2019年天津高考数学第20题
- 格式:docx
- 大小:63.65 KB
- 文档页数:1
2019天津高考数学试卷分析试卷满分150分,考试时间120分钟试卷包括I、II两卷。
第I卷一、选择题(8题,40分)1集合的运算2函数求最值3充分必要条件,化简不等式4程序框图的应用5抛物线和双曲线的性质及离心率的求解6对数、指数比较大小:7三角函数的解析式8分段函数的最值第II卷二、填空题(6题,30分)9复数定义、模的概念及基本运算10二项式的展开式的通项11四棱锥与圆柱内接,立体几何12运用直线与圆相切等求解13基本不等式求最值14平面向量基本定理和数量积三、解答题(6题,80分)15 (13分)正弦定理、余弦定理两角和的正弦公式,二倍角的正余弦公式三角函数的基本关系16 (13分)离散型随机变量的分布列与期望互斥事件与相互独立事件的概率计算公式17 (13分)直线与平面平行的判定空间向量求解线面角与二面角的大小18 (13分)直线与椭圆方程求交点19 (14分)等差数列、等比数列通项公式20 (14分)导数的运算不等式的证明运用导数研究函数的性质2019年全国I卷高考理数试卷结构题型及分值试卷满分150分,考试时间120分钟第I卷一、选择题(12题,60分)1一元二次不等式解法和交集的运算2复数的模、几何意义3指数函数和对数函数的单调性增函数和减函数的定义4推理和估算5函数的图象与性质,奇偶性和特殊值6概率的求法,排列组合7平面向量的数量积和向量的夹角8程序框图的应用9等差数列的通项公式,前n项和公式10椭圆的性质11判断与三角函数有关的命题的真假12多面体外接球体积的求法二、填空题(4题,20分)13利用导数研究函数上某点的切线方程14等比数列的通项公式15相互独立事件概率乘法公式16双曲线的性质三、解答题(6题,70分)(一)必考题(5题,60分)17 (12分)正弦定理、余弦定理、三角函数性质18 (12分)直线与平面平行的判定利用空间向量求解空间角19 (12分)抛物线的性质20 (12分)利用导数求函数的极值函数零点的判定21 (12分)数列和函数的应用离散型随机变量的分布列(二)选考题(任选1题,10分)22曲线的极坐标方程参数方程化普通方程直线与椭圆位置关系的应用两平行线间的距离公式23不等式和基本不等式的运用。
2019年高考数学试题分项版——数列(解析版)一、选择题1.(2019·全国Ⅲ文,6)已知各项均为正数的等比数列{a n }的前4项和为15,且a 5=3a 3+4a 1,则a 3等于( )A .16B .8C .4D .2 答案 C解析 设等比数列{a n }的公比为q ,由a 5=3a 3+4a 1得q 4=3q 2+4,得q 2=4,因为数列{a n }的各项均为正数,所以q =2,又a 1+a 2+a 3+a 4=a 1(1+q +q 2+q 3)=a 1(1+2+4+8)=15,所以a 1=1,所以a 3=a 1q 2=4.2.(2019·浙江,10)设a ,b ∈R ,数列{a n }满足a 1=a ,a n +1=a n 2+b ,n ∈N *,则( )A .当b =12时,a 10>10 B .当b =14时,a 10>10 C .当b =-2时,a 10>10 D .当b =-4时,a 10>10 答案 A解析 当b =12时,因为a n +1=a n 2+12,所以a 2≥12,又a n +1=a n 2+12≥√2a n ,故a 9≥a 2×(√2)7≥12×(√2)7=4√2,a 10>a 92≥32>10.当b =14时,a n +1-a n =(a n −12)2,故当a 1=a =12时,a 10=12,所以a 10>10不成立.同理b =-2和b =-4时,均存在小于10的数x 0,只需a 1=a =x 0,则a 10=x 0<10,故a 10>10不成立.3.(2019·全国Ⅰ理,9)记S n 为等差数列{a n }的前n 项和.已知S 4=0,a 5=5,则( ) A .a n =2n -5 B .a n =3n -10 C .S n =2n 2-8n D .S n =12n 2-2n答案 A解析 设等差数列{a n }的公差为d ,∵{S 4=0,a 5=5,∴{4a 1+4×32d =0,a 1+4d =5,解得{a 1=−3,d =2, ∴a n =a 1+(n -1)d =-3+2(n -1)=2n -5, S n =na 1+n (n−1)2d =n 2-4n .故选A.4.(2019·全国Ⅲ理,5)已知各项均为正数的等比数列{a n }的前4项和为15,且a 5=3a 3+4a 1,则a 3等于( )A .16B .8C .4D .2 答案 C解析 设等比数列{a n }的公比为q ,由a 5=3a 3+4a 1得q 4=3q 2+4,得q 2=4,因为数列{a n }的各项均为正数,所以q =2,又a 1+a 2+a 3+a 4=a 1(1+q +q 2+q 3)=a 1(1+2+4+8)=15,所以a 1=1,所以a 3=a 1q 2=4. 二、填空题1.(2019·全国Ⅰ文,14)记S n 为等比数列{a n }的前n 项和,若a 1=1,S 3=34,则S 4=________.答案 58解析 设等比数列的公比为q , 则a n =a 1q n -1=q n -1. ∵a 1=1,S 3=34,∴a 1+a 2+a 3=1+q +q 2=34, 即4q 2+4q +1=0,∴q =-12,∴S 4=1×[1−(−12)4]1−(−12)=58.2.(2019·全国Ⅲ文,14)记S n 为等差数列{a n }的前n 项和.若a 3=5,a 7=13,则S 10=________. 答案 100解析 ∵{a n }为等差数列,a 3=5,a 7=13, ∴公差d =a 7−a 37−3=13−54=2,首项a 1=a 3-2d =5-2×2=1, ∴S 10=10a 1+10×92d =100.3.(2019·江苏,8)已知数列{a n }(n ∈N *)是等差数列,S n 是其前n 项和.若a 2a 5+a 8=0,S 9=27,则S 8的值是________. 答案 16解析 方法一 设等差数列{a n }的公差为d ,则a 2a 5+a 8=(a 1+d )(a 1+4d )+a 1+7d =a 12+4d 2+5a 1d +a 1+7d =0,S 9=9a 1+36d =27,解得a 1=-5,d =2,则S 8=8a 1+28d =-40+56=16.方法二 ∵S 9=a 1+a 92×9=27,∴a 1+a 9=6, ∴a 2+a 8=2a 5=6, ∴a 5=3,则a 2a 5+a 8=3a 2+a 8=0, 即2a 2+6=0, ∴a 2=-3,则a 8=9,∴其公差d =a 8−a 58−5=2,∴a 1=-5,∴S 8=8×a 1+a82=16.4.(2019·全国Ⅰ理,14)记S n 为等比数列{a n }的前n 项和.若a 1=13,a 42=a 6,则S 5=________.答案1213解析 设等比数列{a n }的公比为q ,因为a 42=a 6,所以(a 1q 3)2=a 1q 5,所以a 1q =1,又a 1=13,所以q =3,所以S 5=a 1(1−q 5)1−q=13×(1−35)1−3=1213.5.(2019·全国Ⅲ理,14)记S n 为等差数列{a n }的前n 项和.若a 1≠0,a 2=3a 1,则s 10s 5=________.答案 4解析 设等差数列{a n }的公差为d ,由a 2=3a 1, 即a 1+d =3a 1,得d =2a 1,所以s 10s 5=10a1+10×92d 5a1+5×42d=10a1+10×92×2a15a1+5×42×2a1=10025=4.6.(2019·北京理,10)设等差数列{}n a 的前n 项和为n S ,若23a =-,510S =-,则5a = ,n S 的最小值为 .【思路分析】利用等差数列{}n a 的前n 项和公式、通项公式列出方程组,能求出14a =-,1d =,由此能求出5a 的n S 的最小值.【解析】:设等差数列{}n a 的前n 项和为n S ,23a =-,510S =-,∴113545102a d a d +=-⎧⎪⎨⨯+=-⎪⎩,解得14a =-,1d =,5144410a a d ∴=+=-+⨯=, 21(1)(1)19814()22228n n n n n S na d n n --=+=-+=--, 4n ∴=或5n =时,n S 取最小值为4510S S ==-.故答案为:0,10-.【归纳与总结】本题考查等差数列的第5项的求法,考查等差数列的前n 项和的最小值的求法,考查等差数列的性质等基础知识,考查推理能力与计算能力,属于基础题. 三、解答题1.(2019·全国Ⅰ文,18)记S n 为等差数列{a n }的前n 项和.已知S 9=-a 5. (1)若a 3=4,求{a n }的通项公式;(2)若a 1>0,求使得S n ≥a n 的n 的取值范围. 解 (1)设{a n }的公差为d . 由S 9=-a 5,即9a 5=-a 5,所以a5=0,得a1+4d=0.由a3=4得a1+2d=4.于是a1=8,d=-2.因此{a n}的通项公式为a n=10-2n,n∈N*.(2)由(1)得a1=-4d,故a n=(n-5)d,.S n=n(n−9)d2由a1>0知d<0,≥(n-5)d,化简得故S n≥a n等价于n(n−9)d2n2-11n+10≤0,解得1≤n≤10,所以n的取值范围是{n|1≤n≤10,n∈N*}.2.(2019·全国Ⅱ文,18)已知{a n}是各项均为正数的等比数列,a1=2,a3=2a2+16.(1)求{a n}的通项公式;(2)设b n=log2a n,求数列{b n}的前n项和.解(1)设{a n}的公比为q,由题设得2q2=4q+16,即q2-2q-8=0,解得q=-2(舍去)或q=4.因此{a n}的通项公式为a n=2×4n-1=22n-1.(2)由(1)得b n=log222n-1=(2n-1)log22=2n-1,因此数列{b n}的前n项和为1+3+…+2n-1=n2.3.(2019·北京文,16)设{a n}是等差数列,a1=-10,且a2+10,a3+8,a4+6成等比数列.(1)求{a n}的通项公式;(2)记{a n}的前n项和为S n,求S n的最小值.解(1)设{a n}的公差为d.因为a1=-10,所以a2=-10+d,a3=-10+2d,a4=-10+3d.因为a2+10,a3+8,a4+6成等比数列,所以(a3+8)2=(a2+10)(a4+6).即(-2+2d)2=d(-4+3d).解得d=2.所以a n=a1+(n-1)d=2n-12.(2)由(1)知,a n=2n-12.则当n≥7时,a n>0;当n≤6时,a n≤0.所以S n 的最小值为S 5=S 6=-30.4.(2019·天津文,18)设{a n }是等差数列,{b n }是等比数列,公比大于0.已知a 1=b 1=3,b 2=a 3,b 3=4a 2+3.(1)求{a n }和{b n }的通项公式; (2)设数列{c n }满足c n ={1,n 为奇数,b n 2,n 为偶数.求a 1c 1+a 2c 2+…+a 2n c 2n (n ∈N *).解 (1)设等差数列{a n }的公差为d ,等比数列{b n }的公比为q ,q >0. 依题意,得{3q =3+2d ,3q 2=15+4d ,解得{d =3,q =3,故a n =3+3(n -1)=3n ,b n =3×3n -1=3n .所以{a n }的通项公式为a n =3n ,{b n }的通项公式为b n =3n . (2)a 1c 1+a 2c 2+…+a 2n c 2n=(a 1+a 3+a 5+…+a 2n -1)+(a 2b 1+a 4b 2+a 6b 3+…+a 2n b n ) =[n ×3+n(n−1)2×6]+(6×31+12×32+18×33+…+6n ×3n )=3n 2+6(1×31+2×32+…+n ×3n ). 记T n =1×31+2×32+…+n ×3n ,① 则3T n =1×32+2×33+…+n ×3n +1,② ②-①得,2T n =-3-32-33-…-3n +n ×3n +1 =-3(1−3n )1−3+n ×3n +1=(2n−1)3n+1+32.所以a 1c 1+a 2c 2+…+a 2n c 2n =3n 2+6T n =3n 2+3×(2n−1)3n+1+32=3(n−1)3n+2+6n 2+92(n ∈N *).5.(2019·浙江,20)设等差数列{a n }的前n 项和为S n ,a 3=4,a 4=S 3.数列{b n }满足:对每个n ∈N *,S n +b n ,S n +1+b n ,S n +2+b n 成等比数列. (1)求数列{a n },{b n }的通项公式; (2)记c n =√a n 2b n,n ∈N *,证明:c 1+c 2+…+c n <2√n ,n ∈N *.(1)解 设数列{a n }的公差为d ,由题意得 a 1+2d =4,a 1+3d =3a 1+3d , 解得a 1=0,d =2. 从而a n =2n -2,n ∈N *. 所以S n =n 2-n ,n ∈N *.由S n +b n ,S n +1+b n ,S n +2+b n 成等比数列得(S n +1+b n )2=(S n +b n )(S n +2+b n ).解得b n =1a (S n+12-S n S n +2).所以b n =n 2+n ,n ∈N *.(2)证明 c n =√a n 2b n=√2n−22n(n+1)=√n−1n(n+1),n ∈N *.我们用数学归纳法证明.①当n =1时,c 1=0<2,不等式成立; ②假设n =k (k ∈N *,k ≥1)时不等式成立,即 c 1+c 2+…+c k <2√k . 那么,当n =k +1时,c 1+c 2+…+c k +c k +1<2√k +√k(k+1)(k+2)<2√k +√1k+1<2√k +√k+1+√k=2√k +2(√k +1-√k )=2√k +1.即当n =k +1时不等式也成立.根据①和②,不等式c 1+c 2+…+c n <2√n 对任意n ∈N *成立.6.(2019·江苏,20)定义首项为1且公比为正数的等比数列为“M -数列”.(1)已知等比数列{a n }(n ∈N *)满足:a 2a 4=a 5,a 3-4a 2+4a 1=0,求证:数列{a n }为“M -数列”; (2)已知数列{b n }(n ∈N *)满足:b 1=1,1S n=2b n -2b n+1,其中S n 为数列{b n }的前n 项和.①求数列{b n }的通项公式;②设m 为正整数.若存在“M -数列”{c n }(n ∈N *),对任意正整数k ,当k ≤m 时,都有c k ≤b k ≤c k+1成立,求m 的最大值.(1)证明 设等比数列{a n }的公比为q ,所以a 1≠0,q ≠0.由{a 2a 4=a 5,a 3−4a 2+4a 1=0,得{a 12q 4=a 1q 4,a 1q 2−4a 1q +4a 1=0,解得{a 1=1,q =2.因此数列{a n }为“M -数列”. (2)解 ①因为1S n=2b n-2bn+1,所以b n ≠0.由b 1=1,S 1=b 1,得11=21-2b 2,则b 2=2.由2S n=2b n-2bn+1,得S n =b nb n+12(b n+1−b n ),当n ≥2时,由b n =S n -S n -1, 得b n =b nb n+12(b n+1−b n)-b n−1bn2(b n−b n−1), 整理得b n +1+b n -1=2b n .所以数列{b n }是首项和公差均为1的等差数列.因此,数列{b n }的通项公式为b n =n (n ∈N *). ②由①知,b k =k ,k ∈N *.因为数列{c n }为“M -数列”,设公比为q ,所以c 1=1,q >0. 因为c k ≤b k ≤c k +1,所以q k -1≤k ≤q k ,其中k =1,2,3,…,m . 当k =1时,有q ≥1; 当k =2,3,…,m 时,有lnk k≤ln q ≤lnkk−1.设f (x )=lnx x(x >1),则f ′(x )=1−lnx x 2(x >1).令f ′(x )=0,得x =e ,列表如下:因为ln22=ln86<ln96=ln33,所以f (k )max =f (3)=ln33.取q =√33,当k =1,2,3,4,5时,lnk k≤ln q ,即k ≤q k ,经检验知q k -1≤k 也成立.因此所求m 的最大值不小于5.若m ≥6,分别取k =3,6,得3≤q 3,且q 5≤6,从而q 15≥243,且q 15≤216,所以q 不存在.因此所求m 的最大值小于6. 综上,所求m 的最大值为5.7.(2019·全国Ⅱ理,19)已知数列{a n }和{b n }满足a 1=1,b 1=0,4a n +1=3a n -b n +4,4b n +1=3b n -a n -4.(1)证明:{a n +b n }是等比数列,{a n -b n }是等差数列; (2)求{a n }和{b n }的通项公式.(1)证明 由题设得4(a n +1+b n +1)=2(a n +b n ), 即a n +1+b n +1=12(a n +b n ).又因为a 1+b 1=1,所以{a n +b n }是首项为1,公比为12的等比数列.由题设得4(a n +1-b n +1)=4(a n -b n )+8,即a n +1-b n +1=a n -b n +2. 又因为a 1-b 1=1,所以{a n -b n }是首项为1,公差为2的等差数列. (2)解 由(1)知,a n +b n =12n−1,,a n -b n =2n -1.所以a n =12[(a n +b n )+(a n -b n )]=12n +n -12, b n =12[(a n +b n )-(a n -b n )]=12n -n +12.8.(2019·北京理,20)(13分)已知数列{}n a ,从中选取第1i 项、第2i 项、⋯、第m i 项12()m i i i <<⋯<,若12m i i i a a a <<⋯<,则称新数列1i a ,2i a ,⋯,m i a 为{}n a 的长度为m 的递增子列.规定:数列{}n a 的任意一项都是{}n a 的长度为1的递增子列. (Ⅰ)写出数列1,8,3,7,5,6,9的一个长度为4的递增子列;(Ⅱ)已知数列{}n a 的长度为p 的递增子列的末项的最小值为0m a ,长度为q 的递增子列的末项的最小值为0n a .若p q <,求证:00m n a a <;(Ⅲ)设无穷数列{}n a 的各项均为正整数,且任意两项均不相等.若{}n a 的长度为s 的递增子列末项的最小值为21s -,且长度为s 末项为21s -的递增子列恰有12s -个(1s =,2,)⋯,求数列{}n a 的通项公式.【思路分析】()1I ,3,5,6.答案不唯一.()II 考虑长度为q 的递增子列的前p 项可以组成长度为p 的一个递增子列,可得0n a >该数列的第p 项0m a ,即可证明结论.()III 考虑21s -与2s 这一组数在数列中的位置.若{}n a 中有2s ,在2s 在21s -之后,则必然在长度为1s +,且末项为2s 的递增子列,这与长度为s 的递增子列末项的最小值为21s -矛盾,可得2s 必在21s -之前.继续考虑末项为21s +的长度为1s +的递增子列.因此对于数列21n -,2n ,由于2n 在21n -之前,可得研究递增子列时,不可同时取2n 与21n -,即可得出:递增子列最多有2s 个.由题意,这s 组数列对全部存在于原数列中,并且全在21s +之前.可得2,1,4,3,6,5,⋯⋯,是唯一构造. 【解析】:()1I ,3,5,6.()II 证明:考虑长度为q 的递增子列的前p 项可以组成长度为p 的一个递增子列,∴0n a >该数列的第p 项0m a , ∴00m n a a <.()III 解:考虑21s -与2s 这一组数在数列中的位置.若{}n a 中有2s ,在2s 在21s -之后,则必然在长度为1s +,且末项为2s 的递增子列, 这与长度为s 的递增子列末项的最小值为21s -矛盾,2s ∴必在21s -之前. 继续考虑末项为21s +的长度为1s +的递增子列.对于数列21n -,2n ,由于2n 在21n -之前,∴研究递增子列时,不可同时取2n 与21n -, 对于1至2s 的所有整数,研究长度为1s +的递增子列时,第1项是1与2二选1,第2项是3与4二选1,⋯⋯,第s 项是21s -与2s 二选1,故递增子列最多有2s 个.由题意,这s 组数列对全部存在于原数列中,并且全在21s +之前.2∴,1,4,3,6,5,⋯⋯,是唯一构造. 即221k a k =-,212k a k -=,*k N ∈.【归纳与总结】本题考查了数列递推关系、数列的单调性,考查了逻辑推理能力、分析问题与解决问题的能力,属于难题.9.(2019·天津理,19)设{a n }是等差数列,{b n }是等比数列.已知a 1=4,b 1=6,b 2=2a 2-2,b 3=2a 3+4.(1)求{a n }和{b n }的通项公式;(2)设数列{c n }满足c 1=1,c n ={1,2k <n <2k+1,b k ,n =2k,其中k ∈N *. (ⅰ)求数列{a 2n (c 2n -1)}的通项公式;(ⅱ)求(n ∈N *).解 (1)设等差数列{a n }的公差为d ,等比数列{b n }的公比为q . 依题意得{6q =6+2d ,6q 2=12+4d ,解得{d =3,q =2,所以a n =a 1+(n -1)d =4+(n -1)×3=3n +1, b n =b 1·q n -1=6×2n -1=3×2n .所以{a n }的通项公式为a n =3n +1,{b n }的通项公式为b n =3×2n . (2)(ⅰ)a 2n (c 2n -1)=a 2n (b n -1)=(3×2n +1)(3×2n -1)=9×4n -1. 所以数列{a 2n (c 2n -1)}的通项公式为a 2n (c 2n -1)=9×4n -1. (ⅱ)a i c i =[a i +a i (c i -1)] =a i +a 2i (c 2i -1)=[2n ×4+2n (2n −1)2×3]+(9×4i -1) =(3×22n -1+5×2n -1)+9×4(1−4n )1−4-n=27×22n -1+5×2n -1-n -12(n ∈N *).。
2019年天津市高考数学试卷(理科)参考答案与试题解析一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设集合{1A =-,1,2,3,5},{2B =,3,4},{|13}C x R x =∈< ,则()(A C B = )A .{2}B .{2,3}C .{1-,2,3}D .{1,2,3,4}【解答】解:设集合{1A =-,1,2,3,5},{|13}C x R x =∈< ,则{1A C = ,2},{2B = ,3,4},{()1A C B = ,2}{2 ,3,4}{1=,2,3,4};故选:D .2.(5分)设变量x ,y 满足约束条件20,20,1,1,x y x y x y +-⎧⎪-+⎪⎨-⎪⎪-⎩ 则目标函数4z x y =-+的最大值为()A .2B .3C .5D .6【解答】解:由约束条件20,20,1,1,x y x y x y +-⎧⎪-+⎪⎨-⎪⎪-⎩作出可行域如图:联立120x x y =-⎧⎨-+=⎩,解得(1,1)A -,化目标函数4z x y =-+为4y x z =+,由图可知,当直线4y x z =+过A 时,z 有最大值为5.故选:C .3.(5分)设x R ∈,则“250x x -<”是“|1|1x -<”的()A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件【解答】解:250x x -< ,05x ∴<<,|1|1x -< ,02x ∴<<,05x << 推不出02x <<,0205x x <<⇒<<,05x ∴<<是02x <<的必要不充分条件,即250x x -<是|1|1x -<的必要不充分条件.故选:B .4.(5分)阅读如图的程序框图,运行相应的程序,输出S 的值为()A .5B .8C .24D .29【解答】解:1i =,0s =;第一次执行第一个判断语句后,1S =,2i =,不满足条件;第二次执行第一个判断语句后,1j =,5S =,3i =,不满足条件;第三次执行第一个判断语句后,8S =,4i =,满足退出循环的条件;故输出S 值为8,故选:B .5.已知抛物线24y x =的焦点为F ,准线为l .若l 与双曲线22221(0,0)x y a b a b -=>>的两条渐近线分别交于点A 和点B ,且||4||(AB OF O =为原点),则双曲线的离心率为()ABC .2D【解答】解: 抛物线24y x =的焦点为F ,准线为l .(1,0)F ∴,准线l 的方程为1x =-,l 与双曲线22221(0,0)x y a b a b-=>>的两条渐近线分别交于点A 和点B ,且||4||(AB OF O =为原点),2||b AB a ∴=,||1OF =,∴24b a=,2b a ∴=,c ∴==,∴双曲线的离心率为c e a==故选:D .6.(5分)已知5log 2a =,0.5log 0.2b =,0.20.5c =,则a ,b ,c 的大小关系为()A .a c b <<B .a b c <<C .b c a <<D .c a b <<【解答】解:由题意,可知:5log 21a =<,110.5122221log 0.25log 5log 425b log log --====>=.0.20.51c =<,b ∴最大,a 、c 都小于1.521log 25a log ==,10.2510.5()2c ====.而22log 5log 42>=>∴215log <.a c ∴<,a cb ∴<<.故选:A .。
