定值.设P(x1,y1),Q(x2,y2),则lPQ:y=k(x+2)+3.y29+x24=1⇒9(x+2-2)2+4y2=36⇒9(x+2)2-36(x+2)+4y2=0.将其与y=k(x+2)+3联立,得9(x+2)2-12(x+2)[y-k(x+2)]+4y2=0,即(9+12k)(x+2)2-12(x+2)y+4y2=0,即4yx+2æèçöø÷2-12yx+2æèçöø÷+(9+12k)=0,由韦达定理得y1x1+2+y2x2+2=3.又因为k1+k2=y1x1+2+y2x2+2,所以k1+k2=3,即线段MN的中点为定点(0,3).点评:由于线段MN的中点坐标为(0,k1+k2),所以解题的关键是证明k1+k2是定值.而k1+k2=y1x1+2+y2x2+2,所以考虑将x+2作为整体,构造齐次方程,然后利用韦达定理求解,这样可以简化运算,提高解题效率.三㊁试题推广推广1㊀已知椭圆C的方程为x2a2+y2b2=1(a>0,b>0),A(-a,0),过点(-a,b)的直线交曲线C于P,Q两点,直线AP,AQ与y轴交于M,N两点,证明:MN的中点为(0,b).类似可得:推广2㊀已知椭圆C的方程为x2a2+y2b2=1(a>0,b>0),B(0,b),过点(-a,b)的直线交曲线C于P,Q两点,直线BP,BQ与x轴交于M,N两点,证明:MN的中点为(-a,0).设T(-a,b),A(-a,0),B(0,b),则TA,TB是椭圆的两条切线,即AB是切点弦.而MN的中点为定点(0,b)等价于kAP+kAQ=2kAB.于是可将问题再推广如下:推广3㊀已知椭圆C的方程为x2a2+y2b2=1(a>0,b>0),顶点A(-a,0).点T是直线x=-a上任意一点,过点T作椭圆的两条切线,切点分别为A,B,过点T作直线交C于P,Q两点.设直线AP,AQ,AB的斜率分别为k1,k2,k,证明:k1+k2=2k.证明㊀设T(-a,t),则AB是T的切点弦所在的直线,方程为-axa2+tyb2=1,故k=b2ta.设lAP:y=k1(x+a),联立x2a2+y2b2=1,y=k1(x+a),{可得(b2+a2k21)x2+2a3k21x+a4k21-a2b2=0.由xA㊃xP=a4k21-a2b2b2+a2k21及xA=-a,得xP=ab2-a3k21b2+a2k21,故Pab2-a3k21b2+a2k21,2ab2k1b2+a2k21æèçöø÷.设lPQ:y=m(x+a)+t,将点P代入,化简,得a2tk21-2ab2k1+2ab2m+b2t=0,同理得a2tk22-2ab2k2+2ab2m+b2t=0,所以k1和k2是方程a2tx2-2ab2x+2ab2m+b2t=0的两个根,所以k1+k2=2ab2a2t=2b2at.因此,k1+k2=2k.四㊁试题再推广把试题进行进一步推广可得到如下更一般的情形,其证明留给读者完成.设T是椭圆C:x2a2+y2b2=1(a>0,b>0)外一定点,TA,TB是椭圆的两条切线,其中A,B是切点.过T的直线与椭圆C交于P,Q两点.设直线AP,AQ,AB的斜率分别为k1,k2,k,证明:k1+k2=2k.结㊀语试题的解决过程也是考生经历猜想和假设㊁转化和化归㊁实验和论证等问题研究的过程.教师通过对高考试题进行深度研究,可促进自身的专业发展,从而更好地服务于教学.该题虽然证明的是线段的中点为定点,但实质是证明直线的斜率之和为定值.对于定值问题,解决的方法主要有常规方法㊁同构方法㊁曲线系方法㊁齐次化方法等.有兴趣的读者还可以对该题的高等数学背景进行深度探究,然后基于高等数学背景对该题进行推广,还可以对该题进行改编,甚至基于极点与极线命制出高质量的原创题.ʌ参考文献ɔ[1]罗文军.多视角切入,巧方法运用 2023年高考数学全国乙卷理科第20题的探究[J].广东教育(高中版),2023(9):20-23.[2]李歆.数学问题:因变化而精彩 对一道经典三角题的变式探究[J].中学数学,2013(11):21-23.[3]田甜,曹文栋,李誉.高考试题中数学表征转换水平比较研究 以新高考Ⅰ卷㊁全国乙卷及北京卷为例[J].内江师范学院学报,2023,38(8):6-12.[4]佟俊姬.夯实基础知识,落实立德树人2023年高考数学全国乙卷评析[J].数学之友,2023,37(13):89-91.。
