辽宁省2020年高考数学 第20题优美解
- 格式:doc
- 大小:72.50 KB
- 文档页数:2
考点20 两角和与差的正弦、余弦和正切1、在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且b 2=a 2+bc ,A =π6,则角C =( )A.π6B .π4C .π6或3π4D .π4或3π4【答案】B【解析】在△ABC 中,由余弦定理得cos A =b 2+c 2-a 22bc ,即32=b 2+c 2-a 22bc,所以b 2+c 2-a 2=3bc .又b2=a 2+bc ,所以c 2+bc =3bc ,即c =(3-1)b <b ,则a =2-3b ,所以cos C =b 2+a 2-c 22ab =22,解得C =π4.故选B.2、△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,已知b =7,c =4,cos B =34,则△ABC 的面积为( )A .37B .372C .9D .92【答案】B【解析】.由余弦定理b 2=c 2+a 2-2ac cos B ,得7=16+a 2-6a ,解得a =3,∵cos B =34,∴sin B =74,∴S △ABC =12ca sin B =12×4×3×74=372.故选B.3、在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若b 2+c 2-a 2=3bc ,且b =3a ,则下列关系一定不成立的是( ) A .a =c B .b =c C .2a =c D .a 2+b 2=c 2【答案】B【解析】由余弦定理,得cos A =b 2+c 2-a 22bc =3bc 2bc =32,则A =30°.又b =3a ,由正弦定理得sin B =3sin A =3sin 30°=32,所以B =60°或120°. 当B =60°时,△ABC 为直角三角形,且2a =c ,可知C ,D 成立;当B =120°时,C =30°,所以A =C ,即a =c ,可知A 成立.故选B.4、已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,sin A ∶sin B =1∶3,c =2cos C =3,则△ABC 的周长为( ) A .3+3 3 B .2 3 C .3+2 3 D .3+ 3【答案】C【解析】因为sin A ∶sin B =1∶3,所以b =3a ,由余弦定理得cos C =a 2+b 2-c 22ab =a 2+(3a )2-c 22a ×3a=32,又c =3,所以a =3,b =3,所以△ABC 的周长为3+23,故选C.5、在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若A =60°,b =1,S △ABC =3,则c =( ) A .1 B .2 C .3 D .4【答案】D【解析】∵S △ABC =12bc sin A ,∴3=12×1×c ×32,∴c =4.6、在△ABC 中,sin 2A ≤sin 2B +sin 2C -sin B sin C ,则A 的取值范围是( )A.⎝ ⎛⎭⎪⎫0,π6B .⎣⎢⎡⎦⎥⎤π6,πC.⎝⎛⎦⎥⎤0,π3 D .⎣⎢⎡⎦⎥⎤π3,π 【答案】C【解析】由正弦定理及sin 2A ≤sin 2B +sin 2C -sin B sin C 可得a 2≤b 2+c 2-bc ,即b 2+c 2-a 2≥bc ,由余弦定理可得cos A =b 2+c 2-a 22bc ≥bc 2bc =12,又0<A <π,所以0<A ≤π3.故A 的取值范围是⎝⎛⎦⎥⎤0,π3.故选C.7、在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若cb<cos A ,则△ABC 为( ) A .钝角三角形 B .直角三角形 C .锐角三角形 D .等边三角形【答案】A【解析】根据正弦定理得c b =sin Csin B<cos A ,即sin C <sin B cos A ,∵A +B +C =π,∴sin C =sin(A +B )<sin B cos A ,整理得sin A cos B <0.又在三角形中sin A >0, ∴cos B <0,∴π2<B <π.∴△ABC 为钝角三角形.8、在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .若△ABC 为锐角三角形,且满足sin B (1+2cos C )=2sinA cos C +cos A sin C ,则下列等式成立的是( )A .a =2bB .b =2aC .A =2BD .B =2A【答案】A【解析】因为A +B +C =π,sin B (1+2cos C )=2sin A cos C +cos A sin C ,所以sin(A +C )+2sin B cosC =2sin A cos C +cos A sin C ,所以2sin B cos C =sin A cos C .又cos C ≠0,所以2sin B =sin A ,所以2b =a ,故选A.9、在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若a =7,b =3,c =2,则A =( ) A.π6B .π4C .π3D .π2【答案】C【解析】∵cos A =b 2+c 2-a 22bc =32+22-722×3×2=12,且A ∈()0,π,∴A =π3.故选C. 10、已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且c -b c -a =sin Asin C +sin B,则B 等于( ) A.π6 B .π4C.π3D .3π4【答案】C【解析】根据正弦定理a sin A =b sin B =csin C =2R ,得c -b c -a =sin A sin C +sin B =ac +b, 即a 2+c 2-b 2=ac ,得cos B =a 2+c 2-b 22ac =12,又0<B <π,所以B =π3,故选C.11、在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若(a 2+b 2-c 2)tan C =ab ,则角C 的大小为( ) A.π6或5π6 B .π3或2π2C.π6D .2π3【答案】A【解析】由题意知,a 2+b 2-c 22ab =12tan C ⇒cos C =cos C 2sin C ,∴sin C =12.又C ∈(0,π),∴C =π6或5π6.故选A.12、在△ABC 中,B =π4,BC 边上的高等于13BC ,则cos A =( )A.31010B .1010C .-1010D .-31010【答案】C【解析】如图,过A 作AD ⊥BC ,垂足为D ,由题意知AD =BD =13BC ,则CD =23BC ,AB =23BC ,AC =53BC ,在△ABC 中,由余弦定理的推论可知,cos ∠BAC =AB 2+AC 2-BC 22AB ·AC=29BC 2+59BC 2-BC 22×23BC ×53BC =-1010,故选C. 13、在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若cos A +sin A -2cos B +sin B=0,则a +bc的值是( ) A .1 B . 2 C. 3 D .2【答案】B【解析】因为cos A +sin A -2cos B +sin B=0,所以(cos A +sin A )(cos B +sin B )=2,所以cos A cosB +sin A sin B +sin A cos B +cos A sin B =2,即cos(A -B )+sin(A +B )=2,所以cos(A -B )=1,sin(A+B )=1,又A ,B 分别为三角形的内角,所以A =B ,A +B =π2,所以a =b ,C =π2,所以a +bc =22c +22c c=2,故选B.14、△ABC 中,角A ,B ,C 的对边分别是a ,b ,c .已知b =c ,a 2=2b 2(1-sin A ),则A =( ) A.3π4B .π3C .π4D .π6【答案】C【解析】∵b =c ,∴B =C .又由A +B +C =π得B =π2-A 2.由正弦定理及a 2=2b 2(1-sin A )得sin 2A =2sin 2B ·(1-sin A ),即sin 2A=2sin 2⎝ ⎛⎭⎪⎫π2-A 2(1-sin A ),即sin 2A =2cos 2A 2(1-sin A ),即4sin 2A 2cos 2A 2=2cos 2A 2(1-sin A ),整理得cos 2A 2⎝ ⎛⎭⎪⎫1-sin A -2sin 2A 2=0,即cos 2A2(cos A -sin A )=0.∵0<A <π,∴0<A 2<π2,∴cos A2≠0,∴cos A =sin A .又0<A <π,∴A =π4.15、在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c .若a 2-b 2=3bc ,sin C =2 3sin B ,则A =( )A .150°B .120°C .60°D .30°【答案】D【解析】由a 2-b 2=3bc ,得sin 2A -sin 2B =3sin B ·sinC , ∵sin C =23sin B ,∴sin A =7sin B ,∴c =23b ,a =7b ,由余弦定理得cos A =12b 2+b 2-7b22×23b ×b=32,∴A =30°.故选D. 16、在△ABC 中,A =π4,b 2sin C =42sin B ,则△ABC 的面积为________.【答案】2【解析】因为b 2sin C =42sin B ,所以b 2c =42b ,即bc =42,故S △ABC =12bc sin A =12×42×22=2.17、在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若2(b cos A +a cos B )=c 2,b =3,3cos A =1,则a 的值为________. 【答案】3【解析】由正弦定理可得2(sin B cos A +sin A cos B )=c sin C ,∵2(sin B cos A +sin A cos B )=2sin(A +B )=2sin C ,∴2sin C =c sin C ,∵sin C >0,∴c =2,由余弦定理得a 2=b 2+c 2-2bc cos A =22+32-2×2×3×13=9,∴a =3.18、在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,已知c =5,B =2π3,△ABC 的面积为1534,则cos2A =________. 【答案】7198【解析】由三角形的面积公式,得S △ABC =12ac sin B =12×a ×5×sin 2π3=12×32×5a =1534,解得a =3.由b 2=a 2+c 2-2ac cos B =32+52-2×3×5×⎝ ⎛⎭⎪⎫-12=49,得b =7.由a sin A =b sin B ⇒sin A =a b sin B =37sin2π3=3314,∴cos 2A =1-2sin 2A =1-2×⎝ ⎛⎭⎪⎫33142=7198. 19、在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若角A ,B ,C 依次成等差数列,且a =1,b =3,则S △ABC =________. 【答案】32【解析】因为角A ,B ,C 依次成等差数列,所以B =60°.由正弦定理,得1sin A =3sin 60°,解得sin A =12.因为0°<A <180°,所以A =30°或150°(舍去),此时C =90°,所以S △ABC =12ab =32. 20、已知△ABC 中,AB =AC =4,BC =2.点D 为AB 延长线上一点,BD =2,连接CD ,则△BDC 的面积是________,cos ∠BDC =________. 【答案】152;104【解析】由余弦定理得cos ∠ABC =42+22-422×4×2=14,∴cos ∠CBD =-14,sin ∠CBD =154,∴S △BDC =12BD ·BC ·sin∠CBD =12×2×2×154=152.又cos ∠ABC =cos 2∠BDC =2cos 2∠BDC -1=14,0<∠BDC <π2,∴cos ∠BDC =104. 21、在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c .若b 2+c 2=2a 2,则cos A 的最小值为________. 【答案】12【解析】因为b 2+c 2=2a 2,则由余弦定理可得a 2=2bc cos A ,所以cos A =a 22bc =12×b 2+c 22bc ≥12×2bc 2bc =12(当且仅当b =c 时等号成立),即cos A 的最小值为12.22、△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知△ABC 的面积为a 23sin A .(1)求sin B sin C ;(2)若6cos B cos C =1,a =3,求△ABC 的周长. 【答案】【解析】(1)由题设得12ac sin B =a 23sin A ,即12c sin B =a3sin A .由正弦定理得12sin C sin B =sin A3sin A .故sin B sin C =23.(2)由题设及(1)得cos B cos C -sin B sin C =-12,即cos(B +C )=-12.所以B +C =2π3,故A =π3.