天津市2019年高考数学压轴卷 文(含解析)一、选择题(共8题,每题5分,共40分)1.()Z M 表示集合M 中整数元素的个数,设集合{}18A x x =-<<,{}5217B x x =<<,则()Z A B =( ) A .3B .4C .5D .62.i 为虚数单位,若复数()()1i 1i m ++是纯虚数,则实数m =( ) A .1-B .0C .1D .0或13.阅读如图的框图,运行相应的程序,若输入n 的值为6,则输出S 的值为A.73 B. 94 C. 76 D. 98 4.若x 、y 满足约束条件4200x y x y y +≤⎧⎪-+≥⎨⎪≥⎩,目标函数z ax y =+取得最大值时的最优解仅为()1,3,则a 的取值范围为( )A .()1,1-B .()0,1C .()(),11,-∞+∞ D .(]1,0-5.已知向量2=a ,1=b ,()22⋅-=a a b ,则a 与b 的夹角为( ) A .30︒B .60︒C .90︒D .150︒6.已知棱长为1的正方体被两个平行平面截去一部分后,剩余部分的三视图如图所示,则剩余部分的表面积为( )A .23B.3CD.7.已知π1cos 25α⎛⎫-= ⎪⎝⎭,则cos2α=( )A .725B .725-C .2325D .2325-8.已知数列{}n a 是1为首项,2为公差的等差数列,{}n b 是1为首项,2为公比的等比数列,设n n b C a =,12n n T c c c =+++,()n ∈*N ,则当2019n T <时,n 的最大值是( )A .9B .10C .11D .12二、填空题:本大题共有6小题,每小题5分,共30分.9.已知两点)2,2(),2,0(-N M 以线段MN 为直径的圆的方程为________________.10.已知函数()cos 22π2πy x ϕϕ⎛⎫=+-<< ⎪⎝⎭的图象关于直线π6x =对称,则ϕ等于_____.11.已知长方体的长、宽、高分别为2,1,2,则该长方体外接球的表面积为__________. 12.在直角坐标系xoy 中,直线l 的参数方程为32545x t y t ⎧=-+⎪⎪⎨⎪=⎪⎩(t 为参数),以原点O 为极点,x 轴正半轴为极轴建立极坐标系,圆C 的极坐标方程为sin a ρθ=.直线l 截圆C 的弦长等于圆Ca 的值 .13.已知F 为双曲线()2222:10,0x y C a b a b-=>>的左焦点,直线l 经过点F ,若点(),0A a ,()0,B b 关于直线l 对称,则双曲线C 的离心率为__________.14.函数()()ln 2e 4e x a a x f x x x --=-+++,其中e 为自然对数的底数,若存在实数0x 使()03f x =成立,则实数a 的值为三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤. (15) (本小题满分13分)设ABC ∆的内角,,A B C 所对边的长分别是,,a b c ,且B A c b 2,1,3=== (Ⅰ)求a 的值; (Ⅱ)求)62cos(π+A 的值.16(本小题满分13分)某工厂连续6天对新研发的产品按事先拟定的价格进行试销,得到一组数据()()12,,,,6i i x y i =如下表所示(1)试根据4月2日、3日、4日的三组数据,求y 关于x 的线性回归方程ˆˆˆybx a =+,并预测4月6日的产品销售量m ;(2)若选取两组数据确定回归方程,求选取得两组数据恰好是不相邻两天的事件B 的概率. 参考公式:ˆˆˆybx a =+, 其中()()1122211(ˆ)n niii i i i nniii i x x y y x y nxybx x xnx ====---==--∑∑∑∑,ˆˆay bx =-, 17.(本小题满分13分)如图,在四棱锥P ABCD -中,PA ⊥底面ABCD ,2AB BC CD DA ====,1PA =,120BAD ∠=︒,E 为BC 的中点.(1)求证:AE ⊥平面PAD ;(2)若F 为CD 的中点,求点D 到平面PEF 的距离. 18.(本小题满分13分)已知抛物线C 的方程()220y px p =>,焦点为F ,已知点P 在C 上,且点P 到点F 的距离比它到y 轴的距离大1. (1)试求出抛物线C 的方程;(2)若抛物线C 上存在两动点M ,N (M ,N 在对称轴两侧),满足OM ON ⊥(O 为坐标原点),过点F 作直线交C 于A ,B 两点,若AB MN ∥,线段MN 上是否存在定点E ,使得4EM EN AB⋅=恒成立?若存在,请求出E 的坐标,若不存在,请说明理由.19.(本小题满分14分)数列{}n a 是等比数列,公比大于0,前n 项和nS ()n N *∈,{}nb 是等差数列,已知112a =,32114a a =+,3461a b b =+,45712a b b =+.(Ⅰ)求数列{}n a ,{}n b 的通项公式n a ,n b ; (Ⅱ)设{}n S 的前n 项和为n T ()n N *∈,(i )求n T ; (ii )证明:()21121311<⋅-∑=+++++ni i i i i i b b b b T .20.(本小题满分14分)已知函数()()22e ,0xx f x x m m m=+-∈≠R ,(1)求函数()f x 的单调区间和()f x 的极值;(2)对于任意的[]1,1a ∈-,[]1,1b ∈-,都有()()e f a f b -≤,求实数m 的取值范围. 1【答案】C【解析】∵()1,8A =-,517,22B ⎛⎫= ⎪⎝⎭,∴5,82AB ⎛⎫= ⎪⎝⎭,∴()5Z AB =.故选C .2【答案】C【解析】∵()()()()1i 1i 11i m m m ++=-++是纯虚数,∴1010m m -=⎧⎨+≠⎩,即1m =,故选C .3【答案】A【解析】由题意,模拟执行程序,可得:,,满足条件,,满足条件,, 满足条件,,不满足条件,退出循环,输出S 的值为.故选:A . 4【答案】A【解析】结合不等式组,绘制可行域,得到:目标函数转化为y ax z =-+,当0a -≥时,则1a -<,此时a 的范围为(]1,0-,当0a -<时,则1a ->-,此时a 的范围为()0,1,综上所述,a 的范围为()1,1-,故选A . 5【答案】B【解析】∵()222422⋅-=-⋅=-⋅=a a b a a b a b ,∴1⋅=a b . 设a 与b 的夹角为θ,则1cos 2θ⋅==a b a b , 又0180θ︒≤≤︒,∴60θ=︒,即a 与b 的夹角为60︒. 6【答案】B【解析】由三视图可得,该几何体为如图所示的正方体1111ABCD A B C D -截去三棱锥1D ACD -和三棱锥111B A B C -后的剩余部分.其表面为六个腰长为1的等边三角形,所以其表面积为22161232⨯⨯+=+B .所以其表面积为22161232⨯⨯+=+B .7【答案】C【解析】由π1cos 25α⎛⎫-= ⎪⎝⎭,得1s i n 5α=,又由2123cos212sin 122525αα=-=-⨯=.故选C .8.【答案】A 【解析】{}n a 是以1为首项,2为公差的等差数列,21n a n ∴=-,{}n b 是以1为首项,2为公比的等比数列,12n n b -∴=,112121242n n n n b b b T c c c a a a a a a a -∴=+++=+++=++++()()()()()1121122124122121242n n n --=⨯-+⨯-+⨯-++⨯-=++++-11222212nn n n +-=⨯-=---,2019n T <,1222019n n +∴--<,解得9n ≤.则当2019n T <时,n 的最大值是9,故选A . 9【答案】【解析】由题得圆心的坐标为(1,0),|MN|=所以圆的半径为所以圆的方程为.故答案为:10【答案】π3-【解析】函数()cos 22π2πy x ϕϕ⎛⎫=+-<< ⎪⎝⎭的图象关于直线π6x =对称,2π6πk ϕ∴⨯+=,因为π22πϕ-<<,求得3πϕ=-,故答案为π3-. 11【答案】【解析】由题意,长方体的长宽高分别为,所以其对角线长为,求得球的半径为,利用球的表面积公式,即可求解. 【详解】由题意,长方体的长宽高分别为,所以其对角线长为,设长方体的外接球的半径为,则,即,所以球的表面积为.12【答案】32a =或3211. 【解析】 圆C 的极坐标方程转化成直角坐标方程为:22224a a x y ⎛⎫+-= ⎪⎝⎭,直线l 截圆C 的弦长等于圆C 的半径长的倍,∴3812522aa d -==⋅,整理得23165a a -=,利用平方法解得32a =或3211131【解析】因为F 为双曲线()2222:10,0x y C a b a b-=>>的左焦点,所以(),0F c -,又点(),0A a ,()0,B b 关于直线l 对称,00AB b bk a a-==--, 所以可得直线l 的方程为()ay x c b=+, 又A ,B 中点在直线l 上,所以22b a a c b ⎛⎫=+ ⎪⎝⎭,整理得222b a ac =+,又222b c a =-,所以22220c ac a --=,故2220e e --=,解得1e =1e >,所以1e =+故答案为1e =+ 14【答案】ln21--【解析】由()()ln 2e 4e x a a x f x x x --=-+++,可令()()ln 2g x x x =-+, ()11122x g x x x +'=-=++,故()()l n 2g x x x =-+在()2,1--上是减函数,()1,-+∞上是增函数,故当1x =-时,()g x 有最小值()11g -=-,而e 4e 4x a a x --≥+,(当且仅当e 4e x a a x --=,即ln2x a =+时成立), 故()3f x ≥(当且仅当等号同时成立时,等式成立), 故ln21x a =+=-,即ln21a =--.15(Ⅰ) 解:由B A 2=,知B B B A cos sin 22sin sin ==,由正、余弦定理得acb c a b a 22222-+⋅=.因为1,3==c b ,所以122=a ,则32=a .(Ⅱ) 解:由余弦定理得31612192cos 222-=-+=-+=bc a c b A . x§]由于π<<A 0,所以322911cos 1sin 2=-=-=A A故7sin 2cos29A A ==- 1837246sin2sin 6cos2cos )62cos(-=-=+πππA A A16【答案】(1)41;(2)23.【解析】(1)由题设可得111012113x ++==,322935323y ++==, 则()()()()()31322221ˆ0013133011iii ii x x y y bx x ==--⨯+-⨯-+⨯===++-∑∑.所以32ˆ11ˆ31ay bx =-=-⨯=-, 则回归直线方程为ˆ31yx =-,故314141m =⨯-=.(2)从6天中随机取2天的所有可能结果为:{}12,A A ,{}13,A A ,{}14,A A ,{}15,A A ,{}16,A A ,{}23,A A ,{}24,A A ,{}25,A A ,{}26,A A ,{}34,A A ,{}35,A A ,{}36,A A ,{}45,A A ,{}46,A A ,{}56,A A 共15种,其中相邻两天的结果为{}12,A A ,{}23,A A ,{}34,A A ,{}45,A A ,{}56,A A 共5种, 所以选取的两组数据恰好是不相邻两天的事件B 的概率()521153P B =-=.17【答案】(1)详见解析;(2 【解析】(1)如图,连接AC .由条件知四边形ABCD 为菱形,且120BAD ∠=︒, ∴60BAC ∠=︒,∴ABC △为正三角形. ∵E 为BC 的中点,∴AE BC ⊥. 又∵AD BC ∥,∴AE AD ⊥.又∵PA ⊥底面ABCD ,AE ⊂底面ABCD ,∴PA AE ⊥. ∵PAAD A =,∴AE ⊥平面PAD .(2)设AC 交EF 于点G ,连接PG ,DE ,则G 为EF 的中点.易知AE AF =,则Rt Rt PAE PAF ≅△△,∴PE PF =,∴PG EF ⊥. 连接BD ,∵2AB BC CD DA ====,1PA =,∴BD ==3342AG AC ==,∴12EF BD =PG ==∴12PEF S EF PG =⋅=△.1111sin1202442DEF CDE BCD S S S BC CD ===⨯⨯⨯︒=△△△设点D 到平面PEF 的距离为h ,又PA ⊥底面ABCD , 由P DEF D PEF V V --=,得11133h =,解得h =故点D 到平面PEF18【答案】(1)24y x =;(2)存在,E 的坐标为()4,0.【解析】(1)因为P 到点F 的距离比它到y 轴的距离大1,由题意和抛物线定义12p=, 所以抛物线C 的方程为24y x =. (2)由题意0MN k ≠,设211,4y M y ⎛⎫ ⎪ ⎪⎝⎭,()22221,4y N y y y ⎛⎫> ⎪ ⎪⎝⎭,由O M O N ⊥,得1216y y =-,直线124:MN k y y =+, 2111244y y y x y y ⎛⎫-=- ⎪ ⎪+⎝⎭,整理可得()1244y x y y =-+, 直线:AB ①若斜率存在,设斜率为k ,()1y k x =-,与C 联立得2440ky y k --=,2141AB k ⎛⎫==+ ⎪⎝⎭, 若点E 存在,设点E 坐标为()00,x y ,01EM EN y y ⋅=-()2120120211y y y y y y k ⎛⎫⎡⎤=+--++ ⎪⎣⎦⎝⎭200241116y y k k ⎛⎫⎛⎫=+-+ ⎪ ⎪⎝⎭⎝⎭,4EM EN AB⋅=时,2041616y y k-+=, 解得00y =或04y k=(不是定点,舍去) 则点E 为()4,0经检验,此点满足24y x <,所以在线段MN 上, ②若斜率不存在,则4AB =,4416EM EN ⋅=⨯=,此时点()4,0E 满足题意,综合上述,定点E 为()4,0.19【答案】(Ⅰ)12n n a =,1n b n =-(Ⅱ)(i )112n n T n =-+ 【解析】(Ⅰ)解:设数列{}n a 的公比为q (0q >)121112114a a qa q ⎧=⎪⎪⎨⎪=+⎪⎩,21120q q --=,=-1q (舍)或=2q ,12n n a = 设数列{}nb 的公差为d111182(4)1116316b d b d⎧=⎪+⎪⎨⎪=⎪+⎩ 114431616b d b d +=⎧⎨+=⎩ 101b d =⎧⎨=⎩ ,1n b n =-. (Ⅱ)解:112212(1)1112n n n S -==-- 211111(111)()(1)122222n n n n T n n =+++-+++=--=-+ 111132112()(2)()(2)(1)(1)2i i i i i i i i i i T b b i b b i i i i ++++++++-⋅+-⋅+==⋅⋅+⋅+⋅1112(1)2i i i i +=-⋅+⋅ 1132231112()111111()()()122222322(1)2n i i i n n i i i T b b b b n n ++++=++-⋅=-+-++-⋅⋅⋅⋅⋅⋅+⋅∑ 11112(1)22n n +=-<+⋅ 20【答案】(1)见解析;(2)2,,⎛⎡⎫-∞+∞ ⎪⎢ ⎪⎝⎦⎣⎭. 【解析】(1)∵()22e 1x f x x m =+-',()22e x f x m''=+,其中()f x ''是()f x '的导函数. 显然,()0f x ''>,因此()f x '单调递增,而()00f '=,所以()f x '在(),0-∞上为负数,在()0,+∞上为正数,因此()f x 在(),0-∞上单调递减,在()0,+∞上单调递增,当0x =时,()f x 取得极小值为()01f =,无极大值.∴()f x 的极小值为1,无极大值.单增区间为()0,+∞,单减区间为(),0-∞.(2)依题意,只需()()max min e f x f x -≤,由(1)知,()f x 在[]1,0-上递减,在[]0,1上递增,∴()f x 在[]1,1-上的最小值为()01f =,最大值为()1f 和()1f -中的较大者,而()()22111111e 11e 20e e f f m m ⎛⎫⎛⎫--=+--++=--> ⎪ ⎪⎝⎭⎝⎭, 因此()()11f f >-,∴()f x 在[]1,1-上的最大值为21e 1m +-,所以21e 11e m +--≤,解得m ≥或m ≤∴实数m 的取值范围是2,,22⎛⎡⎫-∞-+∞ ⎪⎢ ⎪⎝⎦⎣⎭.。
第20题解析几何高考考点命题分析三年高考探源 考查频率曲线的方程或轨迹方程高考全国卷每年必有一道解析几何解答题,在高考中解析几何一般运算量较大,该题通常有2问,第1问多为曲线方程的确定,第2问多为直线与圆锥曲线的位置关系的应用,考查热点是长度、面积及定点定值问题2021课标全国Ⅰ21 2021课标全国Ⅱ20 2020课标全国Ⅰ202020课标全国Ⅱ19 2019课标全国Ⅲ20 2019课标全国Ⅰ19 2019课标全国Ⅱ21★★★★★ 直线与圆锥曲线位置关系及应用(长度、面积、定点、定值)2021课标全国Ⅰ21 2021课标全国Ⅱ20 2020课标全国Ⅰ20 2020课标全国Ⅲ20 2019课标全国Ⅰ19 2019课标全国Ⅱ21 2019课标全国Ⅲ21★★★★★例题(2021高考全国I )已知抛物线()2:20C x py p =>的焦点为F ,且F 与圆22:(4)1M x y ++=上点的距离的最小值为4.(1)求p ;(2)若点P 在M 上,,PA PB 是C 的两条切线,,A B 是切点,求PAB △面积的最大值. 【答案】(1)2p =;(2)5解:(1)抛物线C 的焦点为0,2p F ⎛⎫ ⎪⎝⎭,42pFM =+,(2分)所以,F 与圆22:(4)1M x y ++=上点的距离的最小值为4142p+-=,解得2p =;(4分)(2)抛物线C 的方程为24x y =,即24x y =,对该函数求导得2x y '=,(5分)设点()11,A x y 、()22,B x y 、()00,P x y , 直线PA 的方程为()1112x y y x x -=-,即112x x y y =-,即11220x x y y --=, 同理可知,直线PB 的方程为22220x x y y --=,由于点P 为这两条直线的公共点,则10102020220220x x y y x x y y --=⎧⎨--=⎩,所以,点A 、B 的坐标满足方程00220x x y y --=, 所以,直线AB 的方程为00220x x y y --=,联立0022204x x y y x y --=⎧⎪⎨=⎪⎩,可得200240x x x y -+=, 由韦达定理可得1202x x x +=,1204x x y =,(8分) 所以,()()()222222001212000001414164422x x AB x x x x x y xx y ⎛⎫⎛⎫=++-=+-+- ⎪ ⎪⎝⎭⎝⎭,(9分)点P 到直线AB 的距离为200244x y d x -=+(100分)所以,()()()2300222200002041114442224PABx y S AB d xx y x y x -=⋅=+-=-+△, ()()2222000000041441215621x y y y y y y -=-+-=---=-++,由已知可得053y -≤≤-,所以,当05y =-时,PAB △的面积取最大值321202052⨯=(12分)1.(2022届山西省吕梁市高三模拟)已知椭圆C :()222210x y a b a b+=>>的左、右焦点分别为1F ,2F 3(3,6为C 上一点,过点1F 且与y 轴不垂直的直线l 与C 交于A ,B 两点. (1)求C 的方程;(2)在平面内是否存在定点Q ,使得QA QB ⋅为定值?若存在,求出点Q 的坐标;若不存在,请说明理由.【答案】(1)221128x y +=(2)存在;8,03Q ⎛⎫- ⎪⎝⎭【解析】 (1)设C 的半焦距为()0c c >,由题意得222223361c a a b a b c⎧=⎪⎪⎪+=⎨⎪=+⎪⎪⎩,解得2221284a b c ⎧=⎪=⎨⎪=⎩,所以C 的方程为221128x y +=.(2)假设存在定点(),Q s t ,使得QA QB ⋅为定值λ,设()11,A x y ,()22,B x y . 由(1)知()2,0F -,因为l 不垂直于y 轴,故设l 的方程为2x my =-,联立,得2221128x my x y =-⎧⎪⎨+=⎪⎩,消去x 并化简,得()22238160m y my +--=.则()226464230m m ∆=++>,且122823m y y m +=+,1221623y y m =-+, ()()1111,2,QA x s y t my s y t =--=---,()()2222,2,QB x s y t my s y t =--=---,所以()()()()121222QA QB my s my s y t y t ⋅=----+--()()()()2221212122m y y m s t y y s t =+-++++++⎡⎤⎣⎦()()()222221618222323m m s t m s t m m λ+++⎡⎤⎣⎦=--+++=++. 所以()()()222222221616828223223m s m tm s t m s t m λλ⎡⎤⎡⎤---+-++++++=+⎣⎦⎣⎦, 所以()()2216822222s s t λ--++++=,80t -=,()22163233s t λ-+++=,所以83s =-,0=t ,449λ=-.所以存在8,03Q ⎛⎫- ⎪⎝⎭,使得QA QB ⋅为定值449-.2.(2022届河南省顶级名校高三4月联合考)己知抛物线1C 的方程是223y x =,圆2C 的方程是()2211x a y -++=,过抛物线1C 上的点()(),0>P a b b 作圆2C 的切线,两切线分别与抛物线1C 相交于与点P 不重合的()()()112212,,,>A x y B x y y y 两点. (1)求直线P A ,PB 的方程(直线PB 的方程用含b 的等式表示); (2)若PA PB =,求实数2b 的值.【答案】(1)x a =,()242214370b x by b b ---+=(2)227+【解析】 (1)由题意可知,直线PB 的方程是x a =,根据条件可设直线PA 的方程是()y k x a b =-+,即0kx y ka b --+=, ∵直线PA 与圆()2211x a y -++=相切,∴()2111k a ka bk --+=+,∴212b k b-=,∴直线PA 的方程是2221130222b b b x y b b b ----⋅+=,即()242214370b x by b b ---+=.(2)若210b -=,则0k =,直线PA 与抛物线1C 没有两个交点,不合题意, 故210b -≠,∴直线PA 的方程可写成()4222237121b b b x y b b -=+--,将它代入223y x =并化简得()2242314370b y by b b ---+=,∴()()2224Δ(4)121730b b b b =---->①,()12431b y b b +=-,即()12431by b b =--, ∴()21112211114PA b y b by k k=+-=++-()()()()()2222222222221354164143119131b b b b b b b b b b b b ⎡⎤+-⎢⎥=+---⎢⎥---⎣⎦,∵2PB b =,∴()22222135231b b b b b +-=-,解得,22b =,或227b += 经检验,22b =与227b +=①,所以实数2b 的值是227+3.(2022届山西省高三第二次模拟)已知双曲线()2222:10,0x y C a b a b-=>>经过点()12,0A ,()24,0A ,(322,3A ,(422,3A -,53,3A 中的3个点.(1)求双曲线C 的方程;(2)已知点M ,N 是双曲线C 上与其顶点不重合的两个动点,过点M ,N 的直线1l ,2l 都经过双曲线C 的右顶点,若直线1l ,2l 的斜率分别为1k ,2k ,且121k k +=,判断直线MN 是否过定点,若过定点,求出该点的坐标;若不过定点,请说明理由【答案】(1)22143x y -=(2)直线MN 过定点,且定点坐标为()2,3【解析】 (1)由于34,A A 关于x 轴对称,所以34,A A 要么都在双曲线C 上,要么都不在双曲线C 上.点12,A A 不可能都在双曲线C 上,因为双曲线C 经过3个点,所以34,A A 都在双曲线C 上.将34,A A 的坐标代入22221x y a b-=得22831a b -=,由34,A A 都在双曲线C 上可知()24,0A 、53,3A 都不在双曲线C 上,所以点()12,0A 在双曲线C 上,故2a =, 结合22831a b -=可得3b = 所以双曲线C 的方程为22143x y -=.(2)设()()1122,,,M x y N x y ,其中12y y ≠,故可设直线MN 的方程为x my n =+,由22143x my nx y =+⎧⎪⎨-=⎪⎩消去x 并化简得()2223463120m y mny n -++-=,2340m -≠,21212226312,3434mn n y y y y m m -+=-⋅=--. 