2011 年福建省高考数学试卷(文科)一、选择题(共12 小题,每题 5 分,满分60 分)1、( 2011?福建)若会集M={ ﹣1, 0, 1}, N={0,1, 2},则 M∩N等于()A、 {0, 1}B、 {﹣ 1, 0, 1}C、 {0, 1, 2}D、 {﹣ 1, 0, 1,2}考点:交集及其运算。
专题:计算题。
解析:依照会集M 和 N,由交集的定义可知找出两会集的公共元素,即可获得两会集的交集.解答:解:由会集M={ ﹣ 1, 0, 1}, N={0, 1, 2},获得 M∩N={0 ,1}.应选 A谈论:此题观察了交集的运算,要修业生理解交集即为两会集的公共元素,是一道基础题.2、( 2011?福建) i 是虚数单位1+i 3等于()A、 iB、﹣ iC、 1+iD、 1﹣ i 考点:虚数单位 i 及其性质。
专题:计算题。
解析:由复数单位的定义,我们易得i 2=﹣ 1,代入即可获得1+i3的值.解答:解:∵ i 是虚数单位∴i 2=﹣ 11+i 3=1﹣ i应选 D谈论:此题观察的知识点是虚数单位i 及其性质,属简单题,此中娴熟掌握虚数单位i 的性质 i 2=﹣ 1 是解答本类问题的要点.3、( 2011?福建)若 a∈R,则“ a=1是”“ |a|=1 的”()A、充分而不用要条件B、必需而不充分条件C、充要条件D、既不充分又不用要条件考点:必需条件、充分条件与充要条件的判断;充要条件。
解析:先判断“a=1?”“|a|=1 的”真假,再判断“|a|=1 ”,时“a=1的”真假,从而联合充要条件的定义即可获得答案.解答:解:当“a=1时”,“|a|=1 成”立即“a=1?”“|a|=1 为”真命题但“|a|=1 时”,“a=1不”必定成立即“|a|=1 时”,“a=1为”假命题故“a=1是”“|a|=1 的”充分不用要条件应选 A谈论:此题观察的知识点是充要条件,此中依照绝对值的定义,判断“a=1?”“|a|=1 与”“|a|=1 ”时,“a=1的”真假,是解答此题的要点.4、( 2011?福建)某校选修乒乓球课程的学生中,高一年级有30 名,高二年级有40 名.现用分层抽样的方法在这 70名学生中抽取一个样本,已知在高一年级的学生中抽取了 6 名,则在高二年级的学生中应抽取的人数为()A、 6B、 8C、 10D、 12考点:分层抽样方法。
中钙皋浬化知识篇知识结构与拓展高二数学2021年1月■河南省郑州101中学冯连福2017年发布的《普通高中数学课程标准》强调培养学科核心素养,圆锥曲线试题很好地考查了数学学科核心素养中的数学抽象、逻辑推理、数学运算等核心素养,下面我们通过研究2020年全国高考数学新课标!卷理数第20题,来分析高考试题是怎么来考查数学学科核心素养的,希望对同学们的学习有所帮助。
如图1,已知A、2B分别为椭圆E:—/a/上「一十y2&1(a>1)的J左、右顶点,G为椭____一圆E的上顶点,图1AG・GB=8,P为直线%&6上的动点,PA与椭圆E的另一交点为CPB与椭圆E的另一交点为+o(1)求椭圆E的方程;#)证明:直线CD过定点。
解析:(1)第一问可以有以下几种解题角度。
角度一(平面向量的坐标运算):设A(—a,0),B(a,0),G(0,1),a>0。
故AG&(a,1),GB=(a,—1),a>0。
由AG・GB=8,得a2—1=8,a=3。
故椭圆E的方程为$+y2&1。
角度二(数量积的定义):设(AGB&2!,(AGO&!。
AG・GBB&AG|GB cos(#—2!)&8O分析可知AG&GB&la2+1,121—a2 cos!=,cos2!&2cos!—1&丐。