由题设得12bc sin A =a23sin A,a =3,即bc =8.由余弦定理得b 2+c 2-bc =9,即(b +c )2-3bc =9,由bc =8, 得b +c =33.故△ABC 的周长为3+33.23、如图,在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且2a cos A =b cos C +c cos B .(1)求角A 的大小;(2)若点D 在边AC 上,且BD 是∠ABC 的平分线,AB =2,BC =4,求AD 的长. 【答案】【解】(1)由题意及正弦定理得2sin A cos A =sin B cos C +sin C cos B =sin(B +C )=sin A . ∵sin A ≠0,∴cos A =12.∵A ∈(0,π),∴A =π3.(2)在△ABC 中,由余弦定理得,BC 2=AB 2+AC 2-2AB ·AC cos A ,即16=4+AC 2-2AC ,解得AC =1+13,或AC =1-13(负值,舍去). ∵BD 是∠ABC 的平分线,AB =2,BC =4, ∴AD DC =AB BC =12,∴AD =13AC =1+133. 24、在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,且cos A a+cos B b=sin C c. (1)证明:sin A sin B =sin C . (2)若b 2+c 2-a 2=65bc ,求tan B .【答案】(1)见解析 (2)4 【解析】(1)证明:由正弦定理asin A=bsin B =csin C,可知原式可以化简为cos A sin A +cos B sin B =sin Csin C=1,因为A 和B 为三角形的内角,所以sin A sin B ≠0, 则两边同时乘以sin A sin B ,可得 sin B cos A +sin A cos B =sin A sin B ,由和角公式可知,sin B cos A +sin A cos B =sin(A +B )=sin(π-C )=sin C ,∴sin C =sin A sin B ,故原式得证.(2)由b 2+c 2-a 2=65bc ,根据余弦定理可知,cos A =b 2+c 2-a 22bc =35.因为A 为三角形内角,A ∈(0,π),sin A >0,则sin A =1-⎝ ⎛⎭⎪⎫352=45,即cos A sin A =34,由(1)可知cos A sin A +cos B sin B =sin C sin C =1,所以cos B sin B =1tan B =1-cos A sin A =1-34=14,所以tan B =4. 25、在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知cos 2B +cos B =1-cos A cosC . (1)求证:a ,b ,c 成等比数列; (2)若b =2,求△ABC 的面积的最大值. 【答案】(1)见解析 (2) 3【解析】(1)在△ABC 中,cos B =-cos(A +C ). 由已知,得(1-sin 2B )-cos(A +C )=1-cos A cos C ,∴-sin 2B -(cos A cosC -s in A sin C )=-cos A cos C ,化简,得sin 2B =sin A sinC . 由正弦定理,得b 2=ac ,∴a ,b ,c 成等比数列. (2)由(1)及题设条件,得ac =4.则cos B =a 2+c 2-b 22ac =a 2+c 2-ac 2ac ≥2ac -ac 2ac =12,当且仅当a =c 时,等号成立. ∵0<B <π,∴sin B =1-cos 2B ≤1-⎝ ⎛⎭⎪⎫122=32. ∴S △ABC =12ac sin B ≤12×4×32= 3.∴△ABC 的面积的最大值为 3.26、在锐角三角形ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,且4sin A cos 2A -3cos(B +C )=sin 3A + 3. (1)求A 的大小;(2)若b =2,求△ABC 面积的取值范围. 【答案】 (1) π3 (2) 32c【解析】(1)∵A +B +C =π,∴cos(B +C )=-cos A ①, ∵3A =2A +A ,∴sin 3A =sin(2A +A )=sin 2A cos A +cos 2A sin A ②, 又sin 2A =2sin A cos A ③,将①②③代入已知,得2sin 2A cos A +3cos A =sin 2A cos A +cos 2A sin A +3, 整理得sin A +3cos A =3,即sin ⎝ ⎛⎭⎪⎫A +π3=32,又A ∈⎝ ⎛⎭⎪⎫0,π2,∴A +π3=2π3,即A =π3.(2)由(1)得B +C =2π3,∴C =2π3-B ,∵△ABC 为锐角三角形,∴2π3-B ∈⎝⎛⎭⎪⎫0,π2且B ∈⎝⎛⎭⎪⎫0,π2,解得B ∈⎝ ⎛⎭⎪⎫π6,π2, 在△ABC 中,由正弦定理得2sin B =csin C,∴c =2sin C sin B =2sin ⎝ ⎛⎭⎪⎫2π3-B sin B =3tan B+1,又B ∈⎝⎛⎭⎪⎫π6,π2,∴1tan B ∈(0,3),∴c ∈(1,4),∵S △ABC =12bc sin A =32c ,∴S △ABC ∈⎝ ⎛⎭⎪⎫32,23.27、在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .已知2(tan A +tan B )=tan A cos B +tan Bcos A .(1)证明:a +b =2c ; (2)求cos C 的最小值.【答案】 (1) 见解析 (2) 12.【解析】(1)由题意知 2⎝⎛⎭⎪⎫sin A cos A +sin B cos B =sin A cos A cos B +sin B cos A cos B,化简得2(sin A cos B +sin B cos A )=sin A +sin B , 即2sin(A +B )=sin A +sin B .因为A +B +C =π,所以sin(A +B )=sin(π-C )=sin C . 从而sin A +sin B =2sin C . 由正弦定理得a +b =2c . (2)由(1)知c =a +b2,所以cos C =a 2+b 2-c 22ab=a 2+b 2-⎝ ⎛⎭⎪⎫a +b 222ab=38⎝ ⎛⎭⎪⎫a b +b a -14≥12, 当且仅当a =b 时,等号成立. 故cos C 的最小值为12.28、在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .(1)若23cos 2A +cos 2A =0,且△ABC 为锐角三角形,a =7,c =6,求b 的值; (2)若a =3,A =π3,求b +c 的取值范围.【答案】(1) 5 (2)b +c ∈(3,23]【解析】(1)∵23cos 2A +cos 2A =23cos 2A +2cos 2A -1=0, ∴cos 2A =125,又A 为锐角,∴cos A =15,而a 2=b 2+c 2-2bc cos A ,即b 2-125b -13=0,解得b =5(负值舍去),∴b =5.(2)解法一:由正弦定理可得b +c =2(sin B +sin C )=2⎣⎢⎡⎦⎥⎤sin B +sin ⎝⎛⎭⎪⎫2π3-B =23sin ⎝⎛⎭⎪⎫B +π6, ∵0<B <2π3,∴π6<B +π6<5π6, ∴12<sin ⎝⎛⎭⎪⎫B +π6≤1,∴b +c ∈(3,23]. 解法二:由余弦定理a 2=b 2+c 2-2bc cos A 可得 b 2+c 2-3=bc ,即(b +c )2-3=3bc ≤34(b +c )2,当且仅当b =c 时取等号, ∴b +c ≤23,又由两边之和大于第三边可得b +c >3,∴b +c 的取值范围为(3,23].。
专题20 坐标系与参数方程1.考查参数方程与普通方程、极坐标方程与直角坐标方程的互化.2.考查利用曲线的参数方程、极坐标方程计算某些量或讨论某些量之间的关系.知识点一、直角坐标与极坐标的互化如图,把直角坐标系的原点作为极点,x 轴正半轴作为极轴,且在两坐标系中取相同的长度单位.设M是平面内的任意一点,它的直角坐标、极坐标分别为(x ,y )和(ρ,θ),则⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ,⎩⎪⎨⎪⎧ρ2=x 2+y 2,tan θ=y x x ≠0.【特别提醒】在曲线方程进行互化时,一定要注意变量的范围,要注意转化的等价性. 知识点二、直线、圆的极坐标方程 (1)直线的极坐标方程若直线过点M (ρ0,θ0),且极轴到此直线的角为α,则它的方程为:ρsin(θ-α)=ρ0sin(θ0-α). 几个特殊位置直线的极坐标方程 ①直线过极点:θ=α;②直线过点M (a ,0)且垂直于极轴:ρcos θ=a ; ③直线过点M ⎝⎛⎭⎫b ,π2且平行于极轴:ρsin θ=b . (2)几个特殊位置圆的极坐标方程 ①圆心位于极点,半径为r :ρ=r ;②圆心位于M (r ,0),半径为r :ρ=2r cos θ;③圆心位于M ⎝⎛⎭⎫r ,π2,半径为r :ρ=2r sin θ. 【特别提醒】当圆心不在直角坐标系的坐标轴上时,要建立圆的极坐标方程,通常把极点放置在圆心处,极轴与x 轴同向,然后运用极坐标与直角坐标的变换公式.知识点三、参数方程 (1)直线的参数方程过定点M (x 0,y 0),倾斜角为α的直线l 的参数方程为⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数).(2)圆、椭圆的参数方程①圆心在点M (x 0,y 0),半径为r 的圆的参数方程为⎩⎪⎨⎪⎧x =x 0+r cos θ,y =y 0+r sin θ(θ为参数,0≤θ≤2π).②椭圆x 2a 2+y 2b 2=1的参数方程为⎩⎪⎨⎪⎧x =a cos θ,y =b sin θ(θ为参数).【特别提醒】在参数方程和普通方程的互化中,必须使x ,y 的取值范围保持一致.高频考点一 坐标系与极坐标例1.【2019年高考全国Ⅲ卷理数】如图,在极坐标系Ox 中,(2,0)A ,)4B π,)4C 3π,(2,)D π,弧AB ,BC ,CD 所在圆的圆心分别是(1,0),(1,)2π,(1,)π,曲线1M 是弧AB ,曲线2M 是弧BC ,曲线3M 是弧CD .(1)分别写出1M ,2M ,3M 的极坐标方程;(2)曲线M 由1M ,2M ,3M 构成,若点P 在M 上,且||OP =P 的极坐标.【答案】(1)1M 的极坐标方程为π2cos 04ρθθ⎛⎫=≤≤⎪⎝⎭,2M 的极坐标方程为π3π2sin 44ρθθ⎛⎫=≤≤⎪⎝⎭,3M 的极坐标方程为3π2cos π4ρθθ⎛⎫=-≤≤⎪⎝⎭. (2)π3,6⎛⎫ ⎪⎝⎭或π3,3⎛⎫ ⎪⎝⎭或2π3,3⎛⎫ ⎪⎝⎭或5π3,6⎛⎫ ⎪⎝⎭.【解析】(1)由题设可得,弧,,AB BC CD 所在圆的极坐标方程分别为2cos ρθ=,2sin ρθ=,2cos ρθ=-.所以1M 的极坐标方程为π2cos 04ρθθ⎛⎫=≤≤⎪⎝⎭,2M 的极坐标方程为π3π2sin 44ρθθ⎛⎫=≤≤ ⎪⎝⎭,3M 的极坐标方程为3π2cos π4ρθθ⎛⎫=-≤≤⎪⎝⎭. (2)设(,)P ρθ,由题设及(1)知若π04θ≤≤,则2cos 3θ=,解得π6θ=; 若π3π44θ≤≤,则2sin 3θ=,解得π3θ=或2π3θ=; 若3ππ4θ≤≤,则2cos 3θ-=,解得5π6θ=. 综上,P 的极坐标为π3,6⎛⎫ ⎪⎝⎭或π3,3⎛⎫ ⎪⎝⎭或2π3,3⎛⎫ ⎪⎝⎭或5π3,6⎛⎫⎪⎝⎭.【变式探究】在极坐标系中,直线4cos()106ρθπ-+=与圆2sin ρθ=的公共点的个数为___________.【答案】2【解析】直线为23210x y ++= ,圆为22(1)1x y +-= ,因为314d =< ,所以有两个交点 【变式探究】在极坐标系中,直线cos 3sin 10ρθρθ--=与圆2cos ρθ=交于A ,B 两点,则||AB =______.【答案】2【解析】直线310x y -=过圆22(1)1x y -+=的圆心,因此 2.AB =【变式探究】在极坐标系中,圆ρ=2cos θ的垂直于极轴的两条切线方程分别为( ) A .θ=0(ρ∈R )和ρcos θ=2B .θ=π2(ρ∈R )和ρcos θ=2C .θ=π2(ρ∈R )和ρcos θ=1D .θ=0(ρ∈R )和ρcos θ=1【解析】由ρ=2cos θ得x 2+y 2-2x =0. ∴(x -1)2+y 2=1,圆的两条垂直于x 轴的切线方程为x =0和x =2. 故极坐标方程为θ=π2(ρ∈R )和ρcos θ=2,故选B.【答案】B高频考点二 参数方程例2.【2019年高考全国Ⅰ卷理数】在直角坐标系xOy 中,曲线C 的参数方程为(t 为参数).以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为.(1)求C 和l 的直角坐标方程; (2)求C 上的点到l 距离的最小值.【答案】(1)221(1)4y x x +=≠-;l的直角坐标方程为2110x ++=;(2)7.【解析】(1)因为221111t t --<≤+,且()22222222141211y t t x t t ⎛⎫-⎛⎫+=+= ⎪ ⎪+⎝⎭⎝⎭+,所以C 的直角坐标方程为221(1)4y x x +=≠-.l的直角坐标方程为2110x ++=. (2)由(1)可设C 的参数方程为cos ,2sin x y αα=⎧⎨=⎩(α为参数,ππα-<<).C 上的点到lπ4cos 11α⎛⎫-+ ⎪=.2221141t x t t y t ⎧-=⎪⎪+⎨⎪=⎪+⎩,2cos sin 110ρθθ+=当2π3α=-时,π4cos 113α⎛⎫-+ ⎪⎝⎭取得最小值7,故C 上的点到l 距离的最小值为7.