因为双曲线C 的右顶点为()12,0A ,且121k k +=, 所以121212122222y y y y x x my n my n +=+--+-+-12122212122(2)()(2)()(2)my y n y y m y y m n y y n +-+=+-++-22222222222226246123343413126122(2)3434mn m mn mnm m m m n m m n m n nn m m -----==----+---,所以32n m =-+,代入x my n =+得()32x m y =-+, 当3y =时,2x =, 所以直线MN 过定点()2,3.4.(2022届河北省九师联盟高三4月联考)已知双曲线()2222:10,0x y C a b a b-=>>的左,右焦点分别为()16,0F ,)26,0F .且该双曲线过点(22,2P .(1)求C 的方程;(2)如图.过双曲线左支内一点(),0T t 作两条互相垂直的直线分别与双曲线相交于点A ,B 和点C ,D .当直线AB ,CD 均不平行于坐标轴时,直线AC ,BD 分别与直线x t =相交于P .Q 两点,证明:P ,Q 两点关于x 轴对称. 【答案】(1)22142x y -=(2)证明见解析 【解析】 (1)解:由已知可得22226821a b a b ⎧+⎪⎨-=⎪⎩,解得224,2a b ==, 所以双曲线C 的方程为22142x y -=; (2)证明:由题意,设直线AB 的方程为x my t =+,直线CD 的方程为1x y t m=-+,点 ()()()()11223344,,,,,,,A x y B x y C x y D x y ,由22142x y x my t ⎧-=⎪⎨⎪=+⎩,得 ()2222240m y mty t -++-=,则()()22222(2)424168320mt m t m t ∆=---=+->,得2224m t +>,所以212122224,22mt t y y y y m m --+==--, 同理可得()2234342242,1212t m mt y y y y m m-+==--,其中,m t 满足2224t m +>, 直线AC 的方程为()133111y y y y x x x x --=--,令x t =,得()131113y yy t x y x x -=-+-, 又11331,x my t x y t m =+=-+,所以()2121331m y y y m y y +=+,即()2132131,m y y P t m y y ⎛⎫+ ⎪ ⎪+⎝⎭, 同理可得()2242241,m y y Q t m y y ⎛⎫+ ⎪ ⎪+⎝⎭, 因为()()()()()()()2222123412341324222213241324111m m y y y y y y y y my y my y m y y m y y my y m y y ⎡⎤++++++⎣⎦+=++++()()()()()222222222221324442212122120m t t m mt mt m m m m m m y y m y y ⎡⎤---+⋅+⋅⎢⎥----⎢⎥⎣⎦==++, 所以,P Q 两点关于x 轴对称.5.(2022届天津市第七中学高三阶段检测)已知曲线C 上动点M 与定点()2,0F 的距离和它到定直线1:22l x =-22,若过()0,1P 的动直线l 与曲线C 相交于,A B 两点.(1)说明曲线C 的形状,并写出其标准方程; (2)是否存在与点P 不同的定点Q ,使得QA PAQB PB=恒成立?若存在,求出点Q 的坐标;若不存在,请说明理由.【答案】(1)曲线C 为椭圆,标准方程为:22142x y +=,(2)存在定点()0,2Q ,使得QA PA QB PB =恒成立. 【解析】 (1) 设(),M x y ()2222222x y x ++=+,整理可得:22142x y +=, ∴曲线C 为椭圆,标准方程为:22142x y +=.(2)①当直线l 与y 轴垂直时,即:1l y =,由椭圆对称性可知:PA PB =,QA QB ∴=,∴点Q 在y 轴上;②当直线l 与x 轴垂直时,即:0l x =,则(2A ,(0,2B -, 若存在定点Q ,则由①知:点Q 在y 轴上,可设()()0,1Q t t ≠,由QA PA QB PB =221212t t --=++1t =(舍)或2t =,()0,2Q ∴; 则若存在定点Q 满足题意,则Q 点坐标必然是()0,2,只需证明当直线l 斜率存在时,对于()0,2Q ,都有QA PAQB PB=成立即可. 设:1l y kx =+,()11,A x y ,()22,B x y ,由221142y kx x y =+⎧⎪⎨+=⎪⎩得:()2212420k x kx ++-=,其中23280k ∆=+>恒成立,122122412212k x x k x x k ⎧+=-⎪⎪+∴⎨⎪=-⎪+⎩,121212112x x k x x x x +∴+==,设点B 关于y 轴的对称点为B ',则()22,B x y '-, 11111211QA y kx k k x x x --===-,22222211QB y kx k k x x x '--===-+--, 12112220QA QB k k k k k x x '⎛⎫∴-=-+=-= ⎪⎝⎭,即,,Q A B '三点共线,12QA QA x PAQB QB x PB∴==='; 综上所述:存在定点()0,2Q ,使得QA PAQB PB=恒成立. 6.(2022届浙江省嘉兴市高三4月二模)已知椭圆22122:1(0)x y C a b a b+=>>的左、右焦点分别为1F ,2F ,椭圆1C 上的点31,2A ⎛⎫- ⎪⎝⎭到两焦点1F ,2F 的距离之和为4.(1)求椭圆1C 的标准方程;(2)若抛物线22:2(0)C y px p =>的焦点F 与椭圆1C 的右焦点2F 重合,过点(,0)(0)P m m >作直线1l 交抛物线2C 于点M ,N ,直线MF 交抛物线2C 于点Q ,以Q 为切点作抛物线2C 的切线2l ,且21l //l ,求MNQ △面积S 的最小值.【答案】(1)22143x y +=;(2)16.【解析】 (1)因为椭圆1C 上的点31,2A ⎛⎫- ⎪⎝⎭到两焦点1F ,2F 的距离之和为4,所以有24a =,即2a =,将点31,2A ⎛⎫- ⎪⎝⎭代入椭圆1C 的方程22214x yb+=,得219144b+=,从而23b =, 所以椭圆1C 的标准方程为22143x y +=; (2)由(1)知椭圆的右焦点为(1,0),因为抛物线2C 的焦点与椭圆1C 的右焦点重合,所以12p=,即2p =,从而抛物线2C 的方程为24y x =.设()11,M x y ,()22,N x y ,设直线MN 为:(0)x ty m t =+≠,联立24x ty my x =+⎧⎨=⎩,消去x 得2440y ty m --=,所以121244y y t y y m +=⎧⎨=-⎩①, 直线2114:14y MF x y y -=+与抛物线22:4C y x =联立,消去x 得 2211440y y y y ---=,所以得Q 点的纵坐标为14y -,所以21144,Q y y ⎛⎫- ⎪⎝⎭,因为21l //l ,所以直线2l 为:21144t x ty y y =++与抛物线22:4C y x =联立,消去x 得2211161640t y ty y y ---=,故2221114240t t t y y y ⎛⎫∆=++=+= ⎪⎝⎭,得12y t =-,代入①式可以得224y t t =+,122244y y t m t t ⎛⎫=-+=- ⎪⎝⎭,即212m t=+,又有()2,2Q t t ,直线MN 为212(0)x ty t t =++≠,得2221||12MN t t t =+++222121Q MN d t t t -⎫=++⎪⎭+所以33222222112222216MNQ S t t t t ⎛⎫⎛⎫=++≥⋅ ⎪ ⎪ ⎪⎝⎭⎝=⎭△, 当且仅当1t =±时取到最小值.7.(2022届山西省吕梁市高三第二次模拟)已知O 为坐标原点,椭圆2222:1(0)x y C a b a b+=>>6(6,1)P . (1)求椭圆C 的方程;(2)直线l 与椭圆C 交于A ,B 两点,直线OA 的斜率为1k ,直线OB 的斜率为2k ,且1213k k =-,求OA OB ⋅的取值范围.【答案】(1)22193x y +=;(2)[3,0)(0,3]-.【解析】 (1)由题意,226611c a a b ⎧=⎪⎪⎨⎪+=⎪⎩,又222a b c =+,解得3,3a b ==所以椭圆C 为22193x y +=. (2)设()()1122,,,A x y B x y ,若直线l 的斜率存在,设l 为y kx t =+,联立22193y kx tx y =+⎧⎪⎨+=⎪⎩,消去y 得:()222136390+++-=k x ktx t ,22Δ390k t =+->,则12221226133913kt x x k t x x k -⎧+=⎪⎪+⎨-⎪=⎪+⎩,又12k k =121213y y x x =-, 故121213=-y y x x 且120x x ≠,即2390-≠t ,则23≠t ,又1122,y kx t y kx t =+=+,所以()()()222222222121212221212122691133939313-+++++-+==+=+==---+k t t kx t kx t kt x x t y y t k k k k t x x x x x x t k , 整理得222933=+≥t k ,则232≥t 且Δ0>恒成立. 221212121212222122393333133313--⎛⎫⋅=+=-==⋅=⋅=- ⎪+⎝⎭t t OA OB x x y y x x x x x x k t t , 又232≥t ,且23≠t ,故2331[3,0)(0,3)⎛⎫-∈- ⎪⎝⎭t . 当直线l 的斜率不存在时,2121,x x y y ==-,又12k k =212113-=-y x ,又2211193x y +=,解得2192x =,则222111233⋅=-==OA OB x y x . 综上,OA OB ⋅的取值范围为[3,0)(0,3]-.8.(2022届浙江省温州市高三3月适应性测试)已知椭圆()22122:10x y C a b a b+=>>离心率为662⎝⎭;圆()()2223:4C x m y n -+-=的圆心为M ,M 是椭圆上1C 上的点,过O 作圆2C 两条斜率存在的切线,交椭圆1C 于A ,B .(1)求椭圆1C 方程;(2)记d OA OB =+,求d 的最大值. 【答案】(1)2213x y +=(2)22【解析】 (1)依题意22222226216a b a b c c a ⎧⎪⎪⎝⎭⎝⎭+=⎪⎪⎪=+⎨⎪⎪=⎪⎪⎪⎩,解得3,1,2a b c ==所以椭圆1C 的方程为2213x y +=.(2)设过原点的圆()()2223:4C x m y n -+-=的切线方程为y kx =,即0kx y , 231km n k -=+()222348340m k mnk n -++-=, 其两根12,k k 满足21223434n k k m -=-,设12,OA OB k k k k ==,(),M m n 是椭圆1C 上的点,所以22221,133m m n n +==-. 2221222243341334133434343m m n k k m m m ⎛⎫--- ⎪-⎝⎭====----. 设()()1122,,,A x kx B x kx ,则2211221,1OA k x OB k x +=+,且2222221211221,133x x k x k x +=+=,2212221233,1313x x k k ==++ 所以()()222222112211OA OB k x k x +=+++()222222222222222222121122112211221122333362x x k x k x k x k x k x k x k x k x =+++=-+-++=-+ 2212221233621313k k k k ⎛⎫=-+ ⎪++⎝⎭()()()()222212212212313313621313k k k k k k +++=-⨯++ 2222221212122222221212123318332626262=41339233k k k k k k k k k k k k ++++=-⨯=-⨯=-+++++. 所以由基本不等式得()22222d OA OB OA OB =+≤+=,当且仅当OA OB =时等号成立. 所以d 的最大值为229.(2022届云南省高三第二次统一检测)已知曲线C ()22110x y x -++=,点D 的坐标为()1,0,点P 的坐标为()1,2.(1)设E 是曲线C 上的点,且E 到D 的距离等于4,求E 的坐标;(2)设A ,B 是曲线C 上横坐标不等于1的两个不同的动点,直线P A ,PB 与y 轴分别交于M 、N 两点,线段MN 的垂直平分线经过点P .证明:直线AB 的斜率为定值. 【答案】(1)(3,23或(3,23-(2)证明见解析 【解析】 (1)∵曲线C ()22110x y x -++=,移项平方得()()22211x y x -+=+,化简得24y x =, ∴曲线C 的方程为24y x =.∴()1,0D 为抛物线24y x =的焦点,直线1x =-为抛物线24y x =的准线. 设()00,E x y ,则01ED x =+. ∵4ED =,∴014x +=,解得03x =.∴20412y x ==,解得023y =± ∴E 的坐标为(3,23或(3,23-.(2)∵()1,2P ,曲线C 的方程为24y x =,2241=⨯, ∴点()1,2P 在曲线C 上.∵A 、B 是曲线C 上横坐标不等于1的两个不同的动点,直线P A 、PB 与y 轴分别交于点M 、N ,∴直线P A 、PB 的斜率都存在,且都不为0,分别设为k 、1k ,则10kk ≠,直线P A 的方程为()21y k x -=-,即2y kx k =+-.当0x =时,2y k =-,即()0,2M k -. 同理可得()10,2N k -.∵线段MN 的垂直平分线经过点P , ∴12222k k -+-=,即1k k =-.由224y kx k y x=+-⎧⎨=⎩,得:()2222222440k x k k x k k --++-+=. 设()11,A x y ,则1,1x 是()2222222440k x k k x k k --++-+=的解.由韦达定理得:2112441k k x x k -+=⋅=.∴21244422k k y k k k k-+=⨯+-=-.∴22444,2k k A k k ⎛⎫-+- ⎪⎝⎭. 同理可得22444,2k k B k k ⎛⎫++- ⎪-⎝⎭. ∴2222442214444ABk k k k k k k k k ---+==-++-+-. ∴直线AB 的斜率为定值.10.(2022届河南省五市高三第二次联合调研)已知椭圆C :22221x y a b+=(0a b >>)的上顶点和两焦点构成的三角形为等腰直角三角形,且面积为2,点M 为椭圆C 的右顶点. (1)求椭圆C 的方程;(2)若经过点(,0)P t 的直线l 与椭圆C 交于,A B 两点,实数t 取何值时以AB 为直径的圆恒过点M ?【答案】(1)22142x y +=,(2)23t = 【解析】 (1)由题意知:2b cbc =⎧⎨=⎩解得:2b c ==2a =,所以椭圆C 的方程为22142x y +=. (2)由(1)知:(2,0)M ,若直线l 的斜率不存在,则直线l 的方程为x t =(22t -<<), 此时222t A t ⎛- ⎝,2,22t B t ⎛-⎝, 由0MA MB ⋅=得2222,2022t t t t ⎛⎛--⋅---= ⎝⎝, 解得23t =或2t =(舍),即23t =. 若直线l 的斜率存在,不妨设直线l :()y k x t =-,11(,)A x y ,22(,)B x y 联立()22142y k x t x y ⎧=-⎪⎨+=⎪⎩,得()()22222124240k x k ty k t +-+-=.所以,2122412k tx x k +=+,221222412k t x x k -=+.由题意知:0MA MB ⋅=,即1122(2,)(2,)0x y x y -⋅-=, 易得()()()()222212121240kx x k t x x k t +-++++=,()()()()()22222222124244120k k tk t k t k t k +--++++=(),整理得,()223840k t t -+=,因为k 不恒为0故解得23t =或2t =(舍), 综上,23t =时以AB 为直径的圆恒过点M . 11.(2022届江苏省南通市高三二模))已知椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别是F 1,F 2,焦距为2,点P 是椭圆C 上一动点,12PF F △的内切圆的面积的最大值为3π. (1)求椭圆C 的方程;(2)延长12,PF PF 与椭圆C 分别交于点A ,B ,问:1212PF PF F AF B+是否为定值?并说明理由.【答案】(1)22143x y +=,(2)是,理由见解析 【解析】 (1)设12PF F △的内切圆的半径为r ,点P 的坐标为()00,x y . 因为焦距为2,所以122F F =,故1c =. 12PF F △的面积()12012121122S F F y PF PF F F r =⋅=++⋅,故0(1)y a r =+. 对于给定的椭圆,要使 12PF F △的内切圆的面积最大,即r 最大,即0y 最大, 由于12PF F △的内切圆的面积的最大值为3π,故此时3r =, 所以0y b =时,有3(1)b a =+①又221a b -=.②由①②,得224,3a b ==,所以椭圆C 的方程22143x y +=. (2)由题意知:12(1,0),(1,0)F F - ,设()()1122,,,A x y B x y ,直线1PF 的方程为1x my =-,与(1)中所求椭圆22:143x y C +=联立方程组并消去x 得, ()2234690my my +--=,24(1)0m ∆=+> ,所以012934y y m -=+,所以221001103409PF y m y F A y -+==-. 因为点00(,)P x y 在直线1:1PF x my =-上,所以001x m y +=, 又点 00(,)P x y 在椭圆22:143x y C +=上,所以22003412x y +=,所以()20222100000113431452993x PF y x y x y F A ⎛⎫++ ⎪+++⎝⎭===. 同理,可得202523PF x F B -=, 所以1212103PF PF F A F B +=(定值). 12.(2022届浙江省稽阳高三4月联考)如图,点()()00,10A x x >在抛物线22x py =上,抛物线的焦点为F ,且||2AF =,直线y kx k =-交抛物线于B ,C 两点(C 点在第一象限),过点C 作y 轴的垂线分别交直线OA ,OB 于点P ,Q ,记PQO ,ACP △的面积分别为1S ,2S .(1)求0x 的值及抛物线的方程; (2)当0k <时,求12S S 的取值范围.【答案】(1)202,4x x y ==(2)10,3⎛⎫ ⎪⎝⎭【解析】 (1)12,22pAF p =+=∴=, 204,2x y x ∴==.(2)设()()1122,,,C x y B x y ,因为直线OA :12y x = 则()112,P yy ,直线OB 的方程为:22y y x x =,1212,y x Q y y ⎛⎫∴ ⎪⎝⎭, 联立方程组24y kx kx y=-⎧⎨=⎩消去y 可得:2440x kx k -+=,121244x x k x x k +=⎧∴⎨=⎩1121221,1x x x x x x x ∴+=∴=- ()()12111212111112212112y x y y PQ y y S S x y y PC y ⎛⎫- ⎪⋅⎝⎭∴==--- 2222211111121222221111112424112424x x x x x x x S S x x x x x x ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭∴==⎛⎫⎛⎫⎛⎫⎛⎫---- ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭ 21211221214414x S x x S x ∴==--,222111122222111144414444S x x x S x x x x ⎛⎫-+∴==-=-=-+ ⎪----⎝⎭ 又10,01k x <∴<<,-4<x12-4<-3, 221144141,103434x x ∴-<<--<+<--故1210,3S S ⎛⎫∈ ⎪⎝⎭.。
三角函数与解三角形解答题20题1.(2019年天津市高考数学试卷(文科)) 在ABC 中,内角A B C ,,所对的边分别为,,a b c .已知2b c a +=,3sin 4sin c B a C =.(Ⅰ)求cos B 的值;(Ⅱ)求sin 26B π⎛⎫+ ⎪⎝⎭的值. 2.(2021年浙江省高考数学试题)设函数()sin cos (R)f x x x x =+∈.(1)求函数22y f x π⎡⎤⎛⎫=+ ⎪⎢⎥⎝⎭⎣⎦的最小正周期; (2)求函数()4y f x f x π⎛⎫=- ⎪⎝⎭在0,2π⎡⎤⎢⎥⎣⎦上的最大值. 3.(2020年全国统一高考数学试卷(文科)(新课标Ⅰ))ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知B =150°. (1)若a 3,b 7ABC 的面积;(2)若sin A 3C 2,求C . 4.(2019年全国统一高考数学试卷(理科)(新课标Ⅰ))ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,设22(sin sin )sin sin sin B C A B C -=-.(1)求A ;(222a b c +=,求sin C .5.(2018年全国普通高等学校招生统一考试理科数学(新课标I 卷))在平面四边形ABCD 中,90ADC ∠=,45A ∠=,2AB =,5BD =.(1)求cos ADB ∠;(2)若22DC =BC .6.(2021年全国新高考Ⅰ卷数学试题)记ABC 是内角A ,B ,C 的对边分别为a ,b ,c .已知2b ac =,点D 在边AC 上,sin sin BD ABC a C ∠=.(1)证明:BD b =;(2)若2AD DC =,求cos ABC ∠.7.(2021年全国新高考II 卷数学试题)在ABC 中,角A 、B 、C 所对的边长分别为a 、b 、c ,1b a =+,2c a =+..(1)若2sin 3sin C A =,求ABC 的面积;(2)是否存在正整数a ,使得ABC 为钝角三角形?若存在,求出a 的值;若不存在,说明理由.8.(2021年北京市高考数学试题)在ABC 中,2cos c b B =,23C π=. (1)求B ;(2)再从条件①、条件②、条件③这三个条件中选择一个作为已知,使ABC 存在且唯一确定,求BC 边上中线的长.条件①:2c b =;条件②:ABC 的周长为423+;条件③:ABC 的面积为334; 9.(2020年全国统一高考数学试卷(文科)(新课标Ⅱ))△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知25cos ()cos 24A A π++=. (1)求A ;(2)若33b c a -=,证明:△ABC 是直角三角形. 10.(2020年全国统一高考数学试卷(理科)(新课标Ⅱ))ABC 中,sin 2A -sin 2B -sin 2C =sin B sin C .(1)求A ;(2)若BC =3,求ABC 周长的最大值.11.(2020年江苏省高考数学试卷)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知3,2,45a c B ===︒.(1)求sin C 的值;(2)在边BC 上取一点D ,使得4cos 5ADC ∠=-,求tan DAC ∠的值.12.(2020年浙江省高考数学试卷)在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且2sin 30b A a -=.(I )求角B 的大小;(II )求cos A +cos B +cos C 的取值范围.13.(2019年全国统一高考数学试卷(文科)(新课标Ⅲ))ABC ∆的内角,,A B C 的对边分别为,,a b c ,已知sinsin 2A C a b A +=. (1)求B ;(2)若ABC ∆为锐角三角形,且1c =,求ABC ∆面积的取值范围. 14.(2021·全国·模拟预测)如图,在ABC 中,D ,E 分别为边AB ,AC 上的点,满足321BC =,7BD =,tan 33BDC ∠=-,3DEC π∠=.(1)求BCD ∠的大小;(2)求CE DE +的最大值.15.(2021·上海黄浦·一模)已知直线()x t t =∈R 与函数sin 2y x =、cos 26y x π⎛⎫=+ ⎪⎝⎭的图像分别交于M 、N 两点.(1)当4t π=时,求MN 的值; (2)求MN 关于t 的表达式()f t ,写出函数()y f t =的最小正周期,并求其在区间[]0,2π内的零点.16.(2021·上海徐汇·一模)已知向量113,sin 22,((),1)22m x x n f x ⎛⎫==- ⎪ ⎪⎝⎭,且m n ⊥, (1)求函数()f x 在[0,]x π∈上的单调递减区间;(2)已知ABC 的三个内角分别为,,A B C ,其对应边分别为,,a b c , 若有112f A π⎛⎫-= ⎪⎝⎭,3BC =,求ABC 面积的最大值.17.(2021·山东·泰安一中模拟预测)设函数()()sin f x m x ωϕ=+,其中0,0,2m πωϕ>><,其图象的两条对称轴间的最短距离是2π,若()12f x f π⎛⎫- ⎪⎝⎭对x ∈R 恒成立,且212f π⎛⎫-=- ⎪⎝⎭. (1)求()f x 的解析式; (2)在锐角ABC 中,,,A B C 是ABC 的三个内角,满足()()sin 3cos 2B f A B A B ⎛⎫=-- ⎪⎝⎭,求sin sin C B的取值范围. 18.(2021·辽宁·模拟预测)在ABC 中,内角,,A B C 的对边分别为,,a b c ,且()2cos 3sin b A a B -.(1)若::1:2:2a b c =,则此时ABC 是否存在?若存在,求ABC 的面积;若不存在,请说明理由;(2)若ABC 的外接圆半径为4,且2a b c -=,求ABC 的面积. 19.(2021·新疆昌吉·模拟预测(文))在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知3cos cos cos a A c B b C =+.(1)若89a =ABC 的面积为102b ,c 的值;(2)若sin sin B k C =,且ABC 为钝角三角形,求k 的取值范围. 20.(2021·四川雅安·模拟预测(文))已知函数()3sin2cos2f x x x =-. (1)求函数()f x 的最小正周期和对称中心;(2)在ABC 中,角,,A B C 的对边分别为,,a b c ,其中4,,3b A ABC π==的面积为3求()f C 的值.。