a+f1+a2故(/a2+1)・a21&8,得a2&9O下十1面同角度一,过程略。
角度三(平面向量的加法运算法则):因为ag十GB=#B,所以(AG+GB)&AB2也即AG2+GB2+2AG・GB&AB2。
故a2十1+a2十1+16&((a)。
下面同角度一,过程略。
角度四(极化恒等式):由等得:GA・G.&GO2—O.2&1—a2O故AG・GB&—G A・GB&a2—1&8。
高考数学第20题:圆锥曲线考试内容:椭圆及其标准方程.椭圆的简洁几何性质.椭圆的参数方程. 双曲线及其标准方程.双曲线的简洁几何性质. 抛物线及其标准方程.抛物线的简洁几何性质. 考试要求:(1)驾驭椭圆的定义、标准方程和椭圆的简洁几何性质,理解椭圆的参数方程. (2)驾驭双曲线的定义、标准方程和双曲线的简洁几何性质. (3)驾驭抛物线的定义、标准方程和抛物线的简洁几何性质. (4)理解圆锥曲线的初步应用.圆锥曲线方程 学问要点一、椭圆方程.1. 椭圆方程的第肯定义:为端点的线段以无轨迹方程为椭圆21212121212121,2,2,2F F F F a PF PF F F a PF PF F F a PF PF ==+=+=+⑴①椭圆的标准方程:i. 中心在原点,焦点在x 轴上:)0(12222 b a b y a x =+.ii. 中心在原点,焦点在y 轴上:)0(12222 b a bx ay =+.②一般方程:)0,0(122B A By Ax =+.③椭圆的标准参数方程:12222=+by ax 的参数方程为⎩⎨⎧==θθsin cos b y a x (一象限θ应是属于20πθ ). ⑵①顶点:),0)(0,(b a ±±或)0,)(,0(b a ±±.②轴:对称轴:x 轴,y 轴;长轴长a 2,短轴长b 2.③焦点:)0,)(0,(c c -或),0)(,0(c c -.④焦距:2221,2b a c c F F -==.⑤准线:ca x 2±=或c a y 2±=.⑥离心率:)10( e ace =.⑦焦点半径: i. 设),(00y x P 为椭圆)0(12222 b a by ax =+上的一点,21,F F 为左、右焦点,则 由椭圆方程的第二定义可以推出. ii.设),(00y x P 为椭圆)0(12222 b a ay bx =+上的一点,21,F F 为上、下焦点,则 由椭圆方程的第二定义可以推出.由椭圆第二定义可知:)0()(),0()(0002200201 x a ex x ca e pF x ex a ca x e pF -=-=+=+=归结起来为“左加右减”.留意:椭圆参数方程的推导:得→)sin ,cos (θθb a N 方程的轨迹为椭圆.⇒-=+=0201,ex a PF ex a PF ⇒-=+=0201,ey a PF ey a PF⑧通径:垂直于x 轴且过焦点的弦叫做通经.坐标:),(2222a b c a b d -=和),(2ab c⑶共离心率的椭圆系的方程:椭圆)0(12222 b a b y a x =+的离心率是)(22b a c ace -==,方程t t b y a x (2222=+是大于0的参数,)0 b a 的离心率也是ace =我们称此方程为共离心率的椭圆系方程. ⑸若P 是椭圆:12222=+b y a x 上的点.21,F F 为焦点,若θ=∠21PF F ,则21F PF ∆的面积为2tan2θb (用余弦定理与a PF PF 221=+可得). 若是双曲线,则面积为2cot2θ⋅b .二、双曲线方程. 1. 双曲线的第肯定义:的一个端点的一条射线以无轨迹方程为双曲线21212121212121,222F F F F a PF PF F F a PF PF F F a PF PF ==-=-=-⑴①双曲线标准方程:)0,(1),0,(122222222 b a b x a y b a b y a x =-=-. 一般方程:)0(122 AC Cy Ax =+.