【变式探究】在平面坐标系中xOy 中,已知直线l 的参考方程为x 82t t y =-+⎧⎪⎨=⎪⎩(t 为参数),曲线C 的参数方程为22,x s y ⎧=⎪⎨=⎪⎩(s 为参数).设P 为曲线C 上的动点,求点P 到直线l 的距离的最小值.【答案】5【解析】直线l 的普通方程为280x y -+=. 因为点P 在曲线C上,设()22,P s ,从而点P 到直线l 的的距离224s d +==,当s =min d =. 因此当点P 的坐标为()4,4时,曲线C上点P 到直线l 的距离取到最小值5. 【考点】参数方程化普通方程【变式探究】在直角坐标系x O y 中,曲线C 1的参数方程为cos 1sin x a ty a t=⎧⎨=+⎩(t 为参数,a >0).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=4cos θ.(I)说明C 1是哪一种曲线,并将C 1的方程化为极坐标方程;(II)直线C 3的极坐标方程为0θα=,其中0α满足tan 0α=2,若曲线C 1与C 2的公共点都在C 3上,求a . 【答案】(I)圆,222sin 10a ρρθ-+-=(II)1【解析】解:(Ⅰ)消去参数t 得到1C 的普通方程222)1(a y x =-+.1C 是以)1,0(为圆心,a 为半径的圆.将θρθρsin ,cos ==y x 代入1C 的普通方程中,得到1C 的极坐标方程为01sin 222=-+-a θρρ.(Ⅰ)曲线21,C C 的公共点的极坐标满足方程组⎩⎨⎧==-+-,cos 4,01sin 222θρθρρa 若0≠ρ,由方程组得01cos sin 8cos 1622=-+-a θθθ,由已知2tan =θ,可得0cos sin 8cos162=-θθθ,从而012=-a ,解得1-=a (舍去),1=a .1=a 时,极点也为21,C C 的公共点,在3C 上.所以1=a .【变式探究】已知直线l 的参数方程为1,1x t y t =-+⎧⎨=+⎩(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρ2cos 2θ=4⎝⎛⎭⎫ρ>0,3π4<θ<5π4,则直线l 与曲线C 的交点的极坐标为________.【解析】直线l 的直角坐标方程为y =x +2,由ρ2cos 2θ=4得ρ2(cos 2θ-sin 2θ)=4,直角坐标方程为x 2-y 2=4,把y =x +2代入双曲线方程解得x =-2,因此交点为(-2,0),其极坐标为(2,π).【答案】(2,π)【变式探究】若以直角坐标系的原点为极点,x 轴的非负半轴为极轴建立极坐标系,则线段y =1-x (0≤x ≤1)的极坐标方程为( )A .ρ=1cos θ+sin θ,0≤θ≤π2B .ρ=1cos θ+sin θ,0≤θ≤π4C .ρ=cos θ+sin θ,0≤θ≤π2D .ρ=cos θ+sin θ,0≤θ≤π4【解析】∵cos ,sin ,x y ρθρθ=⎧⎨=⎩∴y =1-x 化为极坐标方程为ρcos θ+ρsin θ=1,即ρ=1cos θ+sin θ.∵0≤x ≤1,∴线段在第一象限内(含端点),∴0≤θ≤π2.故选A.【答案】A1.【2019年高考北京卷理数】已知直线l 的参数方程为13,24x t y t=+=+⎧⎨⎩(t 为参数),则点(1,0)到直线l 的距离是( )A .15B .25C .45D .65【答案】D【解析】由题意,可将直线l 化为普通方程:1234x y --=,即()()41320x y ---=,即4320x y -+=,所以点(1,0)到直线l的距离65d ==,故选D . 2.【2019年高考全国Ⅰ卷理数】在直角坐标系xOy 中,曲线C 的参数方程为(t 为参数).以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为.(1)求C 和l 的直角坐标方程; (2)求C 上的点到l 距离的最小值.【答案】(1)221(1)4y x x +=≠-;l的直角坐标方程为2110x ++=;(2)7.【解析】(1)因为221111t t --<≤+,且()22222222141211y t t x t t ⎛⎫-⎛⎫+=+= ⎪ ⎪+⎝⎭⎝⎭+,所以C 的直角坐标方程为221(1)4y x x +=≠-.l的直角坐标方程为2110x ++=.(2)由(1)可设C 的参数方程为cos ,2sin x y αα=⎧⎨=⎩(α为参数,ππα-<<).C 上的点到lπ4cos 11α⎛⎫-+ ⎪=.2221141t x t t y t ⎧-=⎪⎪+⎨⎪=⎪+⎩,2cos sin 110ρθθ++=当2π3α=-时,π4cos 113α⎛⎫-+ ⎪⎝⎭取得最小值7,故C 上的点到l 距离的最小值为7.3.【2019年高考全国Ⅱ卷理数】在极坐标系中,O 为极点,点000(,)(0)M ρθρ>在曲线:4sin C ρθ=上,直线l 过点(4,0)A 且与OM 垂直,垂足为P .(1)当0=3θπ时,求0ρ及l 的极坐标方程; (2)当M 在C 上运动且P 在线段OM 上时,求P 点轨迹的极坐标方程.【答案】(1)0ρ=l 的极坐标方程为cos 23ρθπ⎛⎫-= ⎪⎝⎭; (2)4cos ,,42ρθθπ⎡⎤=∈⎢⎥⎣⎦π.【解析】(1)因为()00,M ρθ在C 上,当03θπ=时,04sin 3ρπ== 由已知得||||cos23OP OA π==. 设(,)Q ρθ为l 上除P 的任意一点.在Rt OPQ △中,cos ||23OP ρθπ⎛⎫-== ⎪⎝⎭, 经检验,点(2,)3P π在曲线cos 23ρθπ⎛⎫-= ⎪⎝⎭上. 所以,l 的极坐标方程为cos 23ρθπ⎛⎫-= ⎪⎝⎭. (2)设(,)P ρθ,在Rt OAP △中,||||cos 4cos ,OP OA θθ== 即 4cos ρθ=. 因为P 在线段OM 上,且AP OM ⊥,故θ的取值范围是,42ππ⎡⎤⎢⎥⎣⎦.所以,P 点轨迹的极坐标方程为4cos ,,42ρθθπ⎡⎤=∈⎢⎥⎣⎦π.4.【2019年高考全国Ⅲ卷理数】如图,在极坐标系Ox 中,(2,0)A ,)4B π,)4C 3π,(2,)D π,弧AB ,BC ,CD 所在圆的圆心分别是(1,0),(1,)2π,(1,)π,曲线1M 是弧AB ,曲线2M 是弧BC ,曲线3M 是弧CD .(1)分别写出1M ,2M ,3M 的极坐标方程;(2)曲线M 由1M ,2M ,3M 构成,若点P 在M 上,且||OP =P 的极坐标.【答案】(1)1M 的极坐标方程为π2cos 04ρθθ⎛⎫=≤≤⎪⎝⎭,2M 的极坐标方程为π3π2sin 44ρθθ⎛⎫=≤≤⎪⎝⎭,3M 的极坐标方程为3π2cos π4ρθθ⎛⎫=-≤≤ ⎪⎝⎭.(2)π6⎫⎪⎭或π3⎫⎪⎭或2π3⎫⎪⎭或5π6⎫⎪⎭.【解析】(1)由题设可得,弧,,AB BC CD 所在圆的极坐标方程分别为2cos ρθ=,2sin ρθ=,2cos ρθ=-.所以1M 的极坐标方程为π2cos 04ρθθ⎛⎫=≤≤⎪⎝⎭,2M 的极坐标方程为π3π2sin 44ρθθ⎛⎫=≤≤ ⎪⎝⎭,3M 的极坐标方程为3π2cos π4ρθθ⎛⎫=-≤≤⎪⎝⎭. (2)设(,)P ρθ,由题设及(1)知若π04θ≤≤,则2cos θ=,解得π6θ=;若π3π44θ≤≤,则2sin θ=π3θ=或2π3θ=;若3ππ4θ≤≤,则2cos θ-=5π6θ=.综上,P 的极坐标为π6⎫⎪⎭或π3⎫⎪⎭或2π3⎫⎪⎭或5π6⎫⎪⎭.5.【2019年高考江苏卷数学】在极坐标系中,已知两点3,,42A B ππ⎛⎫⎫ ⎪⎪⎝⎭⎭,直线l 的方程为sin 34ρθπ⎛⎫+= ⎪⎝⎭.(1)求A ,B 两点间的距离;(2)求点B 到直线l 的距离. 【答案】(1)5;(2)2.【解析】(1)设极点为O .在△OAB 中,A (3,4π),B (2,2π), 由余弦定理,得AB =223(2)232cos()524ππ+-⨯⨯⨯-=. (2)因为直线l 的方程为sin()34ρθπ+=, 则直线l 过点(32,)2π,倾斜角为34π. 又(2,)2B π,所以点B 到直线l 的距离为3(322)sin()242ππ-⨯-=. 1. (2018年全国I 卷理数)在直角坐标系中,曲线的方程为.以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求的直角坐标方程;(2)若与有且仅有三个公共点,求的方程. 【答案】 (1). (2)的方程为.【解析】 (1)由,得的直角坐标方程为 .(2)由(1)知是圆心为,半径为的圆. 由题设知,是过点且关于轴对称的两条射线.记轴右边的射线为,轴左边的射线为.由于在圆的外面,故与有且仅有三个公共点等价于与只有一个公共点且与有两个公共点,或与只有一个公共点且与有两个公共点.当与只有一个公共点时,到所在直线的距离为,所以,故或.经检验,当时,与没有公共点;当时,与只有一个公共点,与有两个公共点.当与只有一个公共点时,到所在直线的距离为,所以,故或.经检验,当时,与没有公共点;当时,与没有公共点.综上,所求的方程为.2. (2018年全国Ⅰ卷理数)在直角坐标系中,曲线的参数方程为(为参数),直线的参数方程为(为参数).(1)求和的直角坐标方程;(2)若曲线截直线所得线段的中点坐标为,求的斜率.【答案】(1)当时,的直角坐标方程为,当时,的直角坐标方程为.(2)【解析】(1)曲线的直角坐标方程为.当时,的直角坐标方程为,当时,的直角坐标方程为.(2)将的参数方程代入的直角坐标方程,整理得关于的方程.①因为曲线截直线所得线段的中点在内,所以①有两个解,设为,,则.又由①得,故,于是直线的斜率.3. (2018年全国Ⅰ卷理数)在平面直角坐标系中,的参数方程为(为参数),过点且倾斜角为的直线与交于两点.(1)求的取值范围;(2)求中点的轨迹的参数方程.【答案】(1)(2)为参数,【解析】(1)的直角坐标方程为.当时,与交于两点.当时,记,则的方程为.与交于两点当且仅当,解得或,即或.综上,的取值范围是.(2)的参数方程为为参数,.设,,对应的参数分别为,,,则,且,满足.于是,.又点的坐标满足所以点的轨迹的参数方程是 为参数, .4. (2018年江苏卷)在极坐标系中,直线l 的方程为,曲线C 的方程为,求直线l 被曲线C 截得的弦长.【答案】直线l 被曲线C 截得的弦长为 【解析】因为曲线C 的极坐标方程为,所以曲线C 的圆心为(2,0),直径为4的圆. 因为直线l 的极坐标方程为,则直线l 过A (4,0),倾斜角为, 所以A 为直线l 与圆C 的一个交点. 设另一个交点为B ,则∠OAB =.连结OB ,因为OA 为直径,从而∠OBA =, 所以.因此,直线l 被曲线C 截得的弦长为. 1.【2017天津,理11】在极坐标系中,直线4cos()106ρθπ-+=与圆2sin ρθ=的公共点的个数为___________.【答案】2【解析】直线为23210x y ++= ,圆为22(1)1x y +-= ,因为314d =< ,所以有两个交点 2. 【2017北京,理11】在极坐标系中,点A 在圆22cos 4sin 40ρρθρθ--+=上,点P 的坐标为(1,0),则|AP |的最小值为___________.【答案】1【解析】将圆的极坐标方程化为普通方程为222440x y x y +--+= ,整理为()()22121x y -+-= ,圆心()1,2C ,点P 是圆外一点,所以AP 的最小值就是211AC r -=-=.3. 【2017课标1,理22】在直角坐标系xOy 中,曲线C 的参数方程为3cos ,sin ,x y θθ=⎧⎨=⎩(θ为参数),直线l的参数方程为4,1,x a t t y t =+⎧⎨=-⎩(为参数). (1)若a =−1,求C 与l 的交点坐标;(2)若C 上的点到la. 【答案】(1)C 与l 的交点坐标为()3,0, 2124,2525⎛⎫-⎪⎝⎭;(2)8a =或16a =-. 【解析】(1)曲线C 的普通方程为2219x y +=. 当1a =-时,直线l 的普通方程为430x y +-=.由22430{ 19x y x y +-=+=解得3{ 0x y ==或2125{ 2425x y =-=. 从而C 与l 的交点坐标为()3,0, 2124,2525⎛⎫-⎪⎝⎭. (2)直线l 的普通方程为440x y a +--=,故C 上的点()3cos ,sin θθ到l 的距离为d =当4a ≥-时, d=8a =; 当4a <-时, d=16a =-.综上, 8a =或16a =-.【2017·江苏】[选修4-4:坐标系与参数方程](本小题满分10分)在平面坐标系中xOy 中,已知直线l 的参考方程为x 82t ty =-+⎧⎪⎨=⎪⎩(t 为参数),曲线C的参数方程为22,x s y ⎧=⎪⎨=⎪⎩(s 为参数).设P 为曲线C 上的动点,求点P 到直线l 的距离的最小值.【答案】5【解析】直线l 的普通方程为280x y -+=. 因为点P 在曲线C上,设()22,P s ,从而点P 到直线l 的的距离224s d +==,当s =min d =. 因此当点P 的坐标为()4,4时,曲线C上点P 到直线l 的距离取到最小值5. 1.【2016年高考北京理数】在极坐标系中,直线cos sin 10ρθθ-=与圆2cos ρθ=交于A ,B 两点,则||AB =______.【答案】2【解析】直线10x -=过圆22(1)1x y -+=的圆心,因此 2.AB = 2.【2016高考新课标1卷】(本小题满分10分)选修4—4:坐标系与参数方程 在直角坐标系x O y 中,曲线C 1的参数方程为cos 1sin x a ty a t =⎧⎨=+⎩(t 为参数,a >0).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=4cos θ. (I)说明C 1是哪一种曲线,并将C 1的方程化为极坐标方程;(II)直线C 3的极坐标方程为0θα=,其中0α满足tan 0α=2,若曲线C 1与C 2的公共点都在C 3上,求a . 