2019年普通高等学校招生全国统一考试(天津卷)文科数学第Ⅰ卷一、选择题1.设集合A ={-1,1,2,3,5},B ={2,3,4},C ={x ∈R |1≤x <3},则(A ∩C )∪B 等于( ) A .{2} B .{2,3} C .{-1,2,3} D .{1,2,3,4}答案 D解析 由条件可得A ∩C ={1,2},故(A ∩C )∪B ={1,2,3,4}.2.设变量x ,y 满足约束条件{x +y -2≤0,x -y +2≥0,x ≥-1,y ≥-1,则目标函数z =-4x +y 的最大值为( )A .2B .3C .5D .6 答案 C解析 画出可行域如图中阴影部分(含边界)所示,作出直线-4x +y =0,并平移,可知当直线过点A 时,z 取得最大值.由{x =-1,x -y +2=0,可得{x =-1,y =1,所以点A 的坐标为(-1,1),故z max =-4×(-1)+1=5.3.设x ∈R ,则“0<x <5”是“|x -1|<1”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件 答案 B解析 由|x -1|<1可得0<x <2,所以“|x -1|<1的解集”是“0<x <5的解集”的真子集.故“0<x <5”是“|x -1|<1”的必要不充分条件.4.阅读如图所示的程序框图,运行相应的程序,输出S的值为()A.5 B.8 C.24 D.29答案B解析执行程序框图,S=1,i=2,j=1,S=1+4=5,i=3,S=8,i=4,满足i≥4,输出的S=8.5.已知a=log27,b=log38,c=0.30.2,则a,b,c的大小关系为()A.c<b<a B.a<b<cC.b<c<a D.c<a<b答案A解析∵a=log27>log24=2,b=log38<log39=2且b>1,c=0.30.2<0.30=1,∴c<b<a.6.已知抛物线y2=4x的焦点为F,准线为l.若l与双曲线x2a2-y2b2=1(a>0,b>0)的两条渐近线分别交于点A和点B,且|AB|=4|OF|(O为原点),则双曲线的离心率为()A.√2B.√3C.2 D.√5答案D解析由题意,可得F(1,0),直线l的方程为x=-1,双曲线的渐近线方程为y=±bax.将x=-1代入y=±ba x,得y=±ba,所以点A,B的纵坐标的绝对值均为ba.由|AB|=4|OF|可得2ba=4,即b=2a,b2=4a2,故双曲线的离心率e=ca =√a2+b2a2=√5.7.已知函数f(x)=A sin(ωx+φ)(A>0,ω>0,|φ|<π)是奇函数,且f(x)的最小正周期为π,将y=f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图象对应的函数为g(x).若g(π4)=√2,则f(3π8)等于()A.-2 B.-√2 C.√2D.2答案C解析∵函数f(x)为奇函数,且|φ|<π,∴φ=0.又f (x )的最小正周期为π,∴2πω=π,解得ω=2,∴f (x )=A sin 2x . 由题意可得g (x )=A sin x ,g (π4)=√2,即A sin π4=√2,解得A =2.故f (x )=2sin 2x . ∴f (3π8)=2sin3π4=√3.8.已知函数f (x )={2√x,0≤x ≤1,1x,x >1.若关于x 的方程f (x )=-14x +a (a ∈R )恰有两个互异的实数解,则a 的取值范围为( ) A.[54,94] B.(54,94] C. (54,94]∪{1} D. [54,94]∪{1}答案 D 解析 如图,画出函数y =f (x )的图象,而y =-14x +a 的图象是一条斜率为-14的直线,在y 轴的截距为a .①先研究当0≤x ≤1时,直线y =-14x +a 与y =2√x 的图象只有一个交点的情况. 当直线y =-14x +a 过点B (1,2)时,2=-14+a ,解得a =94,所以0≤a ≤9144;②再研究当x >1时,直线y =-14x +a 与y =1x 的图象只有一个交点的情况.当直线与y =1x 的图象相切时,由y ′=-1x 2=-14,得x =2,此时切点为(2,12),可得a =1. 当直线与y =1x的图象相交时,由图象可知直线y =-14x +a 从过点A 向上平移时与y =1x的图象只有一个交点.直线过点A (1,1)时,1=-14+a ,解得a =54.所以a ≥54.结合图象可得,所求实数a 的取值范围为[54,94]∪{1}.第Ⅱ卷 二、填空题9.i 是虚数单位,则|5−i1+i |的值为________. 答案 √13 解析 方法一5−i1+i =(5−i)(1−i)(1+i)(1−i)=4−6i 2=2-3i ,故|5−i1+i |=√4+9=√13.方法二 |5−i 1+i|=|5−i 1+i|=√25+11+1=√26√2=√13. 10.设x ∈R ,使不等式3x 2+x -2<0成立的x 的取值范围为________. 答案 (−1,23)解析 3x 2+x -2<0变形为(x +1)(3x -2)<0,解得-1<x <23,故使不等式成立的x 的取值范围为(−1,23).11.曲线y =cos x -x2在点(0,1)处的切线方程为________. 答案 x +2y -2=0解析 y ′=-sin x -12,将x =0代入,可得切线斜率为-12.所以切线方程为y -1=-12x ,即x +2y -2=0.12.已知四棱锥的底面是边长为√2的正方形,侧棱长均为√5,若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的体积为________. 答案 π4解析 由题意可得,四棱锥底面对角线的长为2,则圆柱底面的半径为12,易知四棱锥的高为√5−1=2,故圆柱的高为1,所以圆柱的体积为π×(12)2×1=π4. 13.设x >0,y >0,x +2y =4,则(x+1)(2y+1)xy的最小值为________.答案 92 解析 (x+1)(2y+1)xy=2xy+x+2y+1xy=2xy+5xy=2+5xy.∵x >0,y >0且x +2y =4,∴4≥2√2xy (当且仅当x =2,y =1时取等号), ∴2xy ≤4,∴1xy ≥12,∴2+5xy≥2+52=92.14.在四边形ABCD 中,AD ∥BC ,AB =2√3,AD =5,∠A =30°,点E 在线段CB 的延长线上,且AE =BE ,则BD ⃗⃗⃗⃗⃗⃗ ·AE ⃗⃗⃗⃗⃗ =________. 答案 -1解析 方法一 在等腰△ABE 中,易得∠BAE =∠ABE =30°,故BE =2,则BD ⃗⃗⃗⃗⃗⃗ ·AE ⃗⃗⃗⃗⃗ =(AD ⃗⃗⃗⃗⃗ -AB⃗⃗⃗⃗⃗ )·(AB ⃗⃗⃗⃗⃗ +BE ⃗⃗⃗⃗⃗ )A =AD ⃗⃗⃗⃗⃗ ·AB ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ ·BE ⃗⃗⃗⃗⃗ -AB ⃗⃗⃗⃗⃗ 2-AB ⃗⃗⃗⃗⃗ ·BE ⃗⃗⃗⃗⃗ =5×2√3×cos 30°+5×2×cos 180°-12-2√3×2×cos 150°=15-10-12+6=-1.方法二 在△ABD 中,由余弦定理可得BD =√AD 2+AB 2−2×AD ×AB ×cos∠BAD =√7,所以cos ∠ABD =AB 2+BD 2−AD 22×AB×BD=-√2114,则sin ∠ABD =5√714.设BD ⃗⃗⃗⃗⃗⃗ 与AE⃗⃗⃗⃗⃗ 的夹角为θ,则cos θ=cos(180°-∠ABD +30°)=-cos(∠ABD -30°)=-cos ∠ABD ·cos 30°-sin ∠ABD ·sin 30°=-√714,在△ABE 中,易得AE =BE =2,故BD ⃗⃗⃗⃗⃗⃗ ·AE ⃗⃗⃗⃗⃗ =√7×2×(−√714)=-1. 三、解答题15.2019年,我国施行个人所得税专项附加扣除办法,涉及子女教育、继续教育、大病医疗、住房贷款利息或者住房租金、赡养老人等六项专项附加扣除.某单位老、中、青员工分别有72,108,120人,现采用分层抽样的方法,从该单位上述员工中抽取25人调查专项附加扣除的享受情况.(1)应从老、中、青员工中分别抽取多少人?(2)抽取的25人中,享受至少两项专项附加扣除的员工有6人,分别记为A ,B ,C ,D ,E ,F .享受情况如下表,其中“○”表示享受,“×”表示不享受.现从这6人随机抽取2人接受采访.①试用所给字母列举出所有可能的抽取结果;②设M 为事件“抽取的2人享受的专项附加扣除至少有一项相同”,求事件M 发生的概率.解 (1)由已知得老、中、青员工人数之比为6∶9∶10,由于采用分层抽样的方法从中抽取25位员工,因此应从老、中、青员工中分别抽取6人、9人、10人.(2)①从已知的6人中随机抽取2人的所有可能结果为{A ,B },{A ,C },{A ,D },{A ,E },{A ,F },{B ,C },{B ,D },{B ,E },{B ,F },{C ,D },{C ,E },{C ,F },{D ,E },{D ,F },{E ,F },共15种.②由表格知,符合题意的所有结果为{A ,B },{A ,D },{A ,E },{A ,F },{B ,D },{B ,E },{B ,F },{C ,E },{C ,F },{D ,F },{E ,F },共11种. 所以,事件M 发生的概率P (M )=1115.16.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知b +c =2a,3c sin B =4a sin C . (1)求cos B 的值; (2)求sin (2B +π6)的值. 解 (1)在△ABC 中,由正弦定理b sinB=csinC,得b sin C =c sin B ,又由3c sin B =4a sin C ,得3b sin C =4a sin C ,又sin C ≠0,所以3b =4a .又因为b +c =2a ,所以b =43a ,c =23a ,由余弦定理可得cos B =a 2+c 2−b 22ac=a 2+49a 2−169a 22∙a∙23a=-14.(2)由(1)可得sin B =√1−cos 2B =√154, 从而sin 2B =2sin B cos B =-158,cos 2B =cos 2B -sin 2B =-78, 故sin (2B +π6)=sin 2B cos π6+cos 2B sin π6=-√158×√32-78×12=-3√5+716. 17.如图,在四棱锥P -ABCD 中,底面ABCD 为平行四边形,△PCD 为等边三角形,平面P AC ⊥平面PCD ,P A ⊥CD ,CD =2,AD =3.(1)设G ,H 分别为PB ,AC 的中点,求证:GH ∥平面P AD ; (2)求证:P A ⊥平面PCD ;(3)求直线AD 与平面P AC 所成角的正弦值. (1)证明 连接BD ,易知AC ∩BD =H ,BH =DH . 又由BG =PG ,故GH ∥PD .又因为GH ⊄平面P AD ,PD ⊂平面P AD , 所以GH ∥平面P AD .(2)证明 取棱PC 的中点N ,连接DN .依题意,得DN ⊥PC .又因为平面P AC ⊥平面PCD ,平面P AC ∩平面PCD =PC ,DN ⊂平面PCD , 所以DN ⊥平面P AC .又P A ⊂平面P AC ,所以DN ⊥P A .又已知P A ⊥CD ,CD ∩DN =D ,CD ,DN ⊂平面PCD , 所以P A ⊥平面PCD .(3)解 连接AN ,由(2)中DN ⊥平面P AC ,可知∠DAN 为直线AD 与平面P AC 所成的角. 因为△PCD 为等边三角形,CD =2且N 为PC 的中点, 所以DN =√3.又DN ⊥AN ,在Rt △AND 中,sin ∠DAN =DN AD=√33,所以直线AD 与平面P AC 所成角的正弦值为√33.18.设{a n }是等差数列,{b n }是等比数列,公比大于0.已知a 1=b 1=3,b 2=a 3,b 3=4a 2+3. (1)求{a n }和{b n }的通项公式; (2)设数列{c n }满足c n ={1,n 为奇数,b n 2,n 为偶数.求a 1c 1+a 2c 2+…+a 2n c 2n (n ∈N *).解 (1)设等差数列{a n }的公差为d ,等比数列{b n }的公比为q ,q >0. 依题意,得{3q =3+2d ,3q 2=15+4d ,解得{d =3,q =3,故a n =3+3(n -1)=3n ,b n =3×3n -1=3n .所以{a n }的通项公式为a n =3n ,{b n }的通项公式为b n =3n . (2)a 1c 1+a 2c 2+…+a 2n c 2n=(a 1+a 3+a 5+…+a 2n -1)+(a 2b 1+a 4b 2+a 6b 3+…+a 2n b n ) =[n ×3+n(n−1)2×6]+(6×31+12×32+18×33+…+6n ×3n )=3n 2+6(1×31+2×32+…+n ×3n ). 记T n =1×31+2×32+…+n ×3n ,① 则3T n =1×32+2×33+…+n ×3n +1,② ②-①得,2T n =-3-32-33-…-3n +n ×3n +1 =-3(1−3n )1−3+n ×3n +1=(2n−1)3n+1+32.所以a 1c 1+a 2c 2+…+a 2n c 2n =3n 2+6T n=3n 2+3×(2n−1)3n+1+32=3(n−1)3n+2+6n 2+92 (n ∈N *).19.设椭圆x 2a2+y 2b2=1(a >b >0)的左焦点为F ,左顶点为A ,上顶点为B .已知√3|OA |=2|OB |(O 为原点).(1)求椭圆的离心率;(2)设经过点F 且斜率为34的直线l 与椭圆在x 轴上方的交点为P ,圆C 同时与x 轴和直线l相切,圆心C 在直线x =4上,且OC ∥AP .求椭圆的方程.解 (1)设椭圆的半焦距为c ,由已知有√3a =2b ,又由a 2=b 2+c 2,消去b 得a 2=(√32a)2+c 2,解得ca =12.所以椭圆的离心率为12.(2)由(1)知,a =2c ,b =√3c ,故椭圆方程为x 24c2+y 23c 2=1.由题意,F (-c,0),则直线l 的方程为y =34(x +c ). 点P 的坐标满足{x 24c 2+y 23c 2=1,y =34(x +c ),消去y 并化简,得到7x 2+6cx -13c 2=0, 解得x 1=c ,x 2=-13c 7.代入到l 的方程,解得y 1=32c ,y 2=-914c . 因为点P 在x 轴上方,所以P (c,32c).由圆心C 在直线x =4上,可设C (4,t ). 因为OC ∥AP ,且由(1)知A (-2c,0), 故t4=32c c+2c ,解得t =2.因为圆C 与x 轴相切,所以圆C 的半径为2. 又由圆C 与l 相切,得|34(4+c )−2|√1+(34)2=2,可得c =2.所以,椭圆的方程为x 216+y 212=1.20.设函数f (x )=ln x -a (x -1)e x ,其中a ∈R . (1)若a ≤0,讨论f (x )的单调性; (2)若0<a <1e .①证明:f (x )恰有两个零点;②设x 0为f (x )的极值点,x 1为f (x )的零点,且x 1>x 0,证明3x 0-x 1>2. (1)解 由已知,f (x )的定义域为(0,+∞), 且f ′(x )=1x -[a e x +a (x -1)e x ]=1−ax 2e xx.因此当a ≤0时,1-ax 2e x >0,从而f ′(x )>0, 所以f (x )在(0,+∞)内单调递增. (2)证明 ①由(1)知,f ′(x )=1−ax 2e xx.令g (x )=1-ax 2e x ,由0<a <1e ,g ′(x )=-ax ·e x (x +2)<0,可知g (x )在(0,+∞)内单调递减.又g (1)=1-a e >0,且g (ln 1a )=1-a (ln 1a )2·1a =1-(ln 1a )2<0, 故g (x )=0在(0,+∞)内有唯一解, 从而f ′(x )=0在(0,+∞)内有唯一解,不妨设为x 0,则1<x 0<ln 1a .当x ∈(0,x 0)时,f ′(x )=g(x)x>g(x 0)x=0,所以f (x )在(0,x 0)内单调递增; 当x ∈(x 0,+∞)时,f ′(x )=g(x)x<g(x 0)x=0,所以f (x )在(x 0,+∞)内单调递减, 因此x 0是f (x )的唯一极值点. 令h (x )=ln x -x +1,则当x >1时,h ′(x )=1x -1<0, 故h (x )在(1,+∞)内单调递减, 从而当x >1时,h (x )<h (1)=0, 所以ln x <x -1,从而f (ln 1a )=ln (ln 1a )-a (ln 1a −1)eln 1a =ln (ln 1a )-ln 1a +1=h (ln 1a )<0. 又因为f (x 0)>f (1)=0,所以f (x )在(x 0,+∞)内有唯一零点. 又f (x )在(0,x 0)内有唯一零点1. 从而,f (x )在(0,+∞)内恰有两个零点. ②由题意,可得{f ′(x 0)=0,f (x 1)=0,即{ax 02e x 0=1,lnx 1=a (x 1−1)e x 1,从而ln x 1=x−1x 02e x 1−x0, 即ex 1−x 0=x 02lnx 1x 1−1.因为当x >1时,ln x <x -1, 又x 1>x 0>1, 故e x 1−x 0<x 02(x 1−1)x 1−1=x 02,两边取对数,得ln e x 1−x 0<ln x 02,于是x 1-x 0<2ln x 0<2(x 0-1), 整理得3x 0-x 1>2.。
2019年普通高等学校招生全国统一考试(天津卷)数学(理工类)本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟。
第Ⅰ卷1至2页,第Ⅱ卷3至5页。
答卷前,考生务必将自己的姓名、准考号填写在答题卡上,并在规定位置粘贴考试用条形码。
答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效。
考试结束后,将本试卷和答题卡一并交回。
祝各位考生考试顺利!第Ⅰ卷注意事项:1.每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
2.本卷共8小题,每小题5分,共40分。
参考公式:·如果事件A 、B 互斥,那么()()()P AB P A P B =+.·如果事件A 、B 相互独立,那么()()()P AB P A P B =.·圆柱的体积公式V Sh =,其中S 表示圆柱的底面面积,h 表示圆柱的高. ·棱锥的体积公式13V Sh =,其中S 表示棱锥的底面面积,h 表示棱锥的高. 一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设集合{1,1,2,3,5},{2,3,4},{|13}A B C x x =-==∈≤<R ,则()A C B =A .{}2B .{}2,3C .{}1,2,3-D .{}1,2,3,42.设变量,x y 满足约束条件20,20,1,1,x y x y x y +-≤⎧⎪-+≥⎪⎨≥-⎪⎪≥-⎩则目标函数4z x y =-+的最大值为A .2B .3C .5D .63.设x ∈R ,则“250x x -<”是“|1|1x -<”的 A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件4.阅读下边的程序框图,运行相应的程序,输出S 的值为A .5B .8C .24D .295.已知抛物线24y x =的焦点为F ,准线为l ,若l 与双曲线22221(0,0)x y a b a b-=>>的两条渐近线分别交于点A 和点B ,且||4||AB OF =(O 为原点),则双曲线的离心率为 A 2B 3C .2D 56.已知5log 2a =,0.5og 2.l 0b =,0.20.5c =,则,,a b c 的大小关系为 A .a c b <<B .a b c <<C .b c a <<D .c a b <<7.已知函数()sin()(0,0,||)f x A x A ωϕωϕ=+>><π是奇函数,将()y f x =的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图象对应的函数为()g x .若()g x 的最小正周期为2π,且24g π⎛⎫= ⎪⎝⎭38f π⎛⎫= ⎪⎝⎭A .2-B .2C 2D .28.已知a ∈R ,设函数222,1,()ln , 1.x ax a x f x x a x x ⎧-+≤=⎨->⎩若关于x 的不等式()0f x ≥在R 上恒成立,则a 的取值范围为 A .[]0,1B .[]0,2C .[]0,eD .[]1,e2019年普通高等学校招生全国统一考试(天津卷)数学(理工类)第Ⅱ卷注意事项:1.用黑色墨水的钢笔或签字笔将答案写在答题卡上。
高考数学精品复习资料2019.5绝密 ★ 启用前普通高等学校招生全国统一考试(天津卷)数学(理工类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟。
第Ⅰ卷1至2页,第Ⅱ卷3至5页。
答卷前,考生务必将自己的姓名、准考号填写在答题卡上,并在规定位置粘贴考试用条形码。
答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效。
考试结束后,将本试卷和答题卡一并交回。
祝各位考生考试顺利!第Ⅰ卷注意事项:1.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
2本卷共8小题,每小题5分,共40分。
参考公式:•如果事件A ,B 互斥,那么 •如果事件A ,B 相互独立,那么()()()P A B P A P B =+()()()P AB P A P B =.•圆柱的体积公式V Sh =. •圆锥的体积公式13V Sh =. 其中S 表示圆柱的底面面积, 其中S 表示圆锥的底面面积,h 表示圆柱的高. h 表示圆锥的高.一、选择题:在每小题给出的四个选项中只有一项是符合题目要求的.E D CBA (1)i 是虚数单位,复数734ii+=+( )(A )1i - (B )1i -+ (C )17312525i + (D )172577i -+ (2)设变量x ,y 满足约束条件0,20,12,y x y y x +-⎧≥--≤≥⎪⎨⎪⎩则目标函数2z x y =+的最小值为( )(A )2 (B )3 (C )4 (D )5(3)阅读右边的程序框图,运行相应的程序,输出的S 的值为( )(A )15 (B )105 (C )245 (D )945(4)函数()()212log 4f x x =-的单调递增区间是( )(A )()0,+¥ (B )(),0-¥ (C )()2,+¥(D )(),2-?(5)已知双曲线22221x y a b-=()0,0a b >>的一条渐近线平行于直线l :210y x =+,双曲线的一个焦点在直线l 上,则双曲线的方程为( )(A )221520x y -= (B )221205x y -= (C )2233125100x y -= (D )2233110025x y -= (6)如图,ABC D 是圆的内接三角形,BAC Ð的平分线交圆于点D ,交BC 于点E ,过点B 的圆的切线与AD 的延长线交于点F .在上述条件下,给出下列四个结论:①BD 平分CBF Ð;②2FB FD FA =?;③AE CE BE DE ??;④AF BDAB BF ??.则所有正确结论的序号是( )(A )①② (B )③④ (C )①②③ (D )①②④ (7)设,a b R Î,则|“a b >”是“a a b b >”的( ) (A )充要不必要条件 (B )必要不充分条件 (C )充要条件 (D )既不充要也不必要条件 (8)已知菱形ABCD 的边长为2,120BAD?,点,E F 分别在边,BC DC 上,BE BC l =,DF DC m =.若1AE AF?,23CE CF?-,则l m +=( ) (A )12 (B )23 (C )56 (D )712第Ⅱ卷注意事项: 1.用黑色墨水钢笔或签字笔将答案写在答题卡上。