⑵①i. 焦点在x 轴上:顶点:)0,(),0,(a a - 焦点:)0,(),0,(c c - 准线方程c a x 2±= 渐近线方程:0=±bya x 或02222=-b y a xii. 焦点在y 轴上:顶点:),0(),,0(a a -. 焦点:),0(),,0(c c -. 准线方程:ca y 2±=. 渐近线方程:0=±b xa y 或02222=-b x a y ,参数方程:⎩⎨⎧==θθtan sec b y a x 或⎩⎨⎧==θθsec tan a y b x .②轴y x ,为对称轴,实轴长为2a , 虚轴长为2b ,焦距2c. ③离心率a ce =. ④准线距c a 22(两准线的间隔 );通径a b 22. ⑤参数关系ace b a c =+=,222. ⑥焦点半径公式:对于双曲线方程12222=-by ax (21,F F 分别为双曲线的左、右焦点或分别为双曲线的上下焦点)“长加短减”原则: aex MF a ex MF -=+=0201 构成满意a MF MF 221=-aex F M a ex F M +-='--='0201(与椭圆焦半径不同,椭圆焦半径要带符号计算,而双曲线不带符号)asin α,)α)N 的轨迹是椭圆aey F M a ey F M a ey MF a ey MF -'-='+'-='+=-=02010201⑶等轴双曲线:双曲线22a y x ±=-离心率2=e . ⑷共轭双曲线:以已知双曲线的虚轴为实轴,实轴为虚轴的双曲线,叫做已知双曲线的共轭双曲线.λ=-2222b y a x 与λ-=-2222b y a x 互为共轭双曲线,它们具有共同的渐近线:02222=-b y a x .⑸共渐近线的双曲线系方程:)0(2222≠=-λλb y a x 的渐近线方程为02222=-y a x 假如双曲线的渐近线为0=±b ya x 时,它的双曲线方程可设为)0(2222≠=-λλby a x .例如:若双曲线一条渐近线为x y 21=且过)21,3(-p 解:令双曲线的方程为:)0(422≠=-λλy x ,代入)21,3(-得12822=-y x ⑹直线与双曲线的位置关系:区域①:无切线,2条与渐近线平行的直线,合计2条;区域②:即定点在双曲线上,1条切线,2条与渐近线平行的直线,合计3条; 区域③:2条切线,2条与渐近线平行的直线,合计4条;区域④:即定点在渐近线上且非原点,1条切线,1条与渐近线平行的直线,合计2条; 区域⑤:即过原点,无切线,无与渐近线平行的直线.小结:过定点作直线与双曲线有且仅有一个交点,可以作出的直线数目可能有0、2、3、4条.(2)若直线与双曲线一支有交点,交点为二个时,求确定直线的斜率可用代入”“∆法与渐近线求交和两根之和与两根之积同号. ⑺若P 在双曲线12222=-b y a x ,则常用结论1:P 到焦点的间隔 为m = n ,则P 到两准线的间隔 比为m ︰n.简证:ePF e PF d d 2121= =n m. 常用结论2:从双曲线一个焦点到另一条渐近线的间隔 等于b.三、抛物线方程.3. 设0 p ,抛物线的标准方程、类型及其几何性质:注:①x c by ay =++2顶点)244(2aba b ac --.②)0(22≠=p px y 则焦点半径2P x PF +=;)0(22≠=p py x 则焦点半径为2P y PF +=.③通径为2p ,这是过焦点的全部弦中最短的.④px y 22=(或py x 22=)的参数方程为⎩⎨⎧==pt y pt x 222(或⎩⎨⎧==222pt y ptx )(t 为参数). 四、圆锥曲线的统肯定义..4. 圆锥曲线的统肯定义:平面内到定点F 和定直线l 的间隔 之比为常数e 的点的轨迹.当10 e 时,轨迹为椭圆; 当1=e 时,轨迹为抛物线; 当1 e 时,轨迹为双曲线;当0=e 时,轨迹为圆(a ce =,当b a c ==,0时).5. 圆锥曲线方程具有对称性. 