【答案】(I)圆,222sin 10a ρρθ-+-=(II)1【解析】解:(Ⅰ)消去参数t 得到1C 的普通方程222)1(a y x =-+.1C 是以)1,0(为圆心,a 为半径的圆.将θρθρsin ,cos ==y x 代入1C 的普通方程中,得到1C 的极坐标方程为01sin 222=-+-a θρρ.(Ⅰ)曲线21,C C 的公共点的极坐标满足方程组⎩⎨⎧==-+-,cos 4,01sin 222θρθρρa 若0≠ρ,由方程组得01cos sin 8cos 1622=-+-a θθθ,由已知2tan =θ,可得0cos sin 8cos162=-θθθ,从而012=-a ,解得1-=a (舍去),1=a .1=a 时,极点也为21,C C 的公共点,在3C 上.所以1=a .3.【2016高考新课标2理数】选修4—4:坐标系与参数方程 在直角坐标系xOy 中,圆C 的方程为22(6)25x y ++=.(Ⅰ)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求C 的极坐标方程;(Ⅰ)直线l 的参数方程是cos sin x t y t αα=⎧⎨=⎩(t 为参数), l 与C 交于,A B 两点,||AB =,求l 的斜率.【答案】(Ⅰ)212cos 110ρρθ++=;(Ⅰ)3±. 【解析】(I)由cos ,sin x y ρθρθ==可得C 的极坐标方程212cos 110.ρρθ++= (II)在(I)中建立的极坐标系中,直线l 的极坐标方程为()R θαρ=∈ 由,A B 所对应的极径分别为12,,ρρ将l 的极坐标方程代入C 的极坐标方程得212cos 110.ρρα++=于是121212cos ,11,ρραρρ+=-=22121212||||()4144cos 44,AB ρρρρρρα=-=+-=-由||10AB =得2315cos,tan 8αα==±, 所以l 的斜率为153或153-. 4. 【2016高考新课标3理数】(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,曲线1C 的参数方程为3()sin x y ααα⎧=⎪⎨=⎪⎩为参数,以坐标原点为极点,以x 轴的正半轴为极轴,,建立极坐标系,曲线2C 的极坐标方程为sin()224ρθπ+=(I)写出1C 的普通方程和2C 的直角坐标方程;(II)设点P 在1C 上,点Q 在2C 上,求PQ 的最小值及此时P 的直角坐标.【答案】(Ⅰ)1C 的普通方程为2213x y +=,2C 的直角坐标方程为40x y +-=;(Ⅰ)31(,)22. 【解析】(Ⅰ)1C 的普通方程为2213x y +=,2C 的直角坐标方程为40x y +-=. (Ⅰ)由题意,可设点P 的直角坐标为3,sin )αα,因为2C 是直线,所以||PQ 的最小值即为P 到2C 的距离()d α的最小值,|3cos sin 4|()2sin()2|32d ααπαα+-==+-.当且仅当2()6k k Z παπ=+∈时,()d α取得最小值,2,此时P 的直角坐标为31(,)22.。
2020年全国统一高考数学试卷(文科)(新课标Ⅱ)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)已知集合A={x||x|<3,x∈Z},B={x||x|>1,x∈Z},则A∩B=()A.∅B.{﹣3,﹣2,2,3}C.{﹣2,0,2}D.{﹣2,2}2.(5分)(1﹣i)4=()A.﹣4B.4C.﹣4i D.4i3.(5分)如图,将钢琴上的12个键依次记为a1,a2,…,a12.设1≤i<j<k≤12.若k﹣j=3且j﹣i=4,则a i,a j,a k为原位大三和弦;若k﹣j=4且j﹣i=3,则称a i,a j,a k为原位小三和弦.用这12个键可以构成的原位大三和弦与原位小三和弦的个数之和为()A.5B.8C.10D.154.(5分)在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单的配货,由于订单量大幅增加,导致订单积压.为解决困难,许多志愿者踊跃报名参加配货工作.已知该超市某日积压500份订单未配货,预计第二天的新订单超过1600份的概率为0.05.志愿者每人每天能完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者()A.10名B.18名C.24名D.32名5.(5分)已知单位向量,的夹角为60°,则在下列向量中,与垂直的是()A .B.2+C .﹣2D.2﹣6.(5分)记S n为等比数列{a n}的前n项和.若a5﹣a3=12,a6﹣a4=24,则=()A.2n﹣1B.2﹣21﹣n C.2﹣2n﹣1D.21﹣n﹣17.(5分)执行如图的程序框图,若输入的k=0,a=0,则输出的k为()A.2B.3C.4D.58.(5分)若过点(2,1)的圆与两坐标轴都相切,则圆心到直线2x﹣y﹣3=0的距离为()A .B .C .D .9.(5分)设O为坐标原点,直线x=a与双曲线C :﹣=1(a>0,b>0)的两条渐近线分别交于D,E 两点.若△ODE的面积为8,则C的焦距的最小值为()A.4B.8C.16D.3210.(5分)设函数f(x)=x3﹣,则f(x)()A.是奇函数,且在(0,+∞)单调递增B.是奇函数,且在(0,+∞)单调递减C.是偶函数,且在(0,+∞)单调递增D.是偶函数,且在(0,+∞)单调递减11.(5分)已知△ABC 是面积为的等边三角形,且其顶点都在球O的球面上.若球O的表面积为16π,则O到平面ABC的距离为()A .B .C.1D .12.(5分)若2x﹣2y<3﹣x﹣3﹣y,则()A.ln(y﹣x+1)>0B.ln(y﹣x+1)<0C.ln|x﹣y|>0D.ln|x﹣y|<0二、填空题:本题共4小题,每小题5分,共20分。
全国通用2020_2022三年高考数学真题分项汇编:20 不等式选讲1.【2022年全国甲卷】已知a,b,c均为正数,且a2+b2+4c2=3,证明:(1)a+b+2c≤3;(2)若b=2c,则1a +1c≥3.【答案】(1)见解析(2)见解析【解析】【分析】(1)根据a2+b2+4c2=a2+b2+(2c)2,利用柯西不等式即可得证;(2)由(1)结合已知可得0<a+4c≤3,即可得到1a+4c ≥13,再根据权方和不等式即可得证.(1)证明:由柯西不等式有[a2+b2+(2c)2](12+12+12)≥(a+b+2c)2,所以a+b+2c≤3,当且仅当a=b=2c=1时,取等号,所以a+b+2c≤3;(2)证明:因为b=2c,a>0,b>0,c>0,由(1)得a+b+2c=a+4c≤3,即0<a+4c≤3,所以1a+4c ≥13,由权方和不等式知1a +1c=12a+224c≥(1+2)2a+4c=9a+4c≥3,当且仅当1a =24c,即a=1,c=12时取等号,所以1a +1c≥3.2.【2022年全国乙卷】已知a,b,c都是正数,且a32+b32+c32=1,证明:(1)abc≤19;(2)ab+c +ba+c+ca+b≤2√abc;【答案】(1)证明见解析(2)证明见解析【解析】【分析】(1)利用三元均值不等式即可证明;(2)利用基本不等式及不等式的性质证明即可.(1)证明:因为a >0,b >0,c >0,则a 32>0,b 32>0,c 32>0, 所以a 32+b 32+c 323≥√a 32⋅b 32⋅c 323,即(abc )12≤13,所以abc ≤19,当且仅当a 32=b 32=c 32,即a =b =c =√193时取等号.(2)证明:因为a >0,b >0,c >0,所以b +c ≥2√bc ,a +c ≥2√ac ,a +b ≥2√ab , 所以a b+c≤2√bc=a 322√abc,b a+c≤2√ac=b 322√abc,ca+b≤2√ab =322√abc a b +c +b a +c +ca +b ≤a 322√abc +b 322√abc c 322√abc=a 32+b 32+c 322√abc=12√abc当且仅当a =b =c 时取等号.3.【2021年甲卷文科】已知函数()2,()2321f x x g x x x =-=+--.(1)画出()y f x =和()y g x =的图像; (2)若()()f x a g x +≥,求a 的取值范围. 【答案】(1)图像见解析;(2)112a ≥ 【解析】 【分析】(1)分段去绝对值即可画出图像;(2)根据函数图像数形结和可得需将()y f x =向左平移可满足同角,求得()y f x a =+过1,42A ⎛⎫⎪⎝⎭时a 的值可求.【详解】(1)可得2,2()22,2x x f x x x x -<⎧=-=⎨-≥⎩,画出图像如下:34,231()232142,2214,2x g x x x x x x ⎧-<-⎪⎪⎪=+--=+-≤<⎨⎪⎪≥⎪⎩,画出函数图像如下:(2)()|2|f x a x a +=+-,如图,在同一个坐标系里画出()(),f x g x 图像,()y f x a =+是()y f x =平移了a 个单位得到,则要使()()f x a g x +≥,需将()y f x =向左平移,即0a >,当()y f x a =+过1,42A ⎛⎫⎪⎝⎭时,1|2|42a +-=,解得112a =或52-(舍去),则数形结合可得需至少将()y f x =向左平移112个单位,112a ∴≥.【点睛】关键点睛:本题考查绝对值不等式的恒成立问题,解题的关键是根据函数图像数形结合求解. 4.【2021年乙卷文科】已知函数()3f x x a x =-++. (1)当1a =时,求不等式()6f x ≥的解集; (2)若()f x a >-,求a 的取值范围. 【答案】(1)(][),42,-∞-+∞.(2)3,2⎛⎫-+∞ ⎪⎝⎭. 【解析】 【分析】(1)利用绝对值的几何意义求得不等式的解集.(2)利用绝对值不等式化简()f x a >-,由此求得a 的取值范围. 【详解】(1)[方法一]:绝对值的几何意义法当1a =时,()13f x x x =-++,13x x -++表示数轴上的点到1和3-的距离之和, 则()6f x ≥表示数轴上的点到1和3-的距离之和不小于6,当4x =-或2x =时所对应的数轴上的点到13-,所对应的点距离之和等于6, ∴数轴上到13-,所对应的点距离之和等于大于等于6得到所对应的坐标的范围是4x ≤-或2x ≥,所以()6f x ≥的解集为(][),42,-∞-+∞.[方法二]【最优解】:零点分段求解法 当1a =时,()|1||3|f x x x =-++. 当3x ≤-时,(1)(3)6-+--≥x x ,解得4x ≤-; 当31x -<<时,(1)(3)6-++≥x x ,无解; 当1≥x 时,(1)(3)6-++≥x x ,解得2x ≥. 综上,|1||3|6-++≥x x 的解集为(,4][2,)-∞-+∞. (2)[方法一]:绝对值不等式的性质法求最小值 依题意()f x a >-,即3a x a x -+>-+恒成立,333x a x x a a x -++-+=≥++,当且仅当()()30a x x -+≥时取等号,()3min f x a ∴=+, 故3a a +>-,所以3a a +>-或3a a +<, 解得32a >-.所以a 的取值范围是3,2⎛⎫-+∞ ⎪⎝⎭.[方法二]【最优解】:绝对值的几何意义法求最小值由||x a -是数轴上数x 表示的点到数a 表示的点的距离,得()|||3||3|f x x a x a =-++≥+,故|3|a a +>-,下同解法一. [方法三]:分类讨论+分段函数法 当3a ≤-时,23,,()3,3,23,3,x a x a f x a a x x a x -+-<⎧⎪=--≤≤-⎨⎪-+>-⎩则min [()]3=--f x a ,此时3-->-a a ,无解. 当3a >-时,23,3,()3,3,23,,x a x f x a x a x a x a -+-<-⎧⎪=+-≤≤⎨⎪-+>⎩则min [()]3=+f x a ,此时,由3a a +>-得,32a >-.综上,a 的取值范围为32a >-.[方法四]:函数图象法解不等式由方法一求得()min 3f x a =+后,构造两个函数|3|=+y a 和y a =-,即3,3,3,3a a y a a --<-⎧=⎨+≥-⎩和y a =-, 如图,两个函数的图像有且仅有一个交点33,22⎛⎫- ⎪⎝⎭M ,由图易知|3|a a +>-,则32a >-.【整体点评】(1)解绝对值不等式的方法有几何意义法,零点分段法. 方法一采用几何意义方法,适用于绝对值部分的系数为1的情况, 方法二使用零点分段求解法,适用于更广泛的情况,为最优解;(2)方法一,利用绝对值不等式的性质求得()3min f x a =+,利用不等式恒成立的意义得到关于a 的不等式,然后利用绝对值的意义转化求解;方法二与方法一不同的是利用绝对值的几何意义求得()f x 的最小值,最有简洁快速,为最优解法方法三利用零点分区间转化为分段函数利用函数单调性求()f x 最小值,要注意函数()f x 中的各绝对值的零点的大小关系,采用分类讨论方法,使用与更广泛的情况;方法四与方法一的不同在于得到函数()f x 的最小值后,构造关于a 的函数,利用数形结合思想求解关于a 的不等式.5.【2020年新课标1卷理科】已知函数()|31|2|1|f x x x =+--. (1)画出()y f x =的图像;(2)求不等式()(1)f x f x >+的解集. 【答案】(1)详解解析;(2)7,6⎛⎫-∞- ⎪⎝⎭.【解析】 【分析】(1)根据分段讨论法,即可写出函数()f x 的解析式,作出图象; (2)作出函数()1f x +的图象,根据图象即可解出. 【详解】(1)因为()3,1151,1313,3x x f x x x x x ⎧⎪+≥⎪⎪=--<<⎨⎪⎪--≤-⎪⎩,作出图象,如图所示:(2)将函数()f x 的图象向左平移1个单位,可得函数()1f x +的图象,如图所示:由()3511x x --=+-,解得76x =-.