2024年天津高考数学真题学校:___________姓名:___________班级:___________考号:___________一、单选题1.集合{}1,2,3,4A =,{}2,3,4,5B =,则A B = ( )A .{}1,2,3,4B .{}2,3,4C .{}2,4D .{}12.设,a b ∈R ,则“33a b =”是“33a b =”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件3.下列图中,相关性系数最大的是( )A .B .C .D .4.下列函数是偶函数的是( )A .22e 1x x y x -=+B .22cos 1x x y x +=+C .e 1x xy x -=+D .||sin 4e x x x y +=5.若0.30.3 4.24.24.2log 0.2a b c -===,,,则a b c ,,的大小关系为( )A .a b c>>B .b a c>>C .c a b>>D .b c a>>6.若,m n 为两条不同的直线,α为一个平面,则下列结论中正确的是( )A .若//m α,n ⊂α,则//m n B .若//,//m n αα,则//m n C .若//,αα⊥m n ,则m n⊥D .若//,αα⊥m n ,则m 与n 相交7.已知函数()()πsin303f x x ωω⎛⎫=+> ⎪⎝⎭的最小正周期为π.则函数在ππ,126⎡⎤-⎢⎥⎣⎦的最小值是( )A .B .32-C .0D .328.双曲线22221()00a x y a b b >-=>,的左、右焦点分别为12.F F P 、是双曲线右支上一点,且直线2PF 的斜率为2.12PF F △是面积为8的直角三角形,则双曲线的方程为( )A .22182y x -=B .22184x y -=C .22128x y -=D .22148x y -=9.一个五面体ABC DEF -.已知AD BE CF ∥∥,且两两之间距离为1.并已知123AD BE CF ===,,.则该五面体的体积为( )A B 12C D 12-二、填空题10.已知i 是虚数单位,复数))i 2i ⋅= .11.在63333x x⎛⎫+ ⎪⎝⎭的展开式中,常数项为 .12.22(1)25-+=x y 的圆心与抛物线22(0)y px p =>的焦点F 重合,A 为两曲线的交点,则原点到直线AF 的距离为 .13.,,,,A B C D E 五种活动,甲、乙都要选择三个活动参加.(1)甲选到A 的概率为 ;已知乙选了A 活动,他再选择B 活动的概率为 .14.在边长为1的正方形ABCD 中,点E 为线段CD 的三等分点,1,2CE DE BE BA BC ==+u u r u u r u u u r λμ,则λμ+= ;若F 为线段BE 上的动点,G 为AF 中点,则AF DG ⋅的最小值为 .15.若函数()21f x =-+有唯一零点,则a 的取值范围为 .三、解答题16.在ABC 中,92cos 5163a Bbc ===,.(1)求a ;(2)求sin A ;(3)求()cos 2B A -.17.已知四棱柱1111ABCD A B C D -中,底面ABCD 为梯形,//AB CD ,1A A ⊥平面ABCD ,AD AB ⊥,其中12,1AB AA AD DC ====.N 是11B C 的中点,M 是1DD 的中点.(1)求证1//D N 平面1CB M ;(2)求平面1CB M 与平面11BB CC 的夹角余弦值;(3)求点B 到平面1CB M 的距离.18.已知椭圆22221(0)x y a b a b+=>>椭圆的离心率12e =.左顶点为A ,下顶点为B C ,是线段OB 的中点,其中ABC S △.(1)求椭圆方程.(2)过点30,2⎛⎫- ⎪⎝⎭的动直线与椭圆有两个交点P Q ,.在y 轴上是否存在点T 使得0TP TQ ⋅≤ 恒成立.若存在求出这个T 点纵坐标的取值范围,若不存在请说明理由.19.已知数列{}n a 是公比大于0的等比数列.其前n 项和为n S .若1231,1a S a ==-.(1)求数列{}n a 前n 项和n S ;(2)设11,2,kn n k k k n a b b k a n a -+=⎧=⎨+<<⎩,11b =,其中k 是大于1的正整数.(ⅰ)当1k n a +=时,求证:1n k n b a b -≥⋅;(ⅱ)求1nS i i b =∑.20.设函数()ln f x x x =.(1)求()f x 图象上点()()1,1f 处的切线方程;(2)若()(f x a x ≥在()0,x ∞∈+时恒成立,求a 的取值范围;(3)若()12,0,1x x ∈,证明()()121212f x f x x x -≤-.参考答案:1.B【分析】根据集合交集的概念直接求解即可.【详解】因为集合{}1,2,3,4A =,{}2,3,4,5B =,所以{}2,3,4A B = ,故选:B 2.C【分析】说明二者与同一个命题等价,再得到二者等价,即是充分必要条件.【详解】根据立方的性质和指数函数的性质,33a b =和33a b =都当且仅当a b =,所以二者互为充要条件.故选:C.3.A【分析】由点的分布特征可直接判断【详解】观察4幅图可知,A 图散点分布比较集中,且大体接近某一条直线,线性回归模型拟合效果比较好,呈现明显的正相关,r 值相比于其他3图更接近1.故选:A 4.B【分析】根据偶函数的判定方法一一判断即可.【详解】对A ,设()22e 1x x f x x -=+,函数定义域为R ,但()112e 1f ---=,()112e f -=,则()()11f f -≠,故A 错误;对B ,设()22cos 1x x g x x +=+,函数定义域为R ,且()()()()()2222cos cos 11x x x x g x g x x x -+-+-===+-+,则()g x 为偶函数,故B 正确;对C ,设()e 1x xh x x -=+,函数定义域为{}|1x x ≠-,不关于原点对称, 则()h x 不是偶函数,故C 错误;对D ,设()||sin 4e x x x x ϕ+=,函数定义域为R,因为()sin141e ϕ+=,()sin141e ϕ---=,则()()11ϕϕ≠-,则()x ϕ不是偶函数,故D 错误.故选:B.5.B【分析】利用指数函数和对数函数的单调性分析判断即可.【详解】因为 4.2x y =在R 上递增,且0.300.3-<<,所以0.300.30 4.2 4.2 4.2-<<<,所以0.30.30 4.21 4.2-<<<,即01a b <<<,因为 4.2log y x =在(0,)+∞上递增,且00.21<<,所以 4.2 4.2log 0.2log 10<=,即0c <,所以b a c >>,故选:B 6.C【分析】根据线面平行的性质可判断AB 的正误,根据线面垂直的性质可判断CD 的正误.【详解】对于A ,若//m α,n ⊂α,则,m n 平行或异面,故A 错误.对于B ,若//,//m n αα,则,m n 平行或异面或相交,故B 错误.对于C ,//,αα⊥m n ,过m 作平面β,使得s βα= ,因为m β⊂,故//m s ,而s α⊂,故n s ⊥,故m n ⊥,故C 正确. 对于D ,若//,αα⊥m n ,则m 与n 相交或异面,故D 错误.故选:C.7.A【分析】先由诱导公式化简,结合周期公式求出ω,得()sin2f x x =-,再整体求出,126⎡⎤∈-⎢⎣⎦ππx 时,2x 的范围,结合正弦三角函数图象特征即可求解.【详解】()()πsin3sin 3πsin 33f x x x x ωωω⎛⎫=+=+=- ⎪⎝⎭,由2ππ3T ω==得23ω=,即()sin2f x x =-,当,126⎡⎤∈-⎢⎥⎣⎦ππx 时,ππ2,63x ⎡⎤∈-⎢⎥⎣⎦,画出()sin2f x x =-图象,如下图,由图可知,()sin2f x x =-在ππ,126⎡⎤-⎢⎥⎣⎦上递减,所以,当π6x =时,()min πsin 3f x =-=故选:A 8.C【分析】可利用12PF F △三边斜率问题与正弦定理,转化出三边比例,设2PF m =,由面积公式求出m ,由勾股定理得出c ,结合第一定义再求出a .【详解】如下图:由题可知,点P 必落在第四象限,1290F PF ∠=︒,设2PF m =,211122,PF F PF F θθ∠=∠=,由21tan 2PF k θ==,求得1sin θ=因为1290F PF ∠=︒,所以121PF PF k k ⋅=-,求得112PF k =-,即21tan 2θ=,2sin θ=,由正弦定理可得:121212::sin :sin :sin 902PF PF F F θθ=︒=则由2PF m =得1122,2PF m F F c ===,由1212112822PF F S PF PF m m =⋅=⋅= 得m =,则222PF F c c ====由双曲线第一定义可得:122PF PF a -==a b ===所以双曲线的方程为22128x y -=.故选:C 9.C【分析】采用补形法,补成一个棱柱,求出其直截面,再利用体积公式即可.【详解】用一个完全相同的五面体HIJ LMN -(顶点与五面体ABC DEF -一一对应)与该五面体相嵌,使得,D N ;,E M ;,F L 重合,因为AD BE CF ∥∥,且两两之间距离为1.1,2,3AD BE CF ===,则形成的新组合体为一个三棱柱,该三棱柱的直截面(与侧棱垂直的截面)为边长为1的等边三角形,侧棱长为1322314+=+=+=,212111142ABC DEF ABC HIJ V V --==⨯⨯⨯=故选:C.10.7【分析】借助复数的乘法运算法则计算即可得.【详解】))i 2i 527⋅-=-+=.故答案为:7.11.20【分析】根据题意结合二项展开式的通项分析求解即可.【详解】因为63333x x⎛⎫+ ⎪⎝⎭的展开式的通项为()63636216633C 3C ,0,1,,63rrr r r r r x T xr x ---+⎛⎫⎛⎫===⋅⋅⋅ ⎪ ⎪⎝⎭⎝⎭,令()630r -=,可得3r =,所以常数项为0363C 20=.故答案为:20.12.45/0.8【分析】先求出圆心坐标,从而可求焦准距,再联立圆和抛物线方程,求A 及AF 的方程,从而可求原点到直线AF 的距离.【详解】圆22(1)25-+=x y 的圆心为()1,0F ,故12p=即2p =,由()2221254x y y x⎧-+=⎪⎨=⎪⎩可得22240x x +-=,故4x =或6x =-(舍),故()4,4A ±,故直线()4:13AF y x =±-即4340x y --=或4340x y +-=,故原点到直线AF 的距离为4455d ==,故答案为:4513.3512【分析】结合列举法或组合公式和概率公式可求甲选到A 的概率;采用列举法或者条件概率公式可求乙选了A 活动,他再选择B 活动的概率.【详解】解法一:列举法从五个活动中选三个的情况有:,,,,,,,,,ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE ,共10种情况,其中甲选到A 有6种可能性:,,,,,ABC ABD ABE ACD ACE ADE ,则甲选到A 得概率为:63105P ==;乙选A 活动有6种可能性:,,,,,ABC ABD ABE ACD ACE ADE ,其中再选则B 有3种可能性:,,ABC ABD ABE ,故乙选了A 活动,他再选择B 活动的概率为31=62.解法二:设甲、乙选到A 为事件M ,乙选到B 为事件N ,则甲选到A 的概率为()2435C 3C 5P M ==; 乙选了A 活动,他再选择B 活动的概率为()()()133524351C 2C C P MN C P N M P M ===故答案为:35;1214.43518-【分析】解法一:以{},BA BC 为基底向量,根据向量的线性运算求BE,即可得λμ+,设BF BE k =u u u r u u r ,求,AF DG u u u r u u u r ,结合数量积的运算律求AF DG ⋅的最小值;解法二:建系标点,根据向量的坐标运算求BE ,即可得λμ+,设()1,3,,03F a a a ⎡⎤-∈-⎢⎥⎣⎦,求,AF DG u u u r u u u r ,结合数量积的坐标运算求AF DG ⋅的最小值.【详解】解法一:因为12CE DE =,即23CE BA =u u r u u r ,则13BE BC CE BA BC =+=+u u u r u u r u u u u r r u u u r ,可得1,13λμ==,所以43λμ+=;由题意可知:1,0BC BA BA BC ==⋅=,因为F 为线段BE 上的动点,设[]1,0,13BF k BE k BA k BC k ==+∈,则113AF AB BF AB k BE k BA k BC ⎛⎫=+=+=-+ ⎪⎝⎭ ,又因为G 为AF 中点,则1111112232DG DA AG BC AF k BA k BC ⎛⎫⎛⎫=+=-+=-+- ⎪ ⎪⎝⎭⎝⎭,可得11111113232AF DG k BA k BC k BA k BC ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⋅=-+⋅-+- ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦22111563112329510k k k k ⎛⎫⎛⎫⎛⎫=-+-=-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,又因为[]0,1k ∈,可知:当1k =时,AF DG ⋅ 取到最小值518-;解法二:以B 为坐标原点建立平面直角坐标系,如图所示,则()()()()11,0,0,0,0,1,1,1,,13A B C D E ⎛⎫--- ⎪⎝⎭,可得()()11,0,0,1,,13BA BC BE ⎛⎫=-==- ⎪⎝⎭,因为(),BE BA BC λμλμ=+=- ,则131λμ⎧-=-⎪⎨⎪=⎩,所以43λμ+=;因为点F 在线段1:3,,03BE y x x ⎡⎤=-∈-⎢⎥⎣⎦上,设()1,3,,03F a a a ⎡⎤-∈-⎢⎥⎣⎦,且G 为AF 中点,则13,22a G a -⎛⎫- ⎪⎝⎭,可得()131,3,,122a AF a a DG a +⎛⎫=+-=--⎪⎝⎭,则()()22132331522510a AF DG a a a +⎛⎫⎛⎫⋅=+---=+- ⎪ ⎪⎝⎭⎝⎭ ,且1,03a ⎡⎤∈-⎢⎥⎣⎦,所以当13a =-时,AF DG ⋅ 取到最小值为518-;故答案为:43;518-.15.()(1-⋃【分析】结合函数零点与两函数的交点的关系,构造函数()g x =()23,21,ax x ah x ax x a ⎧-≥⎪⎪=⎨⎪-<⎪⎩,则两函数图象有唯一交点,分0a =、0a >与0a <进行讨论,当0a >时,计算函数定义域可得x a ≥或0x ≤,计算可得(]0,2a ∈时,两函数在y 轴左侧有一交点,则只需找到当(]0,2a ∈时,在y 轴右侧无交点的情况即可得;当0a <时,按同一方式讨论即可得.【详解】令()0f x =,即21ax =--,由题可得20x ax -≥,当0a =时,x ∈R,有211=--=,则x =当0a >时,则23,2121,ax x a ax ax x a ⎧-≥⎪⎪=--=⎨⎪-<⎪⎩,即函数()g x =与函数()23,21,ax x a h x ax x a ⎧-≥⎪⎪=⎨⎪-<⎪⎩有唯一交点,由20x ax -≥,可得x a ≥或0x ≤,当0x ≤时,则20ax -<,则211ax ax =--=-,即()22441x ax ax -=-,整理得()()()2242121210a x ax a x a x ⎡⎤⎡⎤---=++--=⎣⎦⎣⎦,当2a =时,即410x +=,即14x =-,当()0,2a ∈,12x a =-+或102x a=>-(正值舍去),当()2,a ∈+∞时,102x a =-<+或102x a=<-,有两解,舍去,即当(]0,2a ∈时,210-+=在0x ≤时有唯一解,则当(]0,2a ∈时,210-+=在x a ≥时需无解,当(]0,2a ∈,且x a ≥时,由函数()23,21,ax x ah x ax x a ⎧-≥⎪⎪=⎨⎪-<⎪⎩关于2x a =对称,令()0h x =,可得1x a =或3x a =,且函数()h x 在12,a a ⎛⎫ ⎪⎝⎭上单调递减,在23,a a ⎛⎫⎪⎝⎭上单调递增,令()g x y ==,即2222142a x y a a ⎛⎫- ⎪-⎭=⎝,故x a ≥时,()g x 图象为双曲线()222214y x a a -=右支的x 轴上方部分向右平移2a 所得,由()222214y x a a-=的渐近线方程为22a y x x a =±=±,即()g x 部分的渐近线方程为22a y x ⎛⎫=- ⎪⎝⎭,其斜率为2,又(]0,2a ∈,即()23,21,ax x ah x ax x a ⎧-≥⎪⎪=⎨⎪-<⎪⎩在2x a ≥时的斜率(]0,2a ∈,令()0g x ==,可得x a =或0x =(舍去),且函数()g x 在(),a +∞上单调递增,故有13a aa a⎧<⎪⎪⎨⎪>⎪⎩,解得1a <<1a <<符合要求;当a<0时,则23,2121,ax x a ax ax x a ⎧-≤⎪⎪=--=⎨⎪->⎪⎩,即函数()g x =与函数()23,21,ax x a h x ax x a ⎧-≤⎪⎪=⎨⎪->⎪⎩有唯一交点,由20x ax -≥,可得0x ≥或x a ≤,当0x ≥时,则20ax -<,则211ax ax =--=-,即()22441x ax ax -=-,整理得()()()2242121210a x ax a x a x ⎡⎤⎡⎤---=++--=⎣⎦⎣⎦,当2a =-时,即410x -=,即14x =,当()2,0a ∈-,102x a =-<+(负值舍去)或102x a =-,当(),2a ∈-∞时,102x a =->+或102x a=>-,有两解,舍去,即当[)2,0a ∈-时,210-+=在0x ≥时有唯一解,则当[)2,0a ∈-时,210-+=在x a ≤时需无解,当[)2,0a ∈-,且x a ≤时,由函数()23,21,ax x ah x ax x a ⎧-≤⎪⎪=⎨⎪->⎪⎩关于2x a =对称,令()0h x =,可得1x a =或3x a =,且函数()h x 在21,a a ⎛⎫⎪⎝⎭上单调递减,在32,a a ⎛⎫ ⎪⎝⎭上单调递增,同理可得:x a ≤时,()g x 图象为双曲线()222214y x a a -=左支的x 轴上方部分向左平移2a 所得,()g x 部分的渐近线方程为22a y x ⎛⎫=-+ ⎪⎝⎭,其斜率为2-,又[)2,0a ∈-,即()23,21,ax x ah x ax x a ⎧-≥⎪⎪=⎨⎪-<⎪⎩在2x a <时的斜率[)2,0a ∈-,令()0g x ==,可得x a =或0x =(舍去),且函数()g x 在(),a -∞上单调递减,故有13a aa a ⎧>⎪⎪⎨⎪<⎪⎩,解得1a <<-,故1a <<-符合要求;综上所述,()(1a ∈- .故答案为:()(1-⋃.【点睛】关键点点睛:本题关键点在于将函数()f x 的零点问题转化为函数()g x =与函数()23,21,ax x ah x ax x a ⎧-≥⎪⎪=⎨⎪-<⎪⎩的交点问题,从而可将其分成两个函数研究.16.(1)4(3)5764【分析】(1)2,3a t c t ==,利用余弦定理即可得到方程,解出即可;(2)法一:求出sin B ,再利用正弦定理即可;法二:利用余弦定理求出cos A ,则得到sin A ;(3)法一:根据大边对大角确定A 为锐角,则得到cos A ,再利用二倍角公式和两角差的余弦公式即可;法二:直接利用二倍角公式和两角差的余弦公式即可.【详解】(1)设2,3a t c t ==,0t >,则根据余弦定理得2222cos b a c ac B =+-,即229254922316t t t t =+-⨯⨯⨯,解得2t =(负舍);则4,6a c ==.(2)法一:因为B为三角形内角,所以sin B ===再根据正弦定理得sin sin a b A B =,即4sin A =,解得sin A =法二:由余弦定理得2222225643cos 22564b c a A bc +-+-===⨯⨯,因为()0,πA ∈,则sin A ==(3)法一:因为9cos 016B =>,且()0,πB ∈,所以π0,2B ⎛⎫∈ ⎪⎝⎭,由(2)法一知sin B =因为a b <,则A B <,所以3cos 4A ==,则3sin 22sin cos 24A A A ===2231cos 22cos 12148A A ⎛⎫=-=⨯-= ⎪⎝⎭()1957cos 2cos cos 2sin sin 281664B A B A B A -=+=⨯=.法二:3sin 22sin cos 24A A A ===,则2231cos 22cos 12148A A ⎛⎫=-=⨯-= ⎪⎝⎭,因为B 为三角形内角,所以sin B ===所以()9157cos 2cos cos 2sin sin 216864B A B A B A -=+=⨯=17.(1)证明见解析【分析】(1)取1CB 中点P ,连接NP ,MP ,借助中位线的性质与平行四边形性质定理可得1N//D MP ,结合线面平行判定定理即可得证;(2)建立适当空间直角坐标系,计算两平面的空间向量,再利用空间向量夹角公式计算即可得解;(3)借助空间中点到平面的距离公式计算即可得解.【详解】(1)取1CB 中点P ,连接NP ,MP ,由N 是11B C 的中点,故1//NP CC ,且112NP CC =,由M 是1DD 的中点,故1111122D M DD CC ==,且11//D M CC ,则有1//D M NP 、1D M NP =,故四边形1D MPN 是平行四边形,故1//D N MP ,又MP ⊂平面1CB M ,1D N ⊄平面1CB M ,故1//D N 平面1CB M ;(2)以A 为原点建立如图所示空间直角坐标系,有()0,0,0A 、()2,0,0B 、()12,0,2B 、()0,1,1M 、()1,1,0C 、()11,1,2C ,则有()11,1,2CB =- 、()1,0,1CM =-、()10,0,2BB = ,设平面1CB M 与平面11BB CC 的法向量分别为()111,,m x y z =、()222,,n x y z = ,则有111111200m CB x y z m CM x z ⎧⋅=-+=⎪⎨⋅=-+=⎪⎩ ,1222122020n CB x y z n BB z ⎧⋅=-+=⎪⎨⋅==⎪⎩ ,分别取121x x ==,则有13y =、11z =、21y =,20z =,即()1,3,1m = 、()1,1,0n =,则cos ,m nm n m n ⋅===⋅故平面1CB M 与平面11BB CC;(3)由()10,0,2BB = ,平面1CB M 的法向量为()1,3,1m =,则有1BB m m ⋅==即点B 到平面1CB M.18.(1)221129x y +=(2)存在()30,32T t t ⎛⎫-≤≤⎪⎝⎭,使得0TP TQ ⋅≤ 恒成立.【分析】(1)根据椭圆的离心率和三角形的面积可求基本量,从而可得椭圆的标准方程.(2)设该直线方程为:32y kx =-,()()()1122,,,,0,P x y Q x y T t , 联立直线方程和椭圆方程并消元,结合韦达定理和向量数量积的坐标运算可用,k t 表示TP TQ ⋅,再根据0TP TQ ⋅≤ 可求t 的范围.【详解】(1)因为椭圆的离心率为12e =,故2a c =,b =,其中c 为半焦距,所以()()2,0,0,,0,A c B C ⎛- ⎝,故122ABC S c =⨯=△故c =a =,3b =,故椭圆方程为:221129x y +=.(2)若过点30,2⎛⎫- ⎪⎝⎭的动直线的斜率存在,则可设该直线方程为:32y kx =-,设()()()1122,,,,0,P x y Q x y T t ,由22343632x y y kx ⎧+=⎪⎨=-⎪⎩可得()223412270k x kx +--=,故()222Δ144108343245760k k k =++=+>且1212221227,,3434k x x x x k k +==-++而()()1122,,,TP x y t TQ x y t =-=- ,故()()121212123322TP TQ x x y t y t x x kx t kx t ⎛⎫⎛⎫⋅=+--=+---- ⎪⎪⎝⎭⎝⎭ ()()22121233122kx x k t x x t ⎛⎫⎛⎫=+-++++ ⎪ ⎪⎝⎭⎝⎭()22222731231342342k k k t t k k ⎛⎫⎛⎫⎛⎫=+⨯--+⨯++ ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭()2222222327271812332234k k k t t t k k ⎛⎫----++++ ⎪⎝⎭=+()22223321245327234t t k t k ⎛⎫⎡⎤+--++- ⎪⎣⎦⎝⎭=+,因为0TP TQ ⋅≤ 恒成立,故()223212450332702t t t ⎧+--≤⎪⎨⎛⎫+-≤⎪ ⎪⎝⎭⎩,解得332t -≤≤.若过点30,2⎛⎫- ⎪⎝⎭的动直线的斜率不存在,则()()0,3,0,3P Q -或()()0,3,0,3P Q -,此时需33t -≤≤,两者结合可得332t -≤≤.综上,存在()30,32T t t ⎛⎫-≤≤ ⎪⎝⎭,使得0TP TQ ⋅≤ 恒成立.【点睛】思路点睛:圆锥曲线中的范围问题,往往需要用合适的参数表示目标代数式,表示过程中需要借助韦达定理,此时注意直线方程的合理假设.19.