例如:椭圆的标准方程对原点的一条直线与双曲线的交点是关于原点对称的.因为具有对称性,所以欲证AB=CD, 即证AD 与BC 的中点重合即可.注:椭圆、双曲线、抛物线的标准方程与几何性质 椭圆双曲线抛物线 定义1.到两定点F 1,F 2的间隔 之和为定值2a(2a>|F 1F 2|)的点的轨迹 1.到两定点F 1,F 2的间隔 之差的肯定值为定值2a(0<2a<|F 1F 2|)的点的轨迹2.与定点和直线的间隔 之比为定值e 的点的轨迹.(0<e<1) 2.与定点和直线的间隔 之比为定值e 的点的轨迹.(e>1)与定点和直线的间隔 相等的点的轨迹. 图形方 程标准方程 12222=+b y a x (b a >>0) 12222=-b y a x (a>0,b>0) y 2=2px参数方程 为离心角)参数θθθ(sin cos ⎩⎨⎧==b y a x 为离心角)参数θθθ(tan sec ⎩⎨⎧==b y a x ⎩⎨⎧==pt y pt x 222(t 为参数) 范围 ─a ≤x ≤a ,─b ≤y ≤b |x| ≥ a ,y ∈R x ≥0 中心 原点O (0,0) 原点O (0,0) 顶点 (a,0), (─a,0), (0,b) ,(0,─b) (a,0), (─a,0) (0,0) 对称轴 x 轴,y 轴; 长轴长2a,短轴长2b x 轴,y 轴;实轴长2a, 虚轴长2b. x 轴焦点 F 1(c,0), F 2(─c,0) F 1(c,0), F 2(─c,0) )0,2(p F 焦距 2c (c=22b a -)2c (c=22b a +)离心率 )10(<<=e a ce )1(>=e a ce e=1准线x=ca 2±x=ca 2±2p x -= 渐近线y=±ab x焦半径ex a r ±=)(a ex r ±±= 2p x r +=附加常用结论:一、圆锥曲线的统肯定义(第二定义):若平面内一个动点M 到一个定点F 和一条定直线l 的间隔 之比等于一个常数)0(>e e ,则动点的轨迹为圆锥曲线。
2023高考数学第20题2023年高考数学第20题考察的是圆锥曲线与直线的关系。
题目:已知椭圆 C: x^2/a^2 + y^2/b^2 = 1 (a > b > 0) 的离心率为√3/3,过点 (0,1) 的直线 l 与椭圆 C 交于 A, B 两点,当直线 l 的斜率为 1 时,坐标原点 O 到直线 l 的距离为√2/2。
(1) 求椭圆 C 的方程;(2) 当直线 l 的斜率不为 1 时,求弦长 AB。
【分析】(1)根据题意,设直线$l$的方程为$y = x + m$,联立直线与椭圆的方程,消去$y$得到关于$x$的一元二次方程,由根与系数的关系分析可得$x_{A} + x_{B}$的值,由直线与坐标原点的距离公式可得$m$的值,计算可得$a、b$的值,即可得椭圆C的方程;(2)设直线$l$的方程为$y = kx + m(k \neq 1)$,设$A(x_{1},y_{1})、B(x_{2},y_{2})$,联立直线与椭圆的方程,消去$y$得到关于$x$的一元二次方程,由根与系数的关系分析可得$x_{1} + x_{2}$与$x_{1}x_{2}$的值,由弦长公式可得弦长$AB$的值.【解答】(1)设直线$l$的方程为$y = x + m$,则原点$(0,0)$到直线$l$的距离为$\frac{m}{\sqrt{2}} = \frac{\sqrt{2}}{2}$,解得:$m = \pm 1$,则有椭圆C的方程为$\frac{x^{2}}{3} + y^{2} = 1$;(2)设直线$l$的方程为$y = kx + m(k \neq 1)$,设$A(x_{1},y_{1})、B(x_{2},y_{2})$,联立$\left\{ \begin{matrix} y = kx + m \\\frac{x^{2}}{3} + y^{2} = 1 \\\end{matrix} \right$.,消去$y$得到$(3k^{2} + 1)x^{2} + 6kmx+$$3m^{2} - 3 = 0()$,$\bigtriangleup = (6km)^{2} - 4(3k^{2} + 1)(3m^{2} - 3) > 0$,即$k^{2} - m^{2} + 1 > 0( )$.