所以不等式()(1)f x f x >+的解集为7,6⎛⎫-∞- ⎪⎝⎭.【点睛】本题主要考查画分段函数的图象,以及利用图象解不等式,意在考查学生的数形结合能力,属于基础题.6.【2020年新课标2卷理科】已知函数2()|21|f x x a x a =-+-+.(1)当2a =时,求不等式()4f x ≥的解集;(2)若()4f x ≥,求a 的取值范围.【答案】(1)32x x ⎧≤⎨⎩或112x ⎫≥⎬⎭;(2)(][),13,-∞-+∞.【解析】 【分析】(1)分别在3x ≤、34x <<和4x ≥三种情况下解不等式求得结果;(2)利用绝对值三角不等式可得到()()21f x a ≥-,由此构造不等式求得结果. 【详解】(1)当2a =时,()43f x x x =-+-.当3x ≤时,()43724f x x x x =-+-=-≥,解得:32x ≤;当34x <<时,()4314f x x x =-+-=≥,无解; 当4x ≥时,()43274f x x x x =-+-=-≥,解得:112x ≥; 综上所述:()4f x ≥的解集为32x x ⎧≤⎨⎩或112x ⎫≥⎬⎭.(2)()()()()22222121211f x x a x a x a x a a a a =-+-+≥---+=-+-=-(当且仅当221a x a -≤≤时取等号), ()214a ∴-≥,解得:1a ≤-或3a ≥,a ∴的取值范围为(][),13,-∞-+∞.【点睛】本题考查绝对值不等式的求解、利用绝对值三角不等式求解最值的问题,属于常考题型. 7.【2020年新课标3卷理科】设a ,b ,c ∈R ,a +b +c =0,abc =1. (1)证明:ab +bc +ca <0;(2)用max{a ,b ,c }表示a ,b ,c 中的最大值,证明:max{a ,b ,c }. 【答案】(1)证明见解析(2)证明见解析. 【解析】 【分析】(1)方法一:由()22222220a b c a b c ab ac bc ++=+++++=结合不等式的性质,即可得出证明;(2)方法一:不妨设{}max ,,a b c a =,因为0,1a b c abc ++==,所以0,a >0,b <0,c <()()a b c=-+-≥34,a ≥a【详解】(1)[方法一]【最优解】:通性通法()22222220a b c a b c ab ac bc ++=+++++=,()22212ab bc ca a b c ∴++=-++. 1,,,abc a b c =∴均不为0,则2220a b c ++>,()222120ab bc ca a b c ∴++=-++<. [方法二]:消元法由0a b c ++=得()b a c =-+,则()ab bc ca b a c ca ++=++()2a c ac =-++()22a ac c =-++223024c a c ⎛⎫=-+-≤ ⎪⎝⎭,当且仅当0a b c ===时取等号,又1abc =,所以0ab bc ca ++<. [方法三]:放缩法方式1:由题意知0,a ≠0,a b c ++=(),a c b =-+()222224a c b c b cb bc =+=++≥,又()ab bc ca a b c bc ++=++2a bc =-+224a a ≤-+2304a =-<,故结论得证.方式2:因为0a b c ++=,所以()22220222a b c a b c ab bc ca =++=+++++ ()()()22222212222a b b c c a ab bc ca ⎡⎤=++++++++⎣⎦()()122222232ab bc ca ab bc ca ab bc ca ≥+++++=++. 即0ab bc ca ++≤,当且仅当0a b c ===时取等号, 又1abc =,所以0ab bc ca ++<. [方法四]:因为0,1a b c abc ++==,所以a ,b ,c 必有两个负数和一个正数,不妨设0,a b c ≤<<则(),a b c =-+()20ab bc ca bc a c b bc a ∴++=++=-<.[方法五]:利用函数的性质方式1:()6b a c =-+,令()22f c ab bc ca c ac a =++=---,二次函数对应的图像开口向下,又1abc =,所以0a ≠, 判别式222Δ430a a a =-=-<,无根, 所以()0f c <,即0ab bc ca ++<.方式2:设()()()()()31f x x a x b x c x ab bc ca x =---=+++-,则()f x 有a ,b ,c 三个零点,若0ab bc ca ++≥,则()f x 为R 上的增函数,不可能有三个零点, 所以0ab bc ca ++<.(2)[方法一]【最优解】:通性通法不妨设{}max ,,a b c a =,因为0,1a b c abc ++==,所以0,a >0,b <0,c <()()a b c =-+-≥则34,a a ≥≥.故原不等式成立. [方法二]:不妨设{}max ,,a b c a =,因为0,1a b c abc ++==,所以0a >,且,1,b c a bc a +=-⎧⎪⎨=⎪⎩则关于x 的方程210x ax a++=有两根,其判别式24Δ0a a =-≥,即a故原不等式成立. [方法三]:不妨设{}max ,,a b c a =,则0,a >(),b a c =-+1,abc =()1,a c ac -+=2210ac a c ++=,关于c 的方程有解,判别式()22Δ40a a =-≥,则34,a a ≥≥.故原不等式成立. [方法四]:反证法假设{}max ,,a b c0a b ≤<<1ab c =>a b c --=1132a b ---≥=={}max ,,a b c ≥证. 【整体点评】(1)方法一:利用三项平方和的展开公式结合非零平方为正数即可证出,证法常规,为本题的通性通法,也是最优解法;方法二:利用消元法结合一元二次函数的性质即可证出;方法三:利用放缩法证出;方法四:利用符号法则结合不等式性质即可证出;方法五:利用函数的性质证出.(2)方法一:利用基本不等式直接证出,是本题的通性通法,也是最优解;方法二:利用一元二次方程根与系数的关系以及方程有解的条件即可证出;方法三:利用消元法以及一元二次方程有解的条件即可证出;方法四:利用反证法以及基本不等式即可证出.。
2020高考数学新教材全国一卷解答题22、21、20、18押题成功
下面是22题:这是解析几何的压轴题
《高考数学核心题型与解题技巧》185页内容:
通过例5知道抛物线上定点张直角的弦过定点,掌握了了垂足M轨迹方程的求法,轨迹是一个圆;通过例6展示了对于椭圆上的定
点张直角的弦也过定点,而且给出了所过定
点的坐标是一个二级结论而且
这一结论有详细的推导过程;下面还有双曲
线对应的相应结论。
下面是21题:这是导数部分的压轴题
《高考数学核心题型与解题技巧》44页内容:
本专题有5个例题,重点是利用这两个不等式进行放缩去解决证明求参问题。
对于立体几何第一问很多同学推导过程的严谨性是是一个失分点!证明l与AD平行是重点,对于该类问题我们早有准备:
《高考数学核心题型与解题技巧》148页
这两个题目的出现绝不是巧合,因为在教学中得到的信息是很多学生不会用相关定理解答此类问题,我们时刻准备着!!!
《高考数学核心题型与解题技巧》228页
在对2016年高考试题进行分析讲解之后,我
后续强调的两个与对数结合取整函数的规律
与结论再次验证了我们对重点核考点的把握!。
2020年全国高考数学一卷(理)20题解法赏析陈志年(安徽省合肥市肥西中学㊀231200)摘㊀要:本文给出2020年全国高考数学一卷(理)20题的多种解法及评析.关键词:解析几何ꎻ直线过定点ꎻ引进参数ꎻ参数的去留.中图分类号:G632㊀㊀㊀㊀㊀㊀文献标识码:A㊀㊀㊀㊀㊀㊀文章编号:1008-0333(2020)31-0038-02收稿日期:2020-08-05作者简介:陈志年(1962.4-)ꎬ男ꎬ安徽人ꎬ本科ꎬ中学高级教师ꎬ从事高中数学教学研究.㊀㊀2020年全国高考数学一卷(理)20题是一道解析几何题ꎬ其中第二问是证明直线过定点.虽然是一类常见常考的题型ꎬ但是解决起来有一定的难度.难点在于:引进一个参数ꎬ思路简单ꎬ可运算量大ꎬ要求运算流畅㊁准确ꎻ引进多个参数ꎬ最后涉及到参数的消去与保留ꎬ要求思维灵活㊁缜密.下面给出该题的多种解法及评析ꎬ欣赏一题多解的妙趣ꎻ领略难点突破的秘诀.题目㊀已知AꎬB分别为椭圆E:x2a2+y2=1(a>1)的左右顶点ꎬG为E的上顶点ꎬAGң GBң=8.P为直线x=6上的动点ꎬPA与E的另一交点为CꎬPB与E的另一交点为D.(1)求E的方程ꎻ(2)证明:直线CD过定点.解㊀(1)由题设得A(-aꎬ0)ꎬB(aꎬ0)ꎬG(0ꎬ1)ꎬ则AGң=(aꎬ1)ꎬGBң=(aꎬ-1).由AGң GBң=8得a2-1=8ꎬ即a=3.所以E的方程为x29+y2=1.(2)解法1㊀由(1)知A(-3ꎬ0)ꎬB(3ꎬ0)ꎬ设P(6ꎬt)则PA的方程为y=t9(x+3).将y=t9(x+3)代入x29+y2=1得(t2+9)x2+6t2x+9t2-81=0ꎬ则-3xc=9t2-81t2+9ꎬ所以xc=-3t2+27t2+9ꎬC点的坐标为(-3t2+27t2+9ꎬ6tt2+9)ꎻ同样求得D点坐标为(3t2-3t2+1ꎬ-2tt2+1).当t2ʂ3时ꎬ直线CD的斜率kCD=4t-3t2+9ꎬ直线CD的方程为y+2tt2+1=4t-3t2+9(x-3t2-3t2+1)ꎬ即y=4t-3t2+9(x-32)ꎻ当t2=3时ꎬ直线CD的方程为x=32.综上ꎬ直线CD过定点(32ꎬ0).评析㊀本解法两次将直线方程代入椭圆方程得到关于x的一元二次方程ꎬ有一定的运算量ꎬ要求零失误ꎻ利用韦达定理求得C㊁D的坐标ꎬ是一个技巧ꎻ写出直线CD的方程还需要化简整理ꎬ方能得到所要证的结论.解法2㊀由(1)知A(-3ꎬ0)ꎬB(3ꎬ0)ꎬ设P(6ꎬt)ꎬC(3cosαꎬsinα)ꎬD(3cosβꎬsinβ)ꎬ则ACң=(3cosα+3ꎬsinα)ꎬAPң=(9ꎬt)ꎬBDң=(3cosβ-3ꎬsinβ)ꎬBPң=(3ꎬt).因为ACңʊAPңꎬBDңʊBPңꎬ所以(3cosα+3)t-9sinα=0ꎬ(3cosβ-3)t-3sinβ=0.当tʂ0时ꎬ则t=3tanα2ꎬt tanβ2=-1ꎬ从而tanα2tanβ2=-13.若cosαʂcosβꎬ直线CD的方程为y-sinα=sinα-sinβ3cosα-3cosβ(x-3cosα)ꎬ即y=sinα-sinβ3cosα-3cosβ(x-3sin(α-β)sinα-sinβ)ꎬ即y=sinα-sinβ3cosα-3cosβ(x-3cosα-β2cosα+β2)ꎬ即y=sinα-sinβ3cosα-3cosβ(x-3(1+tanα2tanβ2)1-tanα2tanβ2).将tanα2 tanβ2=83-13代入得直线CD的方程y=sinα-sinβ3cosα-3cosβ(x-32).若cosα=cosβꎬ由tanα2 tanβ2=-13ꎬ不妨设tanα2=33ꎬtanβ2=-33ꎬ所以cosα=cosβ=12ꎬ直线CD的方程为x=32.当t=0时ꎬ直线CD的方程为y=0.综上ꎬ直线CD过定点(32ꎬ0).评析㊀本解法利用椭圆的参数方程设点的坐标ꎬ减少了参数的个数ꎻ整个解答过程中ꎬ利用了多个三角公式ꎬ如:同角三角函数基本关系公式ꎬ两角和与差公式ꎬ二倍角公式及通过角的变换推导的 和差化积 公式等ꎬ可以说三角公式的运用得到了极致.解法3㊀由(1)知A(-3ꎬ0)ꎬB(3ꎬ0).设P(6ꎬt)ꎬ根据对称性直线CD所过定点在x轴上.当tʂ0时ꎬ设直线CD的方程为my=x-nꎬC(my1+nꎬy1)ꎬD(my2+nꎬy2)ꎬ则ACң=(my1+n+3ꎬy1)ꎬAPң=(9ꎬt)ꎬBDң=(my2+n-3ꎬy2)ꎬBPң=(3ꎬt).因为ACңʊAPңꎬBDңʊBPңꎬ所以(my1+n+3)t-9y1=0ꎬ(my2+n-3)t-3y2=0.消去t得y2(my1+n+3)=3y1(my2+n-3).即2my1y2+3(n-3)y1-(n+3)y2=0.把x=my+n代入x29+y2=1得(m2+9)y2+2mny+n2-9=0.把y1y2=n2-9m2+9代入2my1y2+3(n-3)y1-(n+3)y2=0ꎬ得2m(n2-9)m2+9+3(n-3)y1-(n+3)y2=0ꎬ把2mm2+9=-y1+y2n代入2m(n2-9)m2+9+3(n-3)y1-(n+3)y2=0消去m得-(n2-9)(y1+y2)+3n(n-3)y1-n(n+3)y2=0ꎬ即(2n2-9n+9)y1-(2n2+3n-9)y2=0.所以2n2-9n+9=0ꎬ2n2+3n-9=0ꎬ从而n=32ꎬ直线CD的方程为my=x-32.当t=0时ꎬ直线CD的方程为y=0.综上ꎬ直线CD过定点(32ꎬ0).评析㊀本解法引进多个参数ꎬ初心是利用韦达定理消去y1和y2保留mꎬ实际把y1y2=n2-9m2+9代入2my1y2+3(n-3)y1-(n+3)y2=0ꎬ结合y1+y2=-2mnm2+9ꎬ发现易消去mꎬ保留y1和y2ꎬ利用y1和y2的任意性就可求得n.解题过程中得到启发㊁灵感ꎬ适时调整我们的解题思路ꎬ体现了思维的多向性和灵活性.解法4㊀由(1)知A(-3ꎬ0)ꎬB(3ꎬ0)ꎬ设C(x1ꎬy1)ꎬD(x2ꎬy2)ꎬP(6ꎬt)ꎬ则ACң=(x1+3ꎬy1)ꎬAPң=(9ꎬt)ꎬBDң=(x2-3ꎬy2)ꎬBPң=(3ꎬt).因为ACңʊAPңꎬBDңʊBPңꎬ所以(x1+3)t-9y1=0ꎬ(x2-3)t-3y2=0.消去t得3y1(x2-3)=y2(x1+3)ꎬ所以9y21(x2-3)2=y22(x1+3)2.又y21=9-x219ꎬy22=9-x229ꎬ从而得9(x1-3)(x2-3)=(x1+3)(x2+3)ꎬ即4x1x2-15(x1+x2)+36=0.根据对称性直线CD所过定点在x轴上.当直线CD的斜率存在时ꎬ设直线CD的方程为y=k(x-n)ꎬ把y=k(x-n)代入x29+y2=1得(9k2+1)x2-18k2nx+9k2n2-9=0.把x1+x2=18k2n9k2+1ꎬx1x2=9k2n2-99k2+1代入4x1x2-15(x1+x2)+36=0得k2(2n2-15n+18)=0ꎬ所以2n2-15n+18=0ꎬ解得n=32或n=6(舍去)ꎬ直线CD的方程为y=k(x-32).当直线CD的斜率不存在时ꎬ则x1=x2ꎬ又4x1x2-15(x1+x2)+36=0ꎬ所以x1=x2=32或x1=x2=6(舍去)ꎬ直线CD的方程为x=32.综上ꎬ直线CD过定点(32ꎬ0).评析㊀本解法引进更多的参数ꎬ利用C㊁D在椭圆上ꎬ我们首先消去y1和y2ꎬ得到4x1x2-15(x1+x2)+36=0ꎬ至此应用韦达定理解答显而易见ꎬ水到渠成.解析几何中ꎬ设而不求㊁加强韦达定理的应用是解答问题的重要方法.㊀㊀㊀参考文献:[1]2020年普通高等学校招生全国统一考试数学Ⅰ卷.㊀[责任编辑:李㊀璟]93。