(1)21n n S =-(2)①证明见详解;②()131419nn S ii n b =-+=∑【分析】(1)设等比数列{}n a 的公比为0q >,根据题意结合等比数列通项公式求q ,再结合等比数列求和公式分析求解;(2)①根据题意分析可知12,1k k n a b k -==+,()121n k k b -=-,利用作差法分析证明;②根据题意结合等差数列求和公式可得()()1211213143449k k k k i i b k k ---=⎡⎤=---⎣⎦∑,再结合裂项相消法分析求解.【详解】(1)设等比数列{}n a 的公比为0q >,因为1231,1a S a ==-,即1231a a a +=-,可得211q q +=-,整理得220q q --=,解得2q =或1q =-(舍去),所以122112nn n S -==--.(2)(i )由(1)可知12n n a -=,且N*,2k k ∈≥,当124kk n a +=≥=时,则111221111k k k k k a n n a a -++⎧=<-=-⎨-=-<⎩,即11k k a n a +<-<可知12,1k k n a b k -==+,()()()1111222121k k k n a k k b b a a k k k k --+=+--⋅=+-=-,可得()()()()1112112122120k n k n k k k k k k k k b k a b ---=--+=--≥--=-⋅≥-,当且仅当2k =时,等号成立,所以1n k n b a b -≥⋅;(ii )由(1)可知:1211nn n S a +=-=-,若1n =,则111,1S b ==;若2n ≥,则112k k k a a -+-=,当1221k k i -<≤-时,12i i b b k --=,可知{}i b 为等差数列,可得()()()111211112221122431434429k k k k k k k k i i b k kk k k -------=-⎡⎤=⋅+=⋅=---⎣⎦∑,所以()()()232113141115424845431434499nn S n n i i n b n n -=-+⎡⎤=+⨯-⨯+⨯-⨯+⋅⋅⋅+---=⎣⎦∑,且1n =,符合上式,综上所述:()131419nn S ii n b =-+=∑.【点睛】关键点点睛:1.分析可知当1221k k i -<≤-时,12i i b b k --=,可知{}i b 为等差数列;2.根据等差数列求和分析可得()()1211213143449k k k k i i b k k ---=⎡⎤=---⎣⎦∑.20.(1)1y x =-(2){}2(3)证明过程见解析【分析】(1)直接使用导数的几何意义;(2)先由题设条件得到2a =,再证明2a =时条件满足;(3)先确定()f x 的单调性,再对12,x x 分类讨论.【详解】(1)由于()ln f x x x =,故()ln 1f x x ='+.所以()10f =,()11f '=,所以所求的切线经过()1,0,且斜率为1,故其方程为1y x =-.(2)设()1ln h t t t =--,则()111t h t t t'-=-=,从而当01t <<时()0h t '<,当1t >时()0h t '>.所以()h t 在(]0,1上递减,在[)1,+∞上递增,这就说明()()1h t h ≥,即1ln t t -≥,且等号成立当且仅当1t =.设()()12ln g t a t t =--,则()((ln 1f x a x x x a x x a x g ⎛⎫-=-=-=⋅ ⎪⎭⎝.当()0,x ∞∈+()0,∞+,所以命题等价于对任意()0,t ∞∈+,都有()0g t ≥.一方面,若对任意()0,t ∞∈+,都有()0g t ≥,则对()0,t ∞∈+有()()()()112012ln 12ln 1212g t a t t a t a t at a t t t ⎛⎫≤=--=-+≤-+-=+-- ⎪⎝⎭,取2t =,得01a ≤-,故10a ≥>.再取t =,得2022a a a ≤-=-=-,所以2a =.另一方面,若2a =,则对任意()0,t ∞∈+都有()()()212ln 20g t t t h t =--=≥,满足条件.综合以上两个方面,知a 的取值范围是{}2.(3)先证明一个结论:对0a b <<,有()()ln 1ln 1f b f a a b b a-+<<+-.证明:前面已经证明不等式1ln t t -≥,故lnln ln ln ln ln ln 1ln 1bb b a a a b a aa b b b b b a b a a--=+=+<+---,且1lnln ln ln ln ln ln ln 1ln 11a ab b a a b b b a b b a a a a a a b a b a bb⎛⎫--- ⎪--⎝⎭=+=+>+=+----,所以ln ln ln 1ln 1b b a aa b b a -+<<+-,即()()ln 1ln 1f b f a a b b a-+<<+-.由()ln 1f x x ='+,可知当10e x <<时()0f x '<,当1e x >时()0f x '>.所以()f x 在10,e ⎛⎤ ⎥⎝⎦上递减,在1e ,⎡⎫+∞⎪⎢⎣⎭上递增.不妨设12x x ≤,下面分三种情况(其中有重合部分)证明本题结论.情况一:当1211ex x ≤≤<时,有()()()()()()122122121ln 1f x f x f x f x x x x x x -=-<+-<-<情况二:当1210ex x <≤≤时,有()()()()12121122ln ln f x f x f x f x x x x x -=-=-.对任意的10,e c ⎛⎤∈ ⎥⎝⎦,设()ln ln x x x c c ϕ=-()ln 1x x ϕ=+'由于()x ϕ'单调递增,且有11110ϕ=<++=-=',且当2124ln 1x c c ≥-⎛⎫- ⎪⎝⎭,2c x >2ln 1c ≥-可知()2ln 1ln 1ln 102c x x c ϕ⎛⎫=+>+=-≥ ⎪⎝⎭'.所以()x ϕ'在()0,c 上存在零点0x ,再结合()x ϕ'单调递增,即知00x x <<时()0x ϕ'<,0x x c <<时()0x ϕ'>.故()x ϕ在(]00,x 上递减,在[]0,x c 上递增.①当0x x c ≤≤时,有()()0x c ϕϕ≤=;②当00x x <<112221e ef f c⎛⎫=-≤-=< ⎪⎝⎭,故我们可以取1,1q c ⎫∈⎪⎭.从而当201cx q <<->()1ln ln ln ln 0x x x c c c c c c q cϕ⎫=-<-<---<⎪⎭.再根据()x ϕ在(]00,x 上递减,即知对00x x <<都有()0x ϕ<;综合①②可知对任意0x c <≤,都有()0x ϕ≤,即()ln ln 0x x x c c ϕ=-≤.根据10,e c ⎛⎤∈ ⎥⎝⎦和0x c <≤的任意性,取2c x =,1x x =,就得到1122ln ln 0x x x x -≤.所以()()()()12121122ln ln f x f x f x f x x x x x -=-=-情况三:当12101ex x <≤≤<时,根据情况一和情况二的讨论,可得()11e f x f ⎛⎫-≤ ⎪⎝⎭,()21e f f x ⎛⎫-≤≤ ⎪⎝⎭而根据()f x 的单调性,知()()()1211e f x f x f x f ⎛⎫-≤- ⎪⎝⎭或()()()1221e f x f x f f x ⎛⎫-≤- ⎪⎝⎭.故一定有()()12f x f x -≤成立.综上,结论成立.【点睛】关键点点睛:本题的关键在于第3小问中,需要结合()f x 的单调性进行分类讨论.。
绝密★启用前2024年天津市高考数学试卷学校:___________姓名:___________班级:___________考号:___________注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上,写在试卷上无效。
3.考试结束后,本试卷和答题卡一并交回。
第I 卷(选择题)一、单选题:本题共9小题,每小题5分,共45分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.集合A ={1,2,3,4},B ={2,3,4,5},则A ∩B =( ) A. {1,2,3,4}B. {2,3,4}C. {2,4}D. {1}2.设a ,b ∈R ,则“a 3=b 3”是“3a =3b ”的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充要条件D. 既不充分也不必要条件3.下列图中,相关性系数最大的是( )A. B.C. D.4.下列函数是偶函数的是( )A. e x −x 2x 2+1B. cosx+x 2x 2+1C. e x −x x+1D.sinx+4xe |x|5.若a =4.2−0.3,b =4.20.3,c =log 4.20.3,则a ,b ,c 的大小关系为( )A. a >b >cB. b >a >cC. c >a >bD. b >c >a6.若m ,n 为两条直线,α为一个平面,则下列结论中正确的是( ) A. 若m//α,n ⊂α,则m//n B. 若m//α,n//α,则m//n C. 若m//α,n ⊥α,则m ⊥nD. 若m//α,n ⊥α,则m 与n 相交7.已知函数f(x)=sin3(ωx +π3)(ω>0)的最小正周期为π.则函数在[−π12,π6]的最小值是( ) A. −√ 32B. −32C. 0D. 328.双曲线x 2a 2−y 2b2=1(a >0,b >0)的左、右焦点分别为F 1、F 2.P 是双曲线右支上一点,且直线PF 2的斜率为2,△PF 1F 2是面积为8的直角三角形,则双曲线的方程为( ) A.x 22−y 28=1 B.x 24−y 28=1 C.y 24−x 28=1 D.x 22−y 24=19.一个五面体ABC −DEF.已知AD//BE//CF ,且两两之间距离为1.并已知AD =1,BE =2,CF =3.则该五面体的体积为( ) A.√ 36B. 3√ 34+12 C. √ 32 D. 3√ 34−12第II 卷(非选择题)二、填空题:本题共6小题,每小题5分,共30分。
2019年高考数学试题分项版——统计概率(解析版)一、选择题1.(2019·全国Ⅰ文,6)某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是()A.8号学生B.200号学生C.616号学生D.815号学生答案 C解析根据题意,系统抽样是等距抽样,所以抽样间隔为=10.因为46除以10余6,所以抽到的号码都是除以10余6的数,结合选项知,616号学生被抽到.2.(2019·全国Ⅱ文,4)生物实验室有5只兔子,其中只有3只测量过某项指标.若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为()A. B. C. D.答案 B解析设5只兔子中测量过某项指标的3只为a1,a2,a3,未测量过这项指标的2只为b1,b2,则从5只兔子中随机取出3只的所有可能情况为(a1,a2,a3),(a1,a2,b1),(a1,a2,b2),(a1,a3,b1),(a1,a3,b2),(a1,b1,b2),(a2,a3,b1),(a2,a3,b2),(a2,b1,b2),(a3,b1,b2),共10种可能.其中恰有2只测量过该指标的情况为(a1,a2,b1),(a1,a2,b2),(a1,a3,b1),(a1,a3,b2),(a2,a3,b1),(a2,a3,b2),共6种可能.故恰有2只测量过该指标的概率为=.3.(2019·全国Ⅱ文,5)在“一带一路”知识测验后,甲、乙、丙三人对成绩进行预测.甲:我的成绩比乙高.乙:丙的成绩比我和甲的都高.丙:我的成绩比乙高.成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序为()A.甲、乙、丙B.乙、甲、丙C.丙、乙、甲D.甲、丙、乙答案 A解析由于三人成绩互不相同且只有一个人预测正确.若甲预测正确,则乙、丙预测错误,于是三人按成绩由高到低的次序为甲、乙、丙;若甲预测错误,则甲、乙按成绩由高到低的次序为乙、甲,再假设丙预测正确,则乙、丙按成绩由高到低的次序为丙、乙,于是甲、乙、丙按成绩由高到低排序为丙、乙、甲,从而乙的预测也正确,与事实矛盾;若甲、丙预测错误,则可推出乙的预测也错误.综上所述,三人按成绩由高到低的次序为甲、乙、丙.4.(2019·全国Ⅲ文,3)两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是()A. B. C. D.答案 D解析设两位男同学分别为A,B,两位女同学分别为a,b,则用“树形图”表示四位同学排成一列所有可能的结果如图所示.由图知,共有24种等可能的结果,其中两位女同学相邻的结果(画“√”的情况)共有12种,故所求概率为=.5.(2019·全国Ⅲ文,4)《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为()A.0.5 B.0.6 C.0.7 D.0.8答案 C解析根据题意阅读过《红楼梦》《西游记》的人数用韦恩图表示如下:所以该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为=0.7. 6.(2019·浙江,7)设0<a<1.随机变量X的分布列是()则当a在(0,1)内增大时,()A.D(X)增大B.D(X)减小C.D(X)先增大后减小D.D(X)先减小后增大答案 D解析由题意可知,E(X)=(a+1),所以D(X)=++==,所以当a在(0,1)内增大时,D(X)先减小后增大.7.(2019·全国Ⅰ理,6)我国古代典籍《周易》用“卦”描述万物的变化,每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“”和阴爻“——”,如图就是一重卦,在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是()A. B. C. D.答案 A解析由6个爻组成的重卦种数为26=64,在所有重卦中随机取一重卦,该重卦恰有3个阳爻的种数为==20.根据古典概型的概率计算公式得,所求概率P==.故选A. 8.(2019·全国Ⅱ理,5)演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是()A.中位数B.平均数C.方差D.极差答案 A解析记9个原始评分分别为a,b,c,d,e,f,g,h,i(按从小到大的顺序排列),易知e 为7个有效评分与9个原始评分的中位数,故不变的数字特征是中位数,故选A. 9.(2019·全国Ⅲ理,3)《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为()A.0.5 B.0.6 C.0.7 D.0.8答案 C解析根据题意阅读过《红楼梦》《西游记》的人数用韦恩图表示如下:所以该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为=0.7. 10.(2019·全国Ⅲ理,4)(1+2x2)(1+x)4的展开式中x3的系数为()A.12 B.16 C.20 D.24答案 A解析展开式中含x3的项可以由“1与x3”和“2x2与x”的乘积组成,则x3的系数为+2=4+8=12.二、填空题1.(2019·全国Ⅱ文,14)我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为________.答案0.98解析经停该站高铁列车所有车次的平均正点率的估计值为=0.98. 2.(2019·浙江,13)在二项式(+x)9的展开式中,常数项是________,系数为有理数的项的个数是________.答案16 5解析该二项展开式的第k+1项为T k+1=()9-k x k,当k=0时,第1项为常数项,所以常数项为()9=16;当k=1,3,5,7,9时,展开式的项的系数为有理数,所以系数为有理数的项的个数为5.3.(2019·江苏,5)已知一组数据6,7,8,8,9,10,则该组数据的方差是_____________.答案解析数据6,7,8,8,9,10的平均数是=8,则方差是=. 4.(2019·江苏,6)从3名男同学和2名女同学中任选2名同学参加志愿者服务,则选出的2名同学中至少有1名女同学的概率是________.答案解析记3名男同学为A,B,C,2名女同学为a,b,则从中任选2名同学的情况有(A,B),(A,C),(A,a),(A,b),(B,C),(B,a),(B,b),(C,a),(C,b),(a,b),共10种,其中至少有1名女同学的情况有(A,a),(A,b),(B,a),(B,b),(C,a),(C,b),(a,b),共7种,故所求概率为.5.(2019·全国Ⅰ理,15)甲、乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利时,该队获胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队以4∶1获胜的概率是________.答案0.18解析记事件M为甲队以4∶1获胜,则甲队共比赛五场,且第五场甲队获胜,前四场甲队胜三场负一场,所以P(M)=0.6×(0.62×0.52×2+0.6×0.4×0.52×2)=0.18.6.(2019·全国Ⅱ理,13)我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为________.答案0.98解析经停该站高铁列车所有车次的平均正点率的估计值为=0.98. 7.(2019·天津理,10)8的展开式中的常数项为________.答案28解析二项展开式的通项T r+1=(2x)8-r r=r·28-r x8-4r,令8-4r=0可得r=2,故常数项为2×26×=28.三、解答题1.(2019·全国Ⅰ文,17)某商场为提高服务质量,随机调查了50名男顾客和50名女顾客,每位顾客对该商场的服务给出满意或不满意的评价,得到下面列联表:(1)分别估计男、女顾客对该商场服务满意的概率;(2)能否有95%的把握认为男、女顾客对该商场服务的评价有差异?附:K2=.解(1)由调查数据,男顾客中对该商场服务满意的频率为=0.8,因此男顾客对该商场服务满意的概率的估计值为0.8.女顾客中对该商场服务满意的频率为=0.6,因此女顾客对该商场服务满意的概率的估计值为0.6.(2)K2的观测值k=≈4.762.由于4.762>3.841,故有95%的把握认为男、女顾客对该商场服务的评价有差异.2.(2019·全国Ⅱ文,19)某行业主管部门为了解本行业中小企业的生产情况,随机调查了100个企业,得到这些企业第一季度相对于前一年第一季度产值增长率y的频数分布表.(1)分别估计这类企业中产值增长率不低于40%的企业比例、产值负增长的企业比例;(2)求这类企业产值增长率的平均数与标准差的估计值(同一组中的数据用该组区间的中点值为代表).(精确到0.01)附:≈8.602.解(1)根据产值增长率频数分布表得,所调查的100个企业中产值增长率不低于40%的企业频率为=0.21.产值负增长的企业频率为=0.02.用样本频率分布估计总体分布得这类企业中产值增长率不低于40%的企业比例为21%,产值负增长的企业比例为2%.(2)=×(-0.10×2+0.10×24+0.30×53+0.50×14+0.70×7)=0.30,s2=i(y i-)2=×[(-0.40)2×2+(-0.20)2×24+02×53+0.202×14+0.402×7]=0.029 6,s==0.02×≈0.17.所以,这类企业产值增长率的平均数与标准差的估计值分别为0.30,0.17.3.(2019·全国Ⅲ文,17)为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成A,B两组,每组100只,其中A组小鼠给服甲离子溶液,B组小鼠给服乙离子溶液.每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:记C为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到P(C)的估计值为0.70.(1)求乙离子残留百分比直方图中a,b的值;(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表).解(1)由已知得0.70=a+0.20+0.15,故a=0.35.b=1-0.05-0.15-0.70=0.10.(2)甲离子残留百分比的平均值的估计值为2×0.15+3×0.20+4×0.30+5×0.20+6×0.10+7×0.05=4.05.乙离子残留百分比的平均值的估计值为3×0.05+4×0.10+5×0.15+6×0.35+7×0.20+8×0.15=6.00.4.(2019·北京文,17)改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生中上个月A,B两种移动支付方式的使用情况,从全校所有的1 000名学生中随机抽取了100人,发现样本中A,B两种支付方式都不使用的有5人,样本中仅使用A和仅使用B的学生支付金额分布情况如下:(1)估计该校学生中上个月A,B两种支付方式都使用的人数;(2)从样本仅使用B的学生中随机抽取1人,求该学生上个月支付金额大于2 000元的概率;(3)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用B的学生中随机抽查1人,发现他本月的支付金额大于2 000元.结合(2)的结果,能否认为样本仅使用B的学生中本月支付金额大于2 000元的人数有变化?说明理由.解(1)由题意知,样本中仅使用A的学生有27+3=30(人),仅使用B的学生有24+1=25(人),A,B两种支付方式都不使用的学生有5人.故样本中A,B两种支付方式都使用的学生有100-30-25-5=40(人).估计该校学生中上个月A,B两种支付方式都使用的人数为×1 000=400.(2)记事件C为“从样本仅使用B的学生中随机抽取1人,该学生上个月的支付金额大于2 000元”,则P(C)==0.04.(3)记事件E为“从样本仅使用B的学生中随机抽查1人,该学生本月的支付金额大于2 000元”.假设样本仅使用B的学生中,本月支付金额大于2 000元的人数没有变化,则由(2)知,P(E)=0.04.答案示例1:可以认为有变化.理由如下:P(E)比较小,概率比较小的事件一般不容易发生,一旦发生,就有理由认为本月支付金额大于2 000元的人数发生了变化.所以可以认为有变化.答案示例2:无法确定有没有变化.理由如下:事件E是随机事件,P(E)比较小,一般不容易发生,但还是有可能发生的.所以无法确定有没有变化.5.(2019·天津文,15)2019年,我国施行个人所得税专项附加扣除办法,涉及子女教育、继续教育、大病医疗、住房贷款利息或者住房租金、赡养老人等六项专项附加扣除.某单位老、中、青员工分别有72,108,120人,现采用分层抽样的方法,从该单位上述员工中抽取25人调查专项附加扣除的享受情况.(1)应从老、中、青员工中分别抽取多少人?(2)抽取的25人中,享受至少两项专项附加扣除的员工有6人,分别记为A,B,C,D,E,F.享受情况如下表,其中“○”表示享受,“×”表示不享受.现从这6人随机抽取2人接受采访.①试用所给字母列举出所有可能的抽取结果;②设M为事件“抽取的2人享受的专项附加扣除至少有一项相同”,求事件M发生的概率.解(1)由已知得老、中、青员工人数之比为6∶9∶10,由于采用分层抽样的方法从中抽取25位员工,因此应从老、中、青员工中分别抽取6人、9人、10人.(2)①从已知的6人中随机抽取2人的所有可能结果为{A,B},{A,C},{A,D},{A,E},{A,F},{B,C},{B,D},{B,E},{B,F},{C,D},{C,E},{C,F},{D,E},{D,F},{E,F},共15种.②由表格知,符合题意的所有结果为{A,B},{A,D},{A,E},{A,F},{B,D},{B,E},{B,F},{C,E},{C,F},{D,F},{E,F},共11种.所以,事件M发生的概率P(M)=.6.(2019·江苏,22)(10分)设(1+x)n=a0+a1x+a2x2+…+a n x n,n≥4,n∈N*.已知=2a2a4.(1)求n的值;(2)设(1+)n=a+b,其中a,b∈N*,求a2-3b2的值.解(1)因为(1+x)n=+x+x2+…+x n,n≥4,所以a2==,a3==,a4==.因为=2a2a4,所以2=2××.解得n=5.(2)由(1)知,n=5.(1+)n=(1+)5=++()2+()3+()4+()5=a+b.方法一因为a,b∈N*,所以a=+3+9=76,b=+3+9=44,从而a2-3b2=762-3×442=-32.方法二(1-)5=+(-)+(-)2+(-)3+(-)4+(-)5=-+()2-()3+()4-()5.因为a,b∈N*,所以(1-)5=a-b.因此a2-3b2=(a+b)(a-b)=(1+)5×(1-)5=(-2)5=-32.7.(2019·江苏,23)在平面直角坐标系xOy中,设点集A n={(0,0),(1,0),(2,0),…,(n,0)},B n={(0,1),(n,1)},C n={(0,2),(1,2),(2,2),…,(n,2)},n∈N*.令M n=A n∪B n∪C n.从集合M n中任取两个不同的点,用随机变量X表示它们之间的距离.(1)当n=1时,求X的概率分布;(2)对给定的正整数n(n≥3),求概率P(X≤n)(用n表示).