由根与系数的关系可得:$x_{1} + x_{2} = - \frac{6km}{3k^{2} + 1}$,$x_{1}x_{2} =\frac{3m^{2} - 3}{3k^{2} + 1}$.当$k = 0$时,弦长 $AB = x_{1} - x_{2} =$$\sqrt{(x_{1} + x_{2})^{2} - 4x_{1}x_{2}}$$= \frac{6\sqrt{k^{2} -m^{2} + 1}}{3k^{2} + 1}$.当 $k \neq 0$时,弦长 $AB = x_{1} - x_{2} =$$\sqrt{(x_{1} + x_{2})^{2} - 4x_{1}x_{2}}$$= \frac{6\sqrt{(k^{2} -m^{2} + 1)(k^{2} + m^{2} + 1)}}{3k^{2} + 1}$.。
2012年高考数学(福建)第20题(理)试题优美解
试题(福建、 理20)
已知函数R a ex ax e x f x ∈-+=,)(2
(Ⅰ)若曲线)(x f y =在点))1(,1(f 处的切线平行于x 轴,求函数)(x f 的单调区间; (Ⅱ)试确定a 的取值范围,使得曲线)(x f y =上存在唯一的点P ,曲线在该点处的 切线与曲线只有一个公共点P 。
解析:
(Ⅰ)2()()2x x f x e ax ex f x e ax e '=+-⇒=+-
由题意得:(1)200f e a e a '=+-=⇔=
()01,()01x
f x e e x f x x ''=->⇔><⇔<
得:函数()f x 的单调递增区间为(1,)+∞,单调递减区间为(,1)-∞
(Ⅱ)设00(,())P x f x ; 则过切点P 的切线方程为000()()()y f x x x f x '=-+ 令000()()()()()g x f x f x x x f x '=---;则0()0g x =
切线与曲线只有一个公共点P ()0g x ⇔=只有一个根0x
000()()()2()x x g x f x f x e e a x x '''=-=-+-,且0()0g x '= (1)当0a ≥时,00()0,()0g x x x g x x x ''>⇔><⇔<
得:当且仅当0x x =时,min 0()()0g x g x ==
由0x 的任意性,0a ≥不符合条件(lby lfx )
(2)当0a <时,令
00()2()()20ln(2)x x x h x e e a x x h x e a x x a ''=-+-⇒=+=⇔==-
①当0x x '=时,00()0,()0h x x x h x x x ''>⇔><⇔<
当且仅当0x x =时,0()()0()g x g x g x ''≥=⇒在x R ∈上单调递增
()0g x ⇔=只有一个根0x
②当0x x '>时,()0,()0h x x x h x x x ''''>⇔><⇔<
得:0()()0g x g x '''<=,又,(),,()x g x x g x ''→+∞→+∞→-∞→+∞
存在两个数0x x ''<使,0()()0g x g x ''''==
得:00()0()()0g x x x x g x g x '''''<⇔<<⇒<=又,()x g x '→+∞→+∞ 存在1x x ''>使()0g x ''=,与条件不符。
③当0x x '<时,同理可证,与条件不符
从上得:当0a <时,存在唯一的点(ln(2),(ln(2))P a f a --使该点处的切线与曲线只有一个公共点P
试题或解法赏析.
本题考查的知识点为导数的理解, 较难的一道好题。