绝密★启用前2020年普通高等学校招生全国统一考试文科数学注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题目时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号框涂黑.如需改动,用橡皮擦干净后,在选涂其它答案标号框.回答非选择题目时,将答案写在答题卡上,写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题目:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A ={x ||x |<3,x ∈Z },B ={x ||x |>1,x ∈Z },则A ∩B =()A. B.{–3,–2,2,3)C.{–2,0,2} D.{–2,2}【答案】D 【解析】【分析】解绝对值不等式化简集合,A B 的表示,再根据集合交集的定义进行求解即可.【详解】因为3,2,1,0,1,2A x x x Z ,1,1B x x x Z x x 或 1,x x Z ,所以 2,2A B ∩.故选:D.【点睛】本题考查绝对值不等式的解法,考查集合交集的定义,属于基础题.2.(1–i )4=()A.–4B.4C.–4iD.4i【答案】A【解析】【分析】根据指数幂的运算性质,结合复数的乘方运算性质进行求解即可.【详解】422222(1)[(1)](12)(2)4i i i i i .故选:A.【点睛】本题考查了复数的乘方运算性质,考查了数学运算能力,属于基础题.3.如图,将钢琴上的12个键依次记为a 1,a 2,…,a 12.设1≤i <j <k ≤12.若k –j =3且j –i =4,则称a i ,a j ,a k 为原位大三和弦;若k –j =4且j –i =3,则称a i ,a j ,a k 为原位小三和弦.用这12个键可以构成的原位大三和弦与原位小三和弦的个数之和为()A.5B.8C.10D.15【答案】C 【解析】【分析】根据原位大三和弦满足3,4k j j i ,原位小三和弦满足4,3k j j i 从1i 开始,利用列举法即可解出.【详解】根据题意可知,原位大三和弦满足:3,4k j j i .∴1,5,8i j k ;2,6,9i j k ;3,7,10i j k ;4,8,11i j k ;5,9,12i j k .原位小三和弦满足:4,3k j j i .∴1,4,8i j k ;2,5,9i j k ;3,6,10i j k ;4,7,11i j k ;5,8,12i j k .故个数之和为10.故选:C .【点睛】本题主要考查列举法的应用,以及对新定义的理解和应用,属于基础题.4.在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单配货,由于订单量大幅增加,导致订单积压.为解决困难,许多志愿者踊跃报名参加配货工作.已知该超市某日积压500份订单未配货,预计第二天的新订单超过1600份的概率为0.05,志愿者每人每天能完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者()A.10名B.18名C.24名D.32名【答案】B 【解析】【分析】算出第二天订单数,除以志愿者每天能完成的订单配货数即可.【详解】由题意,第二天新增订单数为50016001200900 ,故需要志愿者9001850名.故选:B【点晴】本题主要考查函数模型的简单应用,属于基础题.5.已知单位向量a ,b 的夹角为60°,则在下列向量中,与b 垂直的是()A.a +2bB.2a +bC.a –2bD.2a –b【答案】D 【解析】【分析】根据平面向量数量积的定义、运算性质,结合两平面向量垂直数量积为零这一性质逐一判断即可.【详解】由已知可得:11cos 601122a b a b .A :因为215(2)221022a b b a b b ,所以本选项不符合题意;B :因为21(2)221202a b b a b b ,所以本选项不符合题意;C :因213(2)221022a b b a b b ,所以本选项不符合题意;D:因为21(2)22102a b b a b b ,所以本选项符合题意.故选:D.【点睛】本题考查了平面向量数量积的定义和运算性质,考查了两平面向量数量积为零则这两个平面向量互相垂直这一性质,考查了数学运算能力.6.记S n 为等比数列{a n }的前n 项和.若a 5–a 3=12,a 6–a 4=24,则nnS a =()A.2n –1 B.2–21–n C.2–2n –1D.21–n –1【答案】B 【解析】【分析】根据等比数列的通项公式,可以得到方程组,解方程组求出首项和公比,最后利用等比数列的通项公式和前n 项和公式进行求解即可.【详解】设等比数列的公比为q ,由536412,24a a a a 可得:421153111122124a q a q q a a q a q ,所以1111(1)122,21112n nn n n n n a q a a qS q ,因此1121222n n n n n S a .故选:B.【点睛】本题考查了等比数列的通项公式的基本量计算,考查了等比数列前n 项和公式的应用,考查了数学运算能力.7.执行右面的程序框图,若输入的k =0,a =0,则输出的k 为()A.2B.3C.4D.5【答案】C 【解析】分析】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出的k 值,模拟程序的运行过程,分析循环中各变量值的变化情况,即可求得答案.【详解】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出的k 值模拟程序的运行过程0,0k a 第1次循环,2011a ,011k ,210 为否第2次循环,2113a ,112k ,310 为否第3次循环,2317a ,213k ,710 为否第4次循环,27115a ,314k ,1510 为是退出循环输出4k .故选:C.【点睛】本题考查求循环框图的输出值,解题关键是掌握模拟循环语句运行的计算方法,考查了分析能力和计算能力,属于基础题.8.若过点(2,1)的圆与两坐标轴都相切,则圆心到直线230x y 的距离为()A.55B.255C.355D.455【答案】B 【解析】【分析】由题意可知圆心在第一象限,设圆心的坐标为 ,,0a a a ,可得圆的半径为a ,写出圆的标准方程,利用点 2,1在圆上,求得实数a 的值,利用点到直线的距离公式可求出圆心到直线230x y 的距离.【详解】由于圆上的点 2,1在第一象限,若圆心不在第一象限,则圆与至少与一条坐标轴相交,不合乎题意,所以圆心必在第一象限,设圆心的坐标为,a a ,则圆的半径为a ,圆的标准方程为 222x a y a a .由题意可得 22221a a a ,可得2650a a ,解得1a 或5a ,所以圆心的坐标为 1,1或 5,5,圆心到直线230x y 的距离均为22555d;所以,圆心到直线230x y 的距离为255.故选:B.【点睛】本题考查圆心到直线距离的计算,求出圆的方程是解题的关键,考查计算能力,属于中等题.9.设O 为坐标原点,直线x a 与双曲线2222:1(0,0)x y C a b a b的两条渐近线分别交于,D E 两点,若ODE 的面积为8,则C 的焦距的最小值为()A.4B.8C.16D.32【答案】B 【解析】【分析】因为2222:1(0,0)x y C a b a b ,可得双曲线的渐近线方程是b y x a,与直线x a 联立方程求得D ,E 两点坐标,即可求得||ED ,根据ODE 的面积为8,可得ab 值,根据2222c a b ,结合均值不等式,即可求得答案.【详解】∵2222:1(0,0)x y C a b a b双曲线的渐近线方程是by x a∵直线x a 与双曲线2222:1(0,0)x y C a b a b的两条渐近线分别交于D ,E 两点不妨设D 为在第一象限,E 在第四象限联立x ab y x a,解得x a y b故(,)D a b 联立x ab y x a,解得x a y b故(,)E a b ||2ED bODE 面积为:1282ODE S a b ab△∵双曲线2222:1(0,0)x y C a b a b其焦距为2222222168c a b ab 当且仅当22a b 取等号C 的焦距的最小值:8【点睛】本题主要考查了求双曲线焦距的最值问题,解题关键是掌握双曲线渐近线的定义和均值不等式求最值方法,在使用均值不等式求最值时,要检验等号是否成立,考查了分析能力和计算能力,属于中档题.10.设函数331()f x x x,则()f x ()A.是奇函数,且在(0,+∞)单调递增 B.是奇函数,且在(0,+∞)单调递减C.是偶函数,且在(0,+∞)单调递增 D.是偶函数,且在(0,+∞)单调递减【答案】A 【解析】【分析】根据函数的解析式可知函数的定义域为0x x ,利用定义可得出函数 f x 为奇函数,再根据函数的单调性法则,即可解出.【详解】因为函数 331f x x x定义域为 0x x ,其关于原点对称,而 f x f x ,所以函数 f x 为奇函数.又因为函数3y x 在()0,+¥上单调递增,在(),0-¥上单调递增,而331y x x在()0,+¥上单调递减,在(),0-¥上单调递减,所以函数 331f x x x在()0,+¥上单调递增,在(),0-¥上单调递增.故选:A .【点睛】本题主要考查利用函数的解析式研究函数的性质,属于基础题.11.已知△ABC 是面积为934的等边三角形,且其顶点都在球O 的球面上.若球O 的表面积为16π,则O 到平面ABC 的距离为()A.3B.32C.1D.32【答案】C【分析】根据球O 的表面积和ABC 的面积可求得球O 的半径R 和ABC 外接圆半径r ,由球的性质可知所求距离22d R r.【详解】设球O 的半径为R ,则2416R ,解得:2R .设ABC 外接圆半径为r ,边长为a ,ABC ∵ 是面积为934的等边三角形,21393224a ,解得:3a ,22229933434a r a ,球心O 到平面ABC 的距离22431d R r .故选:C.【点睛】本题考查球的相关问题的求解,涉及到球的表面积公式和三角形面积公式的应用;解题关键是明确球的性质,即球心和三角形外接圆圆心的连线必垂直于三角形所在平面.12.若2233x y x y ,则()A.ln(1)0y x B.ln(1)0y x C.ln ||0x y D.ln ||0x y 【答案】A 【解析】【分析】将不等式变为2323x x y y ,根据 23t tf t 的单调性知x y ,以此去判断各个选项中真数与1的大小关系,进而得到结果.【详解】由2233x y x y 得:2323x x y y ,令 23ttf t ,2x y ∵为R 上的增函数,3x y 为R 上的减函数, f t 为R 上的增函数,x y ,0y x Q ,11y x , ln 10y x ,则A 正确,B 错误;x y Q 与1的大小不确定,故CD 无法确定.故选:A.【点睛】本题考查对数式的大小的判断问题,解题关键是能够通过构造函数的方式,利用函数的单调性得到,x y 的大小关系,考查了转化与化归的数学思想.二、填空题目:本题共4小题,每小题5分,共20分.13.若2sin 3x ,则cos 2x __________.【答案】19【解析】【分析】直接利用余弦的二倍角公式进行运算求解即可.【详解】22281cos 212sin 12()1399x x .故答案为:19.【点睛】本题考查了余弦的二倍角公式的应用,属于基础题.14.记n S 为等差数列 n a 的前n 项和.若1262,2a a a ,则10S __________.【答案】25【解析】【分析】因为 n a 是等差数列,根据已知条件262a a ,求出公差,根据等差数列前n 项和,即可求得答案.【详解】∵ n a 是等差数列,且12a ,262a a 设 n a 等差数列的公差d根据等差数列通项公式: 11n a a n d 可得1152a d a d 即: 2252d d 整理可得:66d 解得:1d∵根据等差数列前n 项和公式:*1(1),2n n n S na d n N可得: 1010(101)1022045252S1025S .故答案为:25.【点睛】本题主要考查了求等差数列的前n 项和,解题关键是掌握等差数列的前n 项和公式,考查了分析能力和计算能力,属于基础题.15.若x ,y 满足约束条件1121,x y x y x y,,则2z x y 的最大值是__________.【答案】8【解析】【分析】在平面直角坐标系内画出不等式组表示的平面区域,然后平移直线12y x ,在平面区域内找到一点使得直线1122y x z在纵轴上的截距最大,求出点的坐标代入目标函数中即可.【详解】不等式组表示的平面区域为下图所示:平移直线12y x,当直线经过点A 时,直线1122y x z 在纵轴上的截距最大,此时点A 的坐标是方程组121x y x y的解,解得:23x y,因此2z x y 的最大值为:2238 .故答案为:8.