解(1)当n=1时,A1={(0,0),(1,0)},B1={(0,1),(1,1)},C1={(0,2),(1,2)},所以M1={(0,0),(1,0),(0,1),(1,1),(0,2),(1,2)}.所以X的所有可能取值是1,,2,.X的概率分布为P(X=1)==,P(X=)==,P(X=2)==,P(X=)==.(2)设A(a,b)和B(c,d)是从M n中取出的两个点.因为P(X≤n)=1-P(X>n),所以仅需考虑X>n的情况.①若b=d,则AB≤n,不存在X>n的取法;②若b=0,d=1,则AB=≤,所以当且仅当AB=时X>n,此时a=0,c=n或a=n,c=0,有2种取法;③若b=0,d=2,则AB=≤,因为当n≥3时,≤n,所以当且仅当AB=时X>n,此时a=0,c=n或a=n,c=0,有2种取法;④若b=1,d=2,则AB=≤,所以当且仅当AB=时X>n,此时a=0,c=n或a=n,c=0,有2种取法.综上,当X>n时,X的所有可能取值是和,且P(X=)=,P(X=)=.因此,P(X≤n)=1-P(X=)-P(X=)=1-.8.(2019·全国Ⅰ理,21)为治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得-1分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得-1分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X.(1)求X的分布列;(2)若甲药、乙药在试验开始时都赋予4分,p i(i=0,1,…,8)表示“甲药的累计得分为i时,最终认为甲药比乙药更有效”的概率,则p0=0,p8=1,p i=ap i-1+bp i+cp i+1(i=1,2,…,7),其中a=P(X=-1),b=P(X=0),c=P(X=1).假设α=0.5,β=0.8.(ⅰ)证明:{p i+1-p i}(i=0,1,2,…,7)为等比数列;(ⅱ)求p4,并根据p4的值解释这种试验方案的合理性.(1)解X的所有可能取值为-1,0,1.P(X=-1)=(1-α)β,P(X=0)=αβ+(1-α)(1-β),P(X=1)=α(1-β).所以X的分布列为(2)(ⅰ)证明由(1)得a=0.4,b=0.5,c=0.1.因此p i=0.4p i-1+0.5p i+0.1p i+1,故0.1(p i+1-p i)=0.4(p i-p i-1),即p i+1-p i=4(p i-p i-1).又因为p1-p0=p1≠0,所以{p i+1-p i}(i=0,1,2,…,7)为公比为4,首项为p1的等比数列.(ⅱ)解由(ⅰ)可得p8=p8-p7+p7-p6+…+p1-p0+p0=(p8-p7)+(p7-p6)+…+(p1-p0)=p1.由于p8=1,故p1=,所以p4=(p4-p3)+(p3-p2)+(p2-p1)+(p1-p0)=p1=.p4表示题干中的实验方案最终认为甲药更有效的概率.由计算结果可以看出,在甲药治愈率为0.5,乙药治愈率为0.8时,认为甲药更有效的概率为p4=≈0.003 9,此时得出错误结论的概率非常小,说明这种试验方案合理.9.(2019·全国Ⅱ理,18)11分制乒乓球比赛,每赢一球得1分,当某局打成10∶10平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲、乙两位同学进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0.4,各球的结果相互独立.在某局双方10∶10平后,甲先发球,两人又打了X个球该局比赛结束.(1)求P(X=2);(2)求事件“X=4且甲获胜”的概率.解(1)X=2就是10∶10平后,两人又打了2个球该局比赛结束,则这2个球均由甲得分,或者均由乙得分.因此P(X=2)=0.5×0.4+(1-0.5)×(1-0.4)=0.5.(2)X=4且甲获胜,就是10∶10平后,两人又打了4个球该局比赛结束,且这4个球的得分情况为:前两球是甲、乙各得1分,后两球均为甲得分.因此所求概率为P=[0.5×(1-0.4)+(1-0.5)×0.4]×0.5×0.4=0.1.10.(2019·全国Ⅲ理,17)为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成A,B两组,每组100只,其中A组小鼠给服甲离子溶液,B组小鼠给服乙离子溶液.每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:记C为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到P(C)的估计值为0.70.(1)求乙离子残留百分比直方图中a,b的值;(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表).解(1)由已知得0.70=a+0.20+0.15,故a=0.35.b=1-0.05-0.15-0.70=0.10.(2)甲离子残留百分比的平均值的估计值为2×0.15+3×0.20+4×0.30+5×0.20+6×0.10+7×0.05=4.05.乙离子残留百分比的平均值的估计值为3×0.05+4×0.10+5×0.15+6×0.35+7×0.20+8×0.15=6.00.11.(2019·北京理,17)(13分)改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月A,B两种移动支付方式的使用情况,从全校学生中随机抽取了100人,发现样本中A,B两种支付方式都不使用的有5人,样本中仅使用A和仅使用B的学生的支付金额分布情况如下:(Ⅱ)从样本仅使用A和仅使用B的学生中各随机抽取1人,以X表示这2人中上个月支付金额大于1000元的人数,求X的分布列和数学期望;(Ⅲ)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用A的学生中,随机抽查3人,发现他们本月的支付金额都大于2000元.根据抽查结果,能否认为样本仅使用A的学生中本月支付金额大于2000元的人数有变化?说明理由.【思路分析】(Ⅰ)从全校所有的1000名学生中随机抽取的100人中,A,B两种支付方式都不使用的有5人,仅使用A的有30人,仅使用B的有25人,从而A,B两种支付方式都使用的人数有40人,由此能求出从全校学生中随机抽取1人,估计该学生上个月A,B两种支付方式都使用的概率.(Ⅱ)从样本仅使用A和仅使用B的学生中各随机抽取1人,以X表示这2人中上个月支付金额大于1000元的人数,则X的可能取值为0,1,2,分别求出相应的概率,由此能求出X的分布列和数学期望()E X.(Ⅲ)从样本仅使用A的学生有30人,其中27人月支付金额不大于2000元,有3人月支付金额大于2000元,随机抽查3人,发现他们本月的支付金额都大于2000元的概率为3 3 3 301 4060CpC==,不能认为认为样本仅使用A的学生中本月支付金额大于2000元的人数有变化.【解析】:(Ⅰ)由题意得:从全校所有的1000名学生中随机抽取的100人中,A,B两种支付方式都不使用的有5人,仅使用A的有30人,仅使用B的有25人,A∴,B两种支付方式都使用的人数有:1005302540---=,∴从全校学生中随机抽取1人,估计该学生上个月A,B两种支付方式都使用的概率400.4100p==.(Ⅱ)从样本仅使用A和仅使用B的学生中各随机抽取1人,以X表示这2人中上个月支付金额大于1000元的人数,则X的可能取值为0,1,2,样本仅使用A的学生有30人,其中支付金额在(0,1000]的有18人,超过1000元的有12人,样本仅使用B的学生有25人,其中支付金额在(0,1000]的有10人,超过1000元的有15人,18101806(0)302575025P X==⨯==,1815121039013(1)3025302575025P X==⨯+⨯==,12151806(2)302575025P X ==⨯==, X ∴的分布列为:数学期望()0121252525E X =⨯+⨯+⨯=. (Ⅲ)不能认为样本仅使用A 的学生中本月支付金额大于2000元的人数有变化, 理由如下:从样本仅使用A 的学生有30人,其中27人月支付金额不大于2000元,有3人月支付金额大于2000元,随机抽查3人,发现他们本月的支付金额都大于2000元的概率为3333014060C p C ==,虽然概率较小,但发生的可能性为14060. 故不能认为认为样本仅使用A 的学生中本月支付金额大于2000元的人数有变化. 【归纳与总结】本题考查概率、离散型随机变量的分布列、数学期望的求法,考查古典概型、相互独立事件概率乘法公式等基础知识,考查推理能力与计算能力,是中档题.12.(2019·天津理,16)设甲、乙两位同学上学期间,每天7:30之前到校的概率均为,假定甲、乙两位同学到校情况互不影响,且任一同学每天到校情况相互独立.(1)用X 表示甲同学上学期间的三天中7:30之前到校的天数,求随机变量X 的分布列和数学期望;(2)设M 为事件“上学期间的三天中,甲同学在7:30之前到校的天数比乙同学在7:30之前到校的天数恰好多2”,求事件M 发生的概率.解 (1)因为甲同学上学期间的三天中到校情况相互独立,且每天7:30之前到校的概率均为 ,故X ~B ,从而P (X =k )= k3-k ,k =0,1,2,3. 所以,随机变量X 的分布列为随机变量X 的数学期望E (X )=3×=2. (2)设乙同学上学期间的三天中7:30之前到校的天数为Y ,则Y ~B,且M ={X =3,Y =1}∪{X =2,Y =0}.由题意知事件{X =3,Y =1}与{X =2,Y =0}互斥,且事件{X =3}与{Y=1},事件{X=2}与{Y=0}均相互独立,从而由(1)知P(M)=P({X=3,Y=1}∪{X=2,Y=0})=P({X=3,Y=1})+P({X=2,Y=0})=P({X=3})P({Y=1})+P({X=2})P({Y=0})=×+×=.。
2019年普通高等学校招生全国统一考试(天津卷)理科数学第Ⅰ卷一、选择题1.设集合A ={-1,1,2,3,5},B ={2,3,4},C ={x ∈R |1≤x <3},则(A ∩C )∪B 等于( ) A .{2} B .{2,3} C .{-1,2,3} D .{1,2,3,4}答案 D解析 由条件可得A ∩C ={1,2},故(A ∩C )∪B ={1,2,3,4}.2.设变量x ,y 满足约束条件+ - , - + ,- , - ,则目标函数z =-4x +y 的最大值为( )A .2B .3C .5D .6 答案 C解析 画出可行域如图中阴影部分(含边界)所示,作出直线-4x +y =0,并平移,可知当直线过点A 时,z 取得最大值.由=- ,- + = ,可得=- , = ,所以点A 的坐标为(-1,1),故z max =-4×(-1)+1=5.3.设x ∈R ,则“x 2-5x <0”是“|x -1|<1”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件 答案 B解析 由x 2-5x <0可得0<x <5.由|x -1|<1可得0<x <2.由于区间(0,2)是(0,5)的真子集,故“x 2-5x <0”是“|x -1|<1”的必要不充分条件.4.阅读如图所示的程序框图,运行相应的程序,输出S 的值为()A.5 B.8 C.24 D.29答案 B解析执行程序框图,S=1,i=2,j=1,S=1+4=5,i=3,S=8,i=4,满足i≥4,输出的S=8.5.已知抛物线y2=4x的焦点为F,准线为l.若l与双曲线-=1(a>0,b>0)的两条渐近线分别交于点A和点B,且|AB|=4|OF|(O为原点),则双曲线的离心率为()A. B.C.2 D.答案 D解析由题意,可得F(1,0),直线l的方程为x=-1,双曲线的渐近线方程为y=±x.将x =-1代入y=±x,得y=±,所以点A,B的纵坐标的绝对值均为.由|AB|=4|OF|可得=4,即b=2a,b2=4a2,故双曲线的离心率e===.6.已知a=log52,b=log0.50.2,c=0.50.2,则a,b,c的大小关系为()A.a<c<b B.a<b<cC.b<c<a D.c<a<b答案 A解析a=log52<log5=.而c=0.50.2>0.51=,故a<c;b=log0.50.2>log0.50.25=2,而c =0.50.2<0.50=1,故c<b.所以a<c<b.7.已知函数f(x)=A sin(ωx+φ)(A>0,ω>0,|φ|<π)是奇函数,将y=f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图象对应的函数为g(x).若g(x)的最小正周期为2π,且g=,则f 等于()A.-2 B.- C.D.2答案 C解析由f(x)为奇函数可得φ=kπ(k∈Z),又|φ|<π,所以φ=0,所以g(x)=A sin .由g(x)的最小正周期为2π,可得=2π,故ω=2,g(x)=A sin x,g=A sin =,所以A=2,所以f(x)=2sin 2x,故f=2sin =.8.已知a∈R.设函数f(x)=-+,,-,>若关于x的不等式f(x)≥0在R上恒成立,则a的取值范围为()A.[0,1]B.[0,2]C.[0,e]D.[1,e]答案 C解析方法一当a=0时,不等式f(x)≥0恒成立,排除D;当a=e时,f(x)=-+,,-,>,当x≤1时,f(x)=x2-2e x+2e的最小值为f(1)=1>0,满足f(x)≥0;当x>1时,由f(x)=x-eln x可得f′(x)=1-=,易得f(x)在x=e处取得极小值(也是最小值)f(e)=0,满足f(x)≥0恒成立,排除A,B.故选C.方法二若x≤1,f(x)=x2-2ax+2a=(x-a)2-a2+2a.当a≤1时,可得f(x)的最小值为f(a)=-a2+2a,令f(a)≥0,解得0≤a≤2,故0≤a≤1;当a>1时,可得f(x)的最小值为f(1)=1≥0,满足条件.所以a≥0.若x>1,由f(x)=x-a ln x可得f′(x)=1-=,当a≤1时,f′(x)>0,则f(x)在(1,+∞)上单调递增,故只需1-a ln 1≥0,显然成立;当a>1时,由f′(x)=0可得x=a,易得f(x)的最小值为f(a)=a-a ln a,令f(a)≥0,解得a≤e,故1<a≤e,所以a≤e.综上,a的取值范围是[0,e].第Ⅱ卷二、填空题9.i是虚数单位,则的值为________.答案解析方法一===2-3i,故==.方法二====.10.8的展开式中的常数项为________.答案28解析二项展开式的通项T r+1=(2x)8-r r=r·28-r x8-4r,令8-4r=0可得r=2,故常数项为2×26×=28.11.已知四棱锥的底面是边长为的正方形,侧棱长均为,若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的体积为________.答案解析由题意可得,四棱锥底面对角线的长为2,则圆柱底面的半径为,易知四棱锥的高为=2,故圆柱的高为1,所以圆柱的体积为π×2×1=.12.设a∈R,直线ax-y+2=0和圆=+,=+(θ为参数)相切,则a的值为________.答案解析由已知条件可得圆的直角坐标方程为(x-2)2+(y-1)2=4,其圆心为(2,1),半径为2,由直线和圆相切可得=2,解得a=.13.设x>0,y>0,x+2y=5,则的最小值为________.答案4解析===2+.由x+2y=5得5≥2,即≤,即xy≤,当且仅当x=2y=时等号成立.所以2+≥2=4,当且仅当2=,即xy=3时取等号,结合xy≤可知,xy可以取到3,故的最小值为4.14.在四边形ABCD中,AD∥BC,AB=2,AD=5,∠A=30°,点E在线段CB的延长线上,且AE=BE,则·=________.答案-1解析方法一在等腰△ABE中,易得∠BAE=∠ABE=30°,故BE=2,则·=(-)·(+)=·+·-2-·=5×2×cos 30°+5×2×cos 180°-12-2×2×cos 150°=15-10-12+6=-1.方法二在△ABD中,由余弦定理可得BD==,所以cos∠ABD==-,则sin ∠ABD=.设与的夹角为θ,则cos θ=cos(180°-∠ABD+30°)=-cos(∠ABD-30°)=-cos∠ABD·cos 30°-sin∠ABD·sin 30°=-,在△ABE中,易得AE=BE=2,故·=×2×=-1.三、解答题15.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知b+c=2a,3c sin B=4a sin C.(1)求cos B的值;(2)求sin的值.解(1)在△ABC中,由正弦定理=,得b sin C=c sin B,又由3c sin B=4a sin C,得3b sin C=4a sin C,又sin C≠0,所以3b=4a.又因为b+c=2a,所以b=a,c=a,由余弦定理可得cos B===-.(2)由(1)可得sin B==,从而sin 2B=2sin B cos B=-,cos 2B=cos2B-sin2B=-,故sin=sin 2B cos +cos 2B sin =-×-×=-.16.设甲、乙两位同学上学期间,每天7:30之前到校的概率均为,假定甲、乙两位同学到校情况互不影响,且任一同学每天到校情况相互独立.(1)用X表示甲同学上学期间的三天中7:30之前到校的天数,求随机变量X的分布列和数学期望;(2)设M为事件“上学期间的三天中,甲同学在7:30之前到校的天数比乙同学在7:30之前到校的天数恰好多2”,求事件M发生的概率.解(1)因为甲同学上学期间的三天中到校情况相互独立,且每天7:30之前到校的概率均为,故X~B,从而P(X=k)=k3-k,k=0,1,2,3.所以,随机变量X的分布列为随机变量X的数学期望E(X)=3×=2.(2)设乙同学上学期间的三天中7:30之前到校的天数为Y,则Y~B,且M={X=3,Y =1}∪{X=2,Y=0}.由题意知事件{X=3,Y=1}与{X=2,Y=0}互斥,且事件{X=3}与{Y=1},事件{X=2}与{Y=0}均相互独立,从而由(1)知P(M)=P({X=3,Y=1}∪{X=2,Y=0})=P({X=3,Y=1})+P({X=2,Y=0})=P({X=3})P({Y=1})+P({X=2})P({Y=0})=×+×=.17.如图,AE⊥平面ABCD,CF∥AE,AD∥BC,AD⊥AB,AB=AD=1,AE=BC=2.(1)求证:BF∥平面ADE;(2)求直线CE与平面BDE所成角的正弦值;(3)若二面角E-BD-F的余弦值为,求线段CF的长.(1)证明以A为坐标原点,分别以,,的方向为x轴,y轴,z轴正方向建立空间直角坐标系(如图所示),可得A(0,0,0),B(1,0,0),C(1,2,0),D(0,1,0),E(0,0,2).设CF=h(h >0),则F(1,2,h).由题意知,=(1,0,0)是平面ADE的法向量,又=(0,2,h),所以·=0,又因为直线BF⊄平面ADE,所以BF∥平面ADE.(2)解由(1)知,=(-1,1,0),=(-1,0,2),=(-1,-2,2).设n=(x,y,z)为平面BDE的法向量,则即-+=,-+=,不妨令z=1,可得n=(2,2,1).所以cos〈,n〉==-.所以直线CE与平面BDE所成角的正弦值为.(3)解设m=(x′,y′,z′)为平面BDF的法向量,=(-1,1,0),=(0,2,h).则即-+=,+=,不妨令y′=1,可得m=.由题意,有|cos〈m,n〉|===,解得h=,经检验,符合题意.所以线段CF的长为.18.设椭圆+=1(a>b>0)的左焦点为F,上顶点为B.已知椭圆的短轴长为4,离心率为.(1)求椭圆的方程;(2)设点P在椭圆上,且异于椭圆的上、下顶点,点M为直线PB与x轴的交点,点N在y 轴的负半轴上.若|ON|=|OF|(O为原点),且OP⊥MN,求直线PB的斜率.解(1)设椭圆的半焦距为c,依题意,2b=4,=,又a2=b2+c2,可得a=,b=2,c =1.所以椭圆的方程为+=1.(2)由题意,设P(x P,y P)(x P≠0),M(x M,0),直线PB的斜率为k(k≠0),又B(0,2),则直线PB 的方程为y=kx+2,与椭圆方程联立得整理得(4+5k2)x2+20kx=0,可得x P=-,代入y=kx+2得y P=.所以直线OP的斜率为=.在y=kx+2中,令y=0,得x M=-.由题意得N(0,-1),所以直线MN的斜率为-.由OP⊥MN,得·=-1,化简得k2=,从解得k=±.所以直线PB的斜率为或-.19.设{a n}是等差数列,{b n}是等比数列.已知a1=4,b1=6,b2=2a2-2,b3=2a3+4.(1)求{a n}和{b n}的通项公式;(2)设数列{c n}满足c1=1,c n=其中k∈N*.(ⅰ)求数列{a2n(c2n-1)}的通项公式;(ⅱ)求(n∈N*).解(1)设等差数列{a n}的公差为d,等比数列{b n}的公比为q.依题意得=+,=+,解得=,=,所以a n=a1+(n-1)d=4+(n-1)×3=3n+1,b n=b1·q n-1=6×2n-1=3×2n.所以{a n }的通项公式为a n =3n +1,{b n }的通项公式为b n =3×2n . (2)(ⅰ)a 2n (c 2n -1)=a 2n (b n -1)=(3×2n +1)(3×2n -1)=9×4n -1. 所以数列{a 2n (c 2n -1)}的通项公式为a 2n (c 2n -1)=9×4n -1. (ⅱ)a i c i =[a i +a i (c i -1)] =a i +a 2i (c 2i -1)=+ (9×4i -1)=(3×22n -1+5×2n -1)+9×-n=27×22n -1+5×2n -1-n -12(n ∈N *). 20.设函数f (x )=e x cos x ,g (x )为f (x )的导函数. (1)求f (x )的单调区间;(2)当x ∈时,证明:f (x )+g (x )≥0;(3)设x n 为函数u (x )=f (x )-1在区间内的零点,其中n ∈N ,证明:2n π+-x n <.(1)解 由已知f (x )的定义域为R ,f ′(x )=e x (cos x -sin x ).当x ∈(k ∈Z )时,有sin x >cos x ,则f ′(x )<0,f (x )单调递减;当x ∈(k ∈Z )时,有sin x <cos x ,则f ′(x )>0,f (x )单调递增. 所以f (x )的单调递增区间为(k ∈Z ),f (x )的单调递减区间为(k ∈Z ).(2)证明 记h (x )=f (x )+g (x ),由题意及(1)得,g (x )=e x (cos x -sin x ),所以g ′(x )=-2e x sin x .当x ∈时,g ′(x )<0,故h ′(x )=f ′(x )+g ′(x )·+g (x )·(-1)=g ′(x )<0.所以h (x )在区间上单调递减, 所以h (x )≥h =f=0.所以当x ∈⎣⎡⎦⎤π4,π2时,f (x )+g (x )⎝⎛⎭⎫π2-x ≥0. (3)证明 由题意得,u (x n )=f (x n )-1=0,即 cos x n =1.记y n =x n -2n π,则y n ∈,且f (y n )= cos y n = -2n πcos(x n -2n π)=e -2n π(n ∈N ).由f (y n )=e-2n π≤1=f (y 0)及(1),得y n ≥y 0.由(2)知,当x∈时,g′(x)<0,所以g(x)在上为减函数,所以g(y n)≤g(y0)<g=0.又由(2)知,f(y n)+g(y n)≥0,故-y n≤-=-≤-=<. 所以2nπ+-x n<.。
绝密★启用前2019年普通高等学校招生全国统一考试(天津卷)数学(理工类)本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟。
第Ⅰ卷1至2页,第Ⅱ卷3至5页。
答卷前,考生务必将自己的姓名、准考号填写在答题卡上,并在规定位置粘贴考试用条形码。
答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效。
考试结束后,将本试卷和答题卡一并交回。
祝各位考生考试顺利!第Ⅰ卷注意事项:1.每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
2.本卷共8小题,每小题5分,共40分。
参考公式:·如果事件A 、B 互斥,那么()()()P AB P A P B =+.·如果事件A 、B 相互独立,那么()()()P AB P A P B =.·圆柱的体积公式V Sh =,其中S 表示圆柱的底面面积,h 表示圆柱的高. ·棱锥的体积公式13V Sh =,其中S 表示棱锥的底面面积,h 表示棱锥的高. 一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设集合{1,1,2,3,5},{2,3,4},{|13}A B C x x =-==∈≤<R ,则()A CB =A .{}2B .{}2,3C .{}1,2,3-D .{}1,2,3,42.设变量,x y 满足约束条件20,20,1,1,x y x y x y +-≤⎧⎪-+≥⎪⎨≥-⎪⎪≥-⎩则目标函数4z x y =-+的最大值为A .2B .3C .5D .63.设x ∈R ,则“250x x -<”是“|1|1x -<”的A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件4.阅读下边的程序框图,运行相应的程序,输出S 的值为A .5B .8C .24D .295.已知抛物线24y x =的焦点为F ,准线为l ,若l 与双曲线22221(0,0)x y a b a b-=>>的两条渐近线分别交于点A 和点B ,且||4||AB OF =(O 为原点),则双曲线的离心率为A BC .2D 6.已知5log 2a =,0.5og 2.l 0b =,0.20.5c =,则,,a b c 的大小关系为 A .a c b <<B .a b c <<C .b c a <<D .c a b <<7.已知函数()sin()(0,0,||)f x A x A ωϕωϕ=+>><π是奇函数,将()y f x =的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图象对应的函数为()g x .若()g x 的最小正周期为2π,且4g π⎛⎫= ⎪⎝⎭38f π⎛⎫= ⎪⎝⎭A .2-B .C D .28.已知a ∈R ,设函数222,1,()ln ,1.x ax a x f x x a x x ⎧-+≤=⎨->⎩若关于x 的不等式()0f x ≥在R 上恒成立,则a 的取值范围为 A .[]0,1B .[]0,2C .[]0,e D .[]1,e第Ⅱ卷注意事项:1.用黑色墨水的钢笔或签字笔将答案写在答题卡上。