【点睛】本题考查了线性规划的应用,考查了数形结合思想,考查数学运算能力.16.设有下列四个命题:p 1:两两相交且不过同一点的三条直线必在同一平面内.p 2:过空间中任意三点有且仅有一个平面.p 3:若空间两条直线不相交,则这两条直线平行.p 4:若直线l 平面α,直线m ⊥平面α,则m ⊥l .则下述命题中所有真命题的序号是__________.①14p p ②12p p ③23p p ④34p p 【答案】①③④【解析】【分析】利用两交线直线确定一个平面可判断命题1p 的真假;利用三点共线可判断命题2p 的真假;利用异面直线可判断命题3p 的真假,利用线面垂直的定义可判断命题4p 的真假.再利用复合命题的真假可得出结论.【详解】对于命题1p ,可设1l 与2l 相交,这两条直线确定的平面为 ;若3l 与1l 相交,则交点A 在平面 内,同理,3l 与2l 的交点B 也在平面 内,所以,AB ,即3l ,命题1p 真命题;对于命题2p ,若三点共线,则过这三个点的平面有无数个,命题2p 为假命题;对于命题3p ,空间中两条直线相交、平行或异面,命题3p 为假命题;对于命题4p ,若直线m 平面 ,则m 垂直于平面 内所有直线,∵直线l 平面 , 直线m 直线l ,命题4p 为真命题.综上可知,14p p 为真命题,12p p 为假命题,23p p 为真命题,34p p 为真命题.故答案为:①③④.【点睛】本题考查复合命题的真假,同时也考查了空间中线面关系有关命题真假的判断,考查推理能力,属于中等题.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知25cos ()cos 24A A .(1)求A ;(2)若33b c a,证明:△ABC 是直角三角形.【答案】(1)3A;(2)证明见解析【解析】【分析】(1)根据诱导公式和同角三角函数平方关系,25cos cos 24A A可化为251cos cos 4A A,即可解出;(2)根据余弦定理可得222b c a bc ,将33b c a 代入可找到,,a b c 关系,再根据勾股定理或正弦定理即可证出.【详解】(1)因为25cos cos 24A A,所以25sin cos 4A A ,即251cos cos 4A A ,解得1cos 2A ,又0A ,所以3A;(2)因为3A ,所以2221cos 22b c a A bc ,即222b c a bc ①,又33b c a②,将②代入①得, 2223b c b c bc ,即222250b c bc ,而b c ,解得2b c ,所以3a c,故222b a c ,即ABC 是直角三角形.【点睛】本题主要考查诱导公式和平方关系的应用,利用勾股定理或正弦定理,余弦定理判断三角形的形状,属于基础题.18.某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加.为调查该地区某种野生动物的数量,将其分成面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据(x i ,y i )(i =1,2,…,20),其中x i 和y i 分别表示第i 个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得20160i ix,2011200i iy,2021)80i i x x (,2021)9000i i y y (,201))800i i i x y x y ((.(1)求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数);(2)求样本(x i ,y i )(i =1,2,…,20)的相关系数(精确到0.01);(3)根据现有统计资料,各地块间植物覆盖面积差异很大.为提高样本的代表性以获得该地区这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由.附:相关系数r =12211))))ni iiiin ni i x y x x y y y x((((,2=1.414.【答案】(1)12000;(2)0.94;(3)详见解析【解析】【分析】(1)利用野生动物数量的估计值等于样区野生动物平均数乘以地块数,代入数据即可;(2)利用公式20120202211()()()()iii iii i x x yy r x x yy计算即可;(3)各地块间植物覆盖面积差异较大,为提高样本数据的代表性,应采用分层抽样.【详解】(1)样区野生动物平均数为201111200602020i i y ,地块数为200,该地区这种野生动物的估计值为2006012000 (2)样本(,)i i x y 的相关系数为20120202211()()800220.943809000()()iii i i i i x x y y r x x y y(3)由于各地块间植物覆盖面积差异较大,为提高样本数据的代表性,应采用分层抽样先将植物覆盖面积按优中差分成三层,在各层内按比例抽取样本,在每层内用简单随机抽样法抽取样本即可.【点晴】本题主要考查平均数的估计值、相关系数的计算以及抽样方法的选取,考查学生数学运算能力,是一道容易题.19.已知椭圆C 1:22221x y a b(a >b >0)的右焦点F 与抛物线C 2的焦点重合,C 1的中心与C 2的顶点重合.过F 且与x 轴重直的直线交C 1于A ,B 两点,交C 2于C ,D 两点,且|CD |=43|AB |.(1)求C 1的离心率;(2)若C 1的四个顶点到C 2的准线距离之和为12,求C 1与C 2的标准方程.【答案】(1)12;(2)1C :2211612x y ,2C :28y x .【解析】【分析】(1)根据题意求出2C 的方程,结合椭圆和抛物线的对称性不妨设,A C 在第一象限,运用代入法求出,,,A B C D 点的纵坐标,根据4||||3CD AB ,结合椭圆离心率的公式进行求解即可;(2)由(1)可以得到椭圆的标准方程,确定椭圆的四个顶点坐标,再确定抛物线的准线方程,最后结合已知进行求解即可;【详解】解:(1)因为椭圆1C 的右焦点坐标为:(c,0)F ,所以抛物线2C 的方程为24y cx ,其中22c a b.不妨设,A C 在第一象限,因为椭圆1C 的方程为:22221x y a b,所以当x c 时,有222221c y b y a b a ,因此,A B 的纵坐标分别为2b a ,2ba;又因为抛物线2C 的方程为24y cx ,所以当x c 时,有242y c c y c ,所以,C D 的纵坐标分别为2c ,2c ,故22||bAB a,||4CD c .由4||||3CD AB 得2843b c a,即2322()c c a a ,解得2c a (舍去),12c a .所以1C 的离心率为12.(2)由(1)知2a c ,3b c ,故22122:143x y C c c,所以1C 的四个顶点坐标分别为(2,0)c ,(2,0)c ,(0,3)c ,(0,3)c ,2C 的准线为x c .由已知得312c c c c ,即2c .所以1C 的标准方程为2211612x y ,2C 的标准方程为28y x .【点睛】本题考查了求椭圆的离心率,考查了求椭圆和抛物线的标准方程,考查了椭圆的四个顶点的坐标以及抛物线的准线方程,考查了数学运算能力.20.如图,已知三棱柱ABC –A 1B 1C 1的底面是正三角形,侧面BB 1C 1C 是矩形,M ,N 分别为BC ,B 1C 1的中点,P 为AM 上一点.过B 1C 1和P 的平面交AB 于E ,交AC 于F .(1)证明:AA 1//MN ,且平面A 1AMN ⊥平面EB 1C 1F ;(2)设O 为△A 1B 1C 1的中心,若AO =AB =6,AO //平面EB 1C 1F ,且∠MPN =π3,求四棱锥B –EB 1C 1F 的体积.【答案】(1)证明见解析;(2)24.【解析】【分析】(1)由,M N 分别为BC ,11B C 的中点,1//MN CC ,根据条件可得11//AA BB ,可证1MN AA //,要证平面11EB C F 平面1A AMN ,只需证明EF 平面1A AMN 即可;(2)根据已知条件求得11EB C F S 四边形和M 到PN 的距离,根据椎体体积公式,即可求得11B EB C F V .【详解】(1)∵,M N 分别为BC ,11B C 的中点,1//MN BB 又11//AA BB1//MN AA 在等边ABC 中,M 为BC 中点,则BC AM 又∵侧面11BB C C 为矩形,1BC BB 1//MN BB ∵MN BC由MN AM M ,,MN AM 平面1A AMNBC ⊥平面1A AMN又∵11//B C BC ,且11B C 平面ABC ,BC 平面ABC ,11//B C 平面ABC又∵11B C 平面11EB C F ,且平面11EB C F 平面ABC EF11//B C EF//EF BC又BC ∵平面1A AMNEF 平面1A AMN EF ∵平面11EB C F 平面11EB C F 平面1A AMN(2)过M 作PN 垂线,交点为H ,画出图形,如图∵//AO 平面11EB C FAO 平面1A AMN ,平面1A AMN 平面11EB C F NP//AO NP又∵//NO AP6AO NP ∵O 为111A B C △的中心.1111sin 606sin 60333ON A C故:3ON AP,则333AM AP ,∵平面11EB C F 平面1A AMN ,平面11EB C F 平面1A AMN NP ,MH 平面1A AMNMH 平面11EB C F又∵在等边ABC 中EF APBC AM即36233AP BC EF AM由(1)知,四边形11EB C F 为梯形四边形11EB C F 的面积为:111126=62422EB C F EF B C S NP 四边形111113B EBC F EB C F V S h 四边形,h 为M 到PN 的距离23sin 603MH , 1243243V .【点睛】本题主要考查了证明线线平行和面面垂直,及其求四棱锥的体积,解题关键是掌握面面垂直转为求证线面垂直的证法和棱锥的体积公式,考查了分析能力和空间想象能力,属于中档题.21.已知函数f (x )=2ln x +1.(1)若f (x )≤2x +c ,求c 的取值范围;(2)设a >0时,讨论函数g (x )=()()f x f a x a的单调性.【答案】(1)1c ;(2)()g x 在区间(0,)a 和(,)a 上单调递减,没有递增区间【解析】【分析】(1)不等式()2f x x c 转化为()20f x x c ,构造新函数,利用导数求出新函数的最大值,进而进行求解即可;(2)对函数()g x 求导,把导函数()g x 分子构成一个新函数()m x ,再求导得到()m x ,根据()m x 的正负,判断()m x 的单调性,进而确定()g x 的正负性,最后求出函数()g x 的单调性.【详解】(1)函数()f x 的定义域为:(0,)()2()202ln 120()f x x c f x x c x x c ,设()2ln 12(0)h x x x c x ,则有22(1)()2x h x x x,当1x 时,()0,()h x h x 单调递减,当01x 时,()0,()h x h x 单调递增,所以当1x 时,函数()h x 有最大值,即max ()(1)2ln11211h x h c c ,要想不等式() 在(0,) 上恒成立,只需max ()0101h x c c ;(2)2ln 1(2ln 1)2(ln ln )()(0x a x a g x x x a x a且)x a 因此22(ln ln )()()x a x x x a g x x x a ,设()2(ln ln )m x x a x x x a ,则有()2(ln ln )m x a x ,当x a 时,ln ln x a ,所以()0m x ,()m x 单调递减,因此有()()0m x m a ,即()0g x ,所以()g x 单调递减;当0x a 时,ln ln x a ,所以()0m x ,()m x 单调递增,因此有()()0m x m a ,即()0g x ,所以()g x 单调递减,所以函数()g x 在区间(0,)a 和(,)a 上单调递减,没有递增区间.【点睛】本题考查了利用导数研究不等式恒成立问题,以及利用导数判断含参函数的单调性,考查了数学运算能力,是中档题.(二)选考题:共10分.请考生在第22、23题中选定一题作答,并用2B 铅笔在答题卡上将所选题目对应的题号方框涂黑.按所涂题号进行评分,不涂、多涂均按所答第一题评分;多答按所答第一题评分.[选修4—4:坐标系与参数方程]22.已知曲线C 1,C 2的参数方程分别为C 1:224cos 4sin x y ,(θ为参数),C 2:1,1x t t y t t(t 为参数).(1)将C 1,C 2的参数方程化为普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系.设C 1,C 2的交点为P ,求圆心在极轴上,且经过极点和P 的圆的极坐标方程.【答案】(1)1:4C x y ;222:4C x y ;(2)17cos 5.【解析】【分析】(1)分别消去参数 和t 即可得到所求普通方程;(2)两方程联立求得点P ,求得所求圆的直角坐标方程后,根据直角坐标与极坐标的互化即可得到所求极坐标方程.【详解】(1)由22cos sin 1 得1C 的普通方程为:4x y ;由11x t t y t t 得:2222221212x t t y t t,两式作差可得2C 的普通方程为:224x y .(2)由2244x y x y 得:5232x y ,即53,22P ;设所求圆圆心的直角坐标为 ,0a ,其中0a ,则22253022a a,解得:1710a , 所求圆的半径1710r , 所求圆的直角坐标方程为:22217171010x y ,即22175x y x , 所求圆的极坐标方程为17cos 5.【点睛】本题考查极坐标与参数方程的综合应用问题,涉及到参数方程化普通方程、直角坐标方程化极坐标方程等知识,属于常考题型.[选修4—5:不等式选讲]23.已知函数2()|21|f x x a x a .(1)当2a 时,求不等式()4f x 的解集;(2)若()4f x ,求a 的取值范围.【答案】(1)32x x或112x;(2) ,13, .【解析】【分析】(1)分别在3x 、34x 和4x 三种情况下解不等式求得结果;(2)利用绝对值三角不等式可得到 21f x a ,由此构造不等式求得结果.【详解】(1)当2a 时, 43f x x x .当3x 时, 43724f x x x x ,解得:32x ≤;当34x 时, 4314f x x x ,无解;当4x 时, 43274f x x x x ,解得:112x;综上所述: 4f x 的解集为32x x或112x .(2) 22222121211f x x a x a x ax a a a a (当且仅当221a x a 时取等号), 214a ,解得:1a 或3a ,a 的取值范围为 ,13, .【点睛】本题考查绝对值不等式的求解、利用绝对值三角不等式求解最值的问题,属于常考题型.祝福语祝你马到成功,万事顺意!。