绝密★启用前2019年普通高等学校招生全国统一考试(天津卷)文科数学答卷前,考生务必将自己的姓名、准考号填写在答题卡上,并在规定位置粘贴考试用条形码。
答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效。
考试结束后,将本试卷和答题卡一并交回。
祝各位考生考试顺利!一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设集合A={﹣1,1,2,3,5},B={2,3,4},C={x∈R|1≤x<3},则(A∩C)∪B=()A.{2}B.{2,3}C.{﹣1,2,3}D.{1,2,3,4} 2.(5分)设变量x,y满足约束条件则目标函数z=﹣4x+y的最大值为()A.2B.3C.5D.63.(5分)设x∈R,则“0<x<5”是“|x﹣1|<1”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件4.(5分)阅读如图的程序框图,运行相应的程序,输出S的值为()A.5B.8C.24D.295.(5分)已知a=log27,b=log38,c=0.30.2,则a,b,c的大小关系为()A.c<b<a B.a<b<c C.b<c<a D.c<a<b6.(5分)已知抛物线y2=4x的焦点为F,准线为l.若l与双曲线﹣=1(a>0,b >0)的两条渐近线分别交于点A和点B,且|AB|=4|OF|(O为原点),则双曲线的离心率为()A.B.C.2D.7.(5分)已知函数f(x)=A sin(ωx+φ)(A>0,ω>0,|φ|<π)是奇函数,且f(x)的最小正周期为π,将y=f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图象对应的函数为g(x).若g()=,则f()=()A.﹣2B.﹣C.D.28.(5分)已知函数f(x)=若关于x的方程f(x)=﹣x+a(a∈R)恰有两个互异的实数解,则a的取值范围为()A.[,]B.(,]C.(,]∪{1}D.[,]∪{1}二、填空题:本大题共6小题,每小题5分,共30分.9.(5分)i是虚数单位,则||的值为.10.(5分)设x∈R,使不等式3x2+x﹣2<0成立的x的取值范围为.11.(5分)曲线y=cos x ﹣在点(0,1)处的切线方程为.12.(5分)已知四棱锥的底面是边长为的正方形,侧棱长均为.若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的体积为.13.(5分)设x>0,y>0,x+2y=4,则的最小值为.14.(5分)在四边形ABCD中,AD∥BC,AB=2,AD=5,∠A=30°,点E在线段CB的延长线上,且AE=BE ,则•=.三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤. 15.(13分)2019年,我国施行个人所得税专项附加扣除办法,涉及子女教育、继续教育、大病医疗、住房贷款利息或者住房租金、赡养老人等六项专项附加扣除.某单位老、中、青员工分别有72,108,120人,现采用分层抽样的方法,从该单位上述员工中抽取25人调查专项附加扣除的享受情况.(Ⅰ)应从老、中、青员工中分别抽取多少人?(Ⅱ)抽取的25人中,享受至少两项专项附加扣除的员工有6人,分别记为A,B,C,D,E,F.享受情况如表,其中“〇”表示享受,“×”表示不享受.现从这6人中随机抽取2人接受采访.(i)试用所给字母列举出所有可能的抽取结果;(ii)设M为事件“抽取的2人享受的专项附加扣除至少有一项相同”,求事件M发生的概率.16.(13分)在△ABC中,内角A,B,C所对的边分别为a,b,c.已知b+c=2a,3c sin B =4a sin C.(Ⅰ)求cos B的值;(Ⅱ)求sin(2B+)的值.17.(13分)如图,在四棱锥P﹣ABCD中,底面ABCD为平行四边形,△PCD为等边三角形,平面P AC⊥平面PCD,P A⊥CD,CD=2,AD=3.(Ⅰ)设G,H分别为PB,AC的中点,求证:GH∥平面P AD;(Ⅱ)求证:P A⊥平面PCD;(Ⅲ)求直线AD与平面P AC所成角的正弦值.18.(13分)设{a n}是等差数列,{b n}是等比数列,公比大于0.已知a1=b1=3,b2=a3,b3=4a2+3.(Ⅰ)求{a n}和{b n}的通项公式;(Ⅱ)设数列{c n}满足c n=求a1c1+a2c2+…+a2n c2n(n∈N*).19.(14分)设椭圆+=1(a>b>0)的左焦点为F,左顶点为A,上顶点为B.已知|OA|=2|OB|(O为原点).(Ⅰ)求椭圆的离心率;(Ⅱ)设经过点F且斜率为的直线l与椭圆在x轴上方的交点为P,圆C同时与x轴和直线l相切,圆心C在直线x=4上,且OC∥AP.求椭圆的方程.20.(14分)设函数f(x)=lnx﹣a(x﹣1)e x,其中a∈R.(Ⅰ)若a≤0,讨论f(x)的单调性;(Ⅱ)若0<a<,(i)证明f(x)恰有两个零点;(i)设x0为f(x)的极值点,x1为f(x)的零点,且x1>x0,证明3x0﹣x1>2.2019年天津市高考数学(文科)答案解析一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.【分析】根据集合的基本运算即可求A∩C,再求(A∩C)∪B;【解答】解:设集合A={﹣1,1,2,3,5},C={x∈R|1≤x<3},则A∩C={1,2},∵B={2,3,4},∴(A∩C)∪B={1,2}∪{2,3,4}={1,2,3,4};故选:D.【点评】本题主要考查集合的基本运算,比较基础.2.【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案.【解答】解:由约束条件作出可行域如图:联立,解得A(﹣1,1),化目标函数z=﹣4x+y为y=4x+z,由图可知,当直线y=4x+z过A时,z有最大值为5.故选:C.【点评】本题考查简单的线性规划知识,考查数形结合的解题思想方法,是中档题.3.【分析】解出关于x的不等式,结合充分必要条件的定义,从而求出答案.【解答】解:∵|x﹣1|<1,∴0<x<2,∵0<x<5推不出0<x<2,0<x<2⇒0<x<5,∴0<x<5是0<x<2的必要不充分条件,即0<x<5是|x﹣1|<1的必要不充分条件故选:B.【点评】本题考查了充分必要条件,考查解不等式问题,是一道基础题.4.【分析】由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量S的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【解答】解:i=1,s=0;第一次执行第一个判断语句后,S=1,i=2,不满足条件;第二次执行第一个判断语句后,j=1,S=5,i=3,不满足条件;第三次执行第一个判断语句后,S=8,i=4,满足退出循环的条件;故输出S值为8,故选:B.【点评】本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题5.【分析】本题可根据相应的对数式与指数式与整数进行比较即可得出结果.【解答】解:由题意,可知:a=log27>log24=2,b=log38<log39=2,c=0.30.2<1,∴c<b<a.故选:A.【点评】本题主要考查对数式与指数式的大小比较,可利用整数作为中间量进行比较.本题属基础题.6.【分析】推导出F(1,0),准线l的方程为x=﹣1,|AB|=,|OF|=1,从而b=2a,进而c==,由此能求出双曲线的离心率.【解答】解:∵抛物线y2=4x的焦点为F,准线为l.∴F(1,0),准线l的方程为x=﹣1,∵l与双曲线﹣=1(a>0,b>0)的两条渐近线分别交于点A和点B,且|AB|=4|OF|(O为原点),∴|AB|=,|OF|=1,∴,∴b=2a,∴c==,∴双曲线的离心率为e=.故选:D.【点评】本题考查双曲线的离心率的求法,考查抛物线、双曲线的性质等基础知识,考查运算求解能力,考查化归与转化思想,是中档题.7.【分析】根据条件求出φ和ω的值,结合函数变换关系求出g(x)的解析式,结合条件求出A的值,利用代入法进行求解即可.【解答】解:∵f(x)是奇函数,∴φ=0,∵f(x)的最小正周期为π,∴=π,得ω=2,则f(x)=A sin2x,将y=f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图象对应的函数为g(x).则g(x)=A sin x,若g()=,则g()=A sin=A=,即A=2,则f(x)=A sin2x,则f()=2sin(2×=2sin=2×=,故选:C.【点评】本题主要考查三角函数的解析式的求解,结合条件求出A,ω和φ的值是解决本题的关键.8.【分析】分别作出y=f(x)和y=﹣x的图象,考虑直线经过点(1,2)和(1,1)时,有两个交点,直线与y=在x>1相切,求得a的值,结合图象可得所求范围.【解答】解:作出函数f(x)=的图象,以及直线y=﹣x的图象,关于x的方程f(x)=﹣x+a(a∈R)恰有两个互异的实数解,即为y=f(x)和y=﹣x+a的图象有两个交点,平移直线y=﹣x,考虑直线经过点(1,2)和(1,1)时,有两个交点,可得a=或a=,考虑直线与y=在x>1相切,可得ax﹣x2=1,由△=a2﹣1=0,解得a=1(﹣1舍去),综上可得a的范围是[,]∪{1}.故选:D.【点评】本题考查分段函数的运用,注意运用函数的图象和平移变换,考查分类讨论思想方法和数形结合思想,属于中档题.二、填空题:本大题共6小题,每小题5分,共30分.9.【分析】本题可根据复数定义及模的概念及基本运算进行计算.【解答】解:由题意,可知:===2﹣3i,∴||=|2﹣3i|==.故答案为:.【点评】本题主要考查复数定义及模的概念及基本运算.本题属基础题.10.【分析】解一元二次不等式即可.【解答】解:3x2+x﹣2<0,将3x2+x﹣2分解因式即有:(x+1)(3x﹣2)<0;(x+1)(x﹣)<0;由一元二次不等式的解法“小于取中间,大于取两边”可得:﹣1<x<;即:{x|﹣1<x<};或(﹣1,);故答案为:(﹣1,);【点评】本题考查了不等式的解法与应用问题,是基础题.11.【分析】本题就是根据对曲线方程求导,然后将x=0代入导数方程得出在点(0,1)处的斜率,然后根据点斜式直线代入即可得到切线方程.【解答】解:由题意,可知:y′=﹣sin x﹣,∵y′|x=0=﹣sin0﹣=﹣.曲线y=cos x﹣在点(0,1)处的切线方程:y﹣1=﹣x,整理,得:x+2y﹣2=0.故答案为:x+2y﹣2=0.【点评】本题主要考查函数求导以及某点处导数的几何意义就是切线斜率,然后根据点斜式直线代入即可得到切线方程.本题属基础题.12.【分析】求出正四棱锥的底面对角线长度和正四棱锥的高度,根据题意得圆柱上底面的直径就在相对中点连线,有线段成比例求圆柱的直径和高,求出答案即可.【解答】解:由题作图可知,四棱锥底面正方形的对角线长为2,且垂直相交平分,由勾股定理得:正四棱锥的高为2,由于圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,有圆柱的上底面直径为底面正方形对角线的一半等于1,即半径等于;由相似比可得圆柱的高为正四棱锥高的一半1,则该圆柱的体积为:v=sh=π()2×1=;故答案为:【点评】本题考查正四棱锥与圆柱内接的情况,考查立体几何的体积公式,属基础题.13.【分析】利用基本不等式求最值.【解答】解:x>0,y>0,x+2y=4,则===2+;x>0,y>0,x+2y=4,由基本不等式有:4=x+2y≥2,∴0<xy≤2,≥,故:2+≥2+=;(当且仅当x=2y=2时,即:x=2,y=1时,等号成立),故的最小值为;故答案为:.【点评】本题考查了基本不等式在求最值中的应用,属于中档题.14.【分析】利用和作为基底表示向量和,然后计算数量积即可.【解答】解:∵AE=BE,AD∥BC,∠A=30°,∴在等腰三角形ABE中,∠BEA=120°,又AB=2,∴AE=2,∴,∵,∴又,∴•====﹣12+×5×2×﹣=﹣1故答案为:﹣1.【点评】本题考查了平面向量基本定理和平面向量的数量积,关键是选好基底,属中档题.三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤. 15.【分析】(Ⅰ)根据分层抽样各层所抽比例相等可得结果;(Ⅱ)(i)用列举法求出基本事件数;(ii)用列举法求出事件M所含基本事件数以及对应的概率;【解答】解:(Ⅰ)由已知,老、中、青员工人数之比为6:9:10,由于采用分层抽样从中抽取25位员工,因此应从老、中、青员工中分别抽取6人,9人,10人;(Ⅱ)(i)从已知的6人中随机抽取2人的所有可能结果为{A,B},{A,C},{A,D},{A,E},{A,F},{B,C},{B,D},{B,E},{B,F},{C,D},{C,E},{C,F},{D,E},{D,F},{E,F},共15种;(ii)由表格知,符合题意的所有可能结果为{A,B},{A,D},{A,E},{A,F},{B,D},{B,E},{B,F},{C,E},{C,F},{D,F},{E,F},共11种,所以,事件M发生的概率P(M)=.【点评】本题考查了用列举法求古典概型的概率问题以及根据数据分析统计结论的问题,是基础题目16.【分析】(Ⅰ)根据正余弦定理可得;(Ⅱ)根据二倍角的正余弦公式以及和角的正弦公式可得.【解答】解(Ⅰ)在三角形ABC中,由正弦定理=,得b sin C=c sin B,又由3c sin B=4a sin C,得3b sin C=4a sin C,即3b=4a.又因为b+c=2a,得b=,c=,由余弦定理可得cos B===﹣.(Ⅱ)由(Ⅰ)得sin B==,从而sin2B=2sin B cos B=﹣,cos2B=cos2B﹣sin2B=﹣,故sin(2B+)=sin2B cos+cos2B sin=﹣×﹣×=﹣.【点评】本小题主要考查同角三角函数的基本关系,两角和的正弦公式,二倍角的正余弦公式,以及正弦定理、余弦定理等基础知识.考查运算求解能力.属中档题.17.【分析】(Ⅰ)连结BD,由题意得AC∩BD=H,BH=DH,由BG=PG,得GH∥PD,由此能证明GH∥平面P AD.(Ⅱ)取棱PC中点N,连结DN,推导出DN⊥PC,从而DN⊥平面P AC,进而DN⊥P A,再上P A⊥CD,能证明P A⊥平面PCD.(Ⅲ)连结AN,由DN⊥平面P AC,知∠DAN是直线AD与平面P AC所成角,由此能求出直线AD与平面P AC所成角的正弦值.【解答】证明:(Ⅰ)连结BD,由题意得AC∩BD=H,BH=DH,又由BG=PG,得GH∥PD,∵GH⊄平面P AD,PD⊂平面P AD,∴GH∥平面P AD.(Ⅱ)取棱PC中点N,连结DN,依题意得DN⊥PC,又∵平面P AC⊥平面PCD,平面P AC∩平面PCD=PC,∴DN⊥平面P AC,又P A⊂平面P AC,∴DN⊥P A,又P A⊥CD,CD∩DN=D,∴P A⊥平面PCD.解:(Ⅲ)连结AN,由(Ⅱ)中DN⊥平面P AC,知∠DAN是直线AD与平面P AC所成角,∵△PCD是等边三角形,CD=2,且N为PC中点,∴DN=,又DN⊥AN,在Rt△AND中,sin∠DAN==.∴直线AD与平面P AC所成角的正弦值为.【点评】本题考查直线与平面平行、直线与平面垂直、平面与平面垂直、直线与平面所成角等基础知识,考查空间想象能力和运算求解能力.18.【分析】(Ⅰ)由等差等比数列通项公式和前n项和的求解{a n}和{b n}的通项公式即可.(Ⅱ)利用分组求和和错位相减法得答案.【解答】解:(Ⅰ){a n}是等差数列,{b n}是等比数列,公比大于0.设等差数列{a n}的公差为d,等比数列{b n}的公比为q,q>0.由题意可得:3q=3+2d①;3q2=15+4d②解得:d=3,q=3,故a n=3+3(n﹣1)=3n,b=3×3n﹣1=3n(Ⅱ)数列{c n}满足c n=,a1c1+a2c2+…+a2n c2n(n∈N*)=(a1+a3+a5+…+a2n﹣1)+(a2b1+a4b2+a6b3+…+a2n b n)=[3n+×6]+(6×3+12×32+18×33+…+6n×3n)=3n2+6(1×3+2×32+…+n×3n)令T n=(1×3+2×32+…+n×3n)①,则3T n=1×32+2×33+…+n3n+1②,②﹣①得:2T n=﹣3﹣32﹣33…﹣3n+n3n+1=﹣3×+n3n+1=;故a1c1+a2c2+…+a2n c2n=3n2+6T n=(n∈N*)【点评】本题主要考查等差等比数列通项公式和前n项和的求解,考查数列求和的基本方法分组和错位相减法的运算求解能力,属中档题.19.【分析】(Ⅰ)由题意可得a=2b,再由离心率公式可得所求值;(Ⅱ)求得a=2c,b=c,可得椭圆方程为+=1,设直线FP的方程为y=(x+c),联立椭圆方程求得P的坐标,以及直线AP的斜率,由两条直线平行的条件和直线与圆相切的条件,解方程可得c=2,即可得到所求椭圆方程.【解答】解:(Ⅰ)|OA|=2|OB|,即为a=2b,可得e====;(Ⅱ)b=a,c=a,即a=2c,b=c,可得椭圆方程为+=1,设直线FP的方程为y=(x+c),代入椭圆方程可得7x2+6cx﹣13c2=0,解得x=c或x=﹣,代入直线PF方程可得y=或y=﹣(舍去),可得P(c,),圆心C在直线x=4上,且OC∥AP,可设C(4,t),可得=,解得t=2,即有C(4,2),可得圆的半径为2,由直线FP和圆C相切的条件为d=r,可得=2,解得c=2,可得a=4,b=2,可得椭圆方程为+=1.【点评】本题考查椭圆的方程和性质,注意运用直线和椭圆方程联立,求交点,以及直线和圆相切的条件:d=r,考查化简运算能力,属于中档题.20.【分析】(I)f′(x)=﹣[ae x+a(x﹣1)e x]=,x∈(0,+∞).a≤0时,f′(x)>0,即可得出函数f(x)在x∈(0,+∞)上单调性.(II)(i)由(I)可知:f′(x)=,x∈(0,+∞).令g(x)=1﹣ax2e x,∵0<a<,可知:可得g(x)存在唯一解x0∈(1,ln).可得x0是函数f(x)的唯一极值点.令h(x)=lnx﹣x+1,可得x>1时,lnx<x﹣1.f(ln)<0.f(x0)>f(1)=0.可得函数f(x)在(x0,+∞)上存在唯一零点.又函数f(x)在(0,x0)上有唯一零点1.即可证明结论.(ii)由题意可得:f′(x0)=0,f(x1)=0,即a=1,lnx1=a(x1﹣1),可得=,由x>1,可得lnx<x﹣1.又x1>x0>1,可得<=,取对数即可证明.【解答】(I)解:f′(x)=﹣[ae x+a(x﹣1)e x]=,x∈(0,+∞).a≤0时,f′(x)>0,∴函数f(x)在x∈(0,+∞)上单调递增.(II)证明:(i)由(I)可知:f′(x)=,x∈(0,+∞).令g(x)=1﹣ax2e x,∵0<a<,可知:g(x)在x∈(0,+∞)上单调递减,又g(1)=1﹣ae>0.且g(ln)=1﹣a=1﹣<0,∴g(x)存在唯一解x0∈(1,ln).即函数f(x)在(0,x0)上单调递增,在(x0,+∞)单调递减.∴x0是函数f(x)的唯一极值点.令h(x)=lnx﹣x+1,(x>0),h′(x)=,可得h(x)≤h(1)=0,∴x>1时,lnx<x﹣1.f(ln)=ln(ln)﹣a(ln﹣1)=ln(ln)﹣(ln﹣1)<0.∵f(x0)>f(1)=0.∴函数f(x)在(x0,+∞)上存在唯一零点.又函数f(x)在(0,x0)上有唯一零点1.因此函数f(x)恰有两个零点;(ii)由题意可得:f′(x0)=0,f(x1)=0,即a=1,lnx1=a(x1﹣1),∴lnx1=,即=,∵x>1,可得lnx<x﹣1.又x1>x0>1,故<=,取对数可得:x1﹣x0<2lnx0<2(x0﹣1),化为:3x0﹣x1>2.【点评】本题考查了利用导数研究函数的单调性极值与最值、方程与不等式的解法、分类讨论方法、等价转化方法、构造法,考查了推理能力与计算能力,属于难题.。
题目:某单位准备组织员工进行一次外出旅游活动,计划安排到A、B、C三个景点参观,每个员工只能选择去其中一个景点,每个景点也只安排一个员工去参观。
现在共有15名员工参加此次活动,求一共有多少种不同的安排方法。
解题思路:
本题需要安排15名员工到三个景点参观,每个员工只能选择一个景点,每个景点也只安排一名员工。
因此,需要使用排列组合的知识来解决。
首先,需要确定每个员工的选择,即每个人只能选择一个景点。
因此,对于15名员工,一共有1^15 = 15个选择方案。
接下来,需要确定每个景点的员工人数。
由于只有三个景点,所以每个景点最多可以有15名员工参加。
因此,对于三个景点,最多可以有3个选择方案。
由于每个选择方案都是唯一的,所以对于每个员工的选定和每个景点的员工人数,都需要单独考虑。
因此,总的安排方法数为每个选择方案数量的乘积:
$1 \times 2 \times 3 = 6$
其中,每个选择方案的数量分别为:
方案一:只有A景点有员工参加,共有1种情况;
方案二:只有B景点有员工参加,共有2种情况;
方案三:只有C景点有员工参加,共有3种情况;
综上所述,一共有6种不同的安排方法。
答案:一共有6种不同的安排方法。
注意事项:
1. 每个员工只能选择一个景点参观;
2. 每个景点也只安排一名员工参观;
3. 每个人的选择和每个景点的员工人数都是唯一的;
4. 考虑每种情况的可能性时,需要分别考虑每个人的选定和每个景点的员工人数。
高考数学试卷一、单选题1.定义区间[]()1212,x x x x <的长度为21x x -,已知函数||2x y =的定义域为[,]a b ,值域为[1,2],则区间[,]a b 的长度的最大值与最小值的差为( )A.1B.2C.3D.122.已知角α的顶点与原点重合,始边与x 轴的非负半轴重合,终边在直线3y x =上,则sin 4πα⎛⎫+= ⎪⎝⎭( ) A.25255 D.53.袋中有2个白球,2个黑球,若从中任意摸出2个,则至少摸出1个黑球的概率是( )A .16B .13C .34D .564.复数满足(12)3z i i -=-,则z 在复平面内对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限5.某学校党支部评选了5份优秀学习报告心得体会(其中教师2份,学生3份),现从中随机抽选2份参展,则参展的优秀学习报告心得体会中,学生、教师各一份的概率是( )A .120B .35C .310D .9106.已知函数()11f x x x =--,在下列区间中,包含()f x 零点的区间是( )A .14 ,12⎛⎫ ⎪⎝⎭ B .12 ,1⎛⎫ ⎪⎝⎭ C .(1,2) D .(2,3) 7.2020年,一场突如其来的“肺炎”使得全国学生无法在春季正常开学,不得不在家“停课不停学”.为了解高三学生居家学习时长,从某校的调查问卷中,随机抽取n 个学生的调查问卷进行分析,得到学生可接受的学习时长频率分布直方图(如下图所示),已知学习时长在[9,11)的学生人数为25,则n 的值为( )A .40B .50C .80D .1008.在三棱锥B ACD -中,若AB AC AD BC BD CD =====,则异面直线AB 与CD 所成角为( )A .30°B .60°C .90°D .120°9.若命题甲:10x -=,命题乙:2lg lg 0x x -=,则命题甲是命题乙的( )A .充分非必要条件B .必要非充分条件C .充要条件D .非充分也非必要条件10.函数21x y x +=-的定义域为( ) A .{|21}x x x >-≠且 B .{|21}x x x ≥-≠且C .)[(21,1,)-⋃+∞D .)((21,1,)-⋃+∞11.已知m 3=n 4,那么下列式子中一定成立的是( )A .4m =3nB .3m =4nC .m =4nD .mn =12 12.命题:00x ∃≤,20010x x -->的否定是( ) A .0x ∀>,210x x --≤ B .00x ∃>,20010x x -->C .00x ∃≤,20010x x --≤D .0x ∀≤,210x x --≤二、填空题13.某校高一、高二、高三年级的学生人数之比为4:4:3,现按年级用分层抽样的方法抽取若干人,若抽取的高三年级的学生数为15,则抽取的样本容量为_______14.已知球的体积为36π,则该球大圆的面积等于______.三、解答题15.已知函数2()2sin cos 233(0)f x x x x ωωωω=+>的最小正周期为π. (1)求函数()f x 的单调递增区间;(2)将函数()f x 的图像向左平移6π个单位,再向上平移1个单位,得到函数()y g x =的图像,若()y g x =在[0,](0)b b >上至少含有10个零点,求b 的最小值.16.已知x+y=7,xy=-8,求:(1)x2+y2的值;(2)(x-y )2的值.(3)若不等式f (2x )≧m ·2x 对x ЄR 恒成立,求实数m 的取值范围。