第20题解析几何高考考点命题分析三年高考探源 考查频率曲线的方程或轨迹方程高考全国卷每年必有一道解析几何解答题,在高考中解析几何一般运算量较大,该题通常有2问,第1问多为曲线方程的确定,第2问多为直线与圆锥曲线的位置关系的应用,考查热点是长度、面积及定点定值问题2021课标全国Ⅰ21 2021课标全国Ⅱ20 2020课标全国Ⅰ202020课标全国Ⅱ19 2019课标全国Ⅲ20 2019课标全国Ⅰ19 2019课标全国Ⅱ21★★★★★ 直线与圆锥曲线位置关系及应用(长度、面积、定点、定值)2021课标全国Ⅰ21 2021课标全国Ⅱ20 2020课标全国Ⅰ20 2020课标全国Ⅲ20 2019课标全国Ⅰ19 2019课标全国Ⅱ21 2019课标全国Ⅲ21★★★★★例题(2021高考全国I )已知抛物线()2:20C x py p =>的焦点为F ,且F 与圆22:(4)1M x y ++=上点的距离的最小值为4.(1)求p ;(2)若点P 在M 上,,PA PB 是C 的两条切线,,A B 是切点,求PAB △面积的最大值. 【答案】(1)2p =;(2)5解:(1)抛物线C 的焦点为0,2p F ⎛⎫ ⎪⎝⎭,42pFM =+,(2分)所以,F 与圆22:(4)1M x y ++=上点的距离的最小值为4142p+-=,解得2p =;(4分)(2)抛物线C 的方程为24x y =,即24x y =,对该函数求导得2x y '=,(5分)设点()11,A x y 、()22,B x y 、()00,P x y , 直线PA 的方程为()1112x y y x x -=-,即112x x y y =-,即11220x x y y --=, 同理可知,直线PB 的方程为22220x x y y --=,由于点P 为这两条直线的公共点,则10102020220220x x y y x x y y --=⎧⎨--=⎩,所以,点A 、B 的坐标满足方程00220x x y y --=, 所以,直线AB 的方程为00220x x y y --=,联立0022204x x y y x y --=⎧⎪⎨=⎪⎩,可得200240x x x y -+=, 由韦达定理可得1202x x x +=,1204x x y =,(8分) 所以,()()()222222001212000001414164422x x AB x x x x x y xx y ⎛⎫⎛⎫=++-=+-+- ⎪ ⎪⎝⎭⎝⎭,(9分)点P 到直线AB 的距离为200244x y d x -=+(100分)所以,()()()2300222200002041114442224PABx y S AB d xx y x y x -=⋅=+-=-+△, ()()2222000000041441215621x y y y y y y -=-+-=---=-++,由已知可得053y -≤≤-,所以,当05y =-时,PAB △的面积取最大值321202052⨯=(12分)1.(2022届山西省吕梁市高三模拟)已知椭圆C :()222210x y a b a b+=>>的左、右焦点分别为1F ,2F 3(3,6为C 上一点,过点1F 且与y 轴不垂直的直线l 与C 交于A ,B 两点. (1)求C 的方程;(2)在平面内是否存在定点Q ,使得QA QB ⋅为定值?若存在,求出点Q 的坐标;若不存在,请说明理由.【答案】(1)221128x y +=(2)存在;8,03Q ⎛⎫- ⎪⎝⎭【解析】 (1)设C 的半焦距为()0c c >,由题意得222223361c a a b a b c⎧=⎪⎪⎪+=⎨⎪=+⎪⎪⎩,解得2221284a b c ⎧=⎪=⎨⎪=⎩,所以C 的方程为221128x y +=.(2)假设存在定点(),Q s t ,使得QA QB ⋅为定值λ,设()11,A x y ,()22,B x y . 由(1)知()2,0F -,因为l 不垂直于y 轴,故设l 的方程为2x my =-,联立,得2221128x my x y =-⎧⎪⎨+=⎪⎩,消去x 并化简,得()22238160m y my +--=.则()226464230m m ∆=++>,且122823m y y m +=+,1221623y y m =-+, ()()1111,2,QA x s y t my s y t =--=---,()()2222,2,QB x s y t my s y t =--=---,所以()()()()121222QA QB my s my s y t y t ⋅=----+--()()()()2221212122m y y m s t y y s t =+-++++++⎡⎤⎣⎦()()()222221618222323m m s t m s t m m λ+++⎡⎤⎣⎦=--+++=++. 所以()()()222222221616828223223m s m tm s t m s t m λλ⎡⎤⎡⎤---+-++++++=+⎣⎦⎣⎦, 所以()()2216822222s s t λ--++++=,80t -=,()22163233s t λ-+++=,所以83s =-,0=t ,449λ=-.所以存在8,03Q ⎛⎫- ⎪⎝⎭,使得QA QB ⋅为定值449-.2.(2022届河南省顶级名校高三4月联合考)己知抛物线1C 的方程是223y x =,圆2C 的方程是()2211x a y -++=,过抛物线1C 上的点()(),0>P a b b 作圆2C 的切线,两切线分别与抛物线1C 相交于与点P 不重合的()()()112212,,,>A x y B x y y y 两点. (1)求直线P A ,PB 的方程(直线PB 的方程用含b 的等式表示); (2)若PA PB =,求实数2b 的值.【答案】(1)x a =,()242214370b x by b b ---+=(2)227+【解析】 (1)由题意可知,直线PB 的方程是x a =,根据条件可设直线PA 的方程是()y k x a b =-+,即0kx y ka b --+=, ∵直线PA 与圆()2211x a y -++=相切,∴()2111k a ka bk --+=+,∴212b k b-=,∴直线PA 的方程是2221130222b b b x y b b b ----⋅+=,即()242214370b x by b b ---+=.(2)若210b -=,则0k =,直线PA 与抛物线1C 没有两个交点,不合题意, 故210b -≠,∴直线PA 的方程可写成()4222237121b b b x y b b -=+--,将它代入223y x =并化简得()2242314370b y by b b ---+=,∴()()2224Δ(4)121730b b b b =---->①,()12431b y b b +=-,即()12431by b b =--, ∴()21112211114PA b y b by k k=+-=++-()()()()()2222222222221354164143119131b b b b b b b b b b b b ⎡⎤+-⎢⎥=+---⎢⎥---⎣⎦,∵2PB b =,∴()22222135231b b b b b +-=-,解得,22b =,或227b += 经检验,22b =与227b +=①,所以实数2b 的值是227+3.(2022届山西省高三第二次模拟)已知双曲线()2222:10,0x y C a b a b-=>>经过点()12,0A ,()24,0A ,(322,3A ,(422,3A -,53,3A 中的3个点.(1)求双曲线C 的方程;(2)已知点M ,N 是双曲线C 上与其顶点不重合的两个动点,过点M ,N 的直线1l ,2l 都经过双曲线C 的右顶点,若直线1l ,2l 的斜率分别为1k ,2k ,且121k k +=,判断直线MN 是否过定点,若过定点,求出该点的坐标;若不过定点,请说明理由【答案】(1)22143x y -=(2)直线MN 过定点,且定点坐标为()2,3【解析】 (1)由于34,A A 关于x 轴对称,所以34,A A 要么都在双曲线C 上,要么都不在双曲线C 上.点12,A A 不可能都在双曲线C 上,因为双曲线C 经过3个点,所以34,A A 都在双曲线C 上.将34,A A 的坐标代入22221x y a b-=得22831a b -=,由34,A A 都在双曲线C 上可知()24,0A 、53,3A 都不在双曲线C 上,所以点()12,0A 在双曲线C 上,故2a =, 结合22831a b -=可得3b = 所以双曲线C 的方程为22143x y -=.(2)设()()1122,,,M x y N x y ,其中12y y ≠,故可设直线MN 的方程为x my n =+,由22143x my nx y =+⎧⎪⎨-=⎪⎩消去x 并化简得()2223463120m y mny n -++-=,2340m -≠,21212226312,3434mn n y y y y m m -+=-⋅=--. 因为双曲线C 的右顶点为()12,0A ,且121k k +=, 所以121212122222y y y y x x my n my n +=+--+-+-12122212122(2)()(2)()(2)my y n y y m y y m n y y n +-+=+-++-22222222222226246123343413126122(2)3434mn m mn mnm m m m n m m n m n nn m m -----==----+---,所以32n m =-+,代入x my n =+得()32x m y =-+, 当3y =时,2x =, 所以直线MN 过定点()2,3.4.(2022届河北省九师联盟高三4月联考)已知双曲线()2222:10,0x y C a b a b-=>>的左,右焦点分别为()16,0F ,)26,0F .且该双曲线过点(22,2P .(1)求C 的方程;(2)如图.过双曲线左支内一点(),0T t 作两条互相垂直的直线分别与双曲线相交于点A ,B 和点C ,D .当直线AB ,CD 均不平行于坐标轴时,直线AC ,BD 分别与直线x t =相交于P .Q 两点,证明:P ,Q 两点关于x 轴对称. 【答案】(1)22142x y -=(2)证明见解析 【解析】 (1)解:由已知可得22226821a b a b ⎧+⎪⎨-=⎪⎩,解得224,2a b ==, 所以双曲线C 的方程为22142x y -=; (2)证明:由题意,设直线AB 的方程为x my t =+,直线CD 的方程为1x y t m=-+,点 ()()()()11223344,,,,,,,A x y B x y C x y D x y ,由22142x y x my t ⎧-=⎪⎨⎪=+⎩,得 ()2222240m y mty t -++-=,则()()22222(2)424168320mt m t m t ∆=---=+->,得2224m t +>,所以212122224,22mt t y y y y m m --+==--, 同理可得()2234342242,1212t m mt y y y y m m-+==--,其中,m t 满足2224t m +>, 直线AC 的方程为()133111y y y y x x x x --=--,令x t =,得()131113y yy t x y x x -=-+-, 又11331,x my t x y t m =+=-+,所以()2121331m y y y m y y +=+,即()2132131,m y y P t m y y ⎛⎫+ ⎪ ⎪+⎝⎭, 同理可得()2242241,m y y Q t m y y ⎛⎫+ ⎪ ⎪+⎝⎭, 因为()()()()()()()2222123412341324222213241324111m m y y y y y y y y my y my y m y y m y y my y m y y ⎡⎤++++++⎣⎦+=++++()()()()()222222222221324442212122120m t t m mt mt m m m m m m y y m y y ⎡⎤---+⋅+⋅⎢⎥----⎢⎥⎣⎦==++, 所以,P Q 两点关于x 轴对称.5.(2022届天津市第七中学高三阶段检测)已知曲线C 上动点M 与定点()2,0F 的距离和它到定直线1:22l x =-22,若过()0,1P 的动直线l 与曲线C 相交于,A B 两点.(1)说明曲线C 的形状,并写出其标准方程; (2)是否存在与点P 不同的定点Q ,使得QA PAQB PB=恒成立?若存在,求出点Q 的坐标;若不存在,请说明理由.【答案】(1)曲线C 为椭圆,标准方程为:22142x y +=,(2)存在定点()0,2Q ,使得QA PA QB PB =恒成立. 【解析】 (1) 设(),M x y ()2222222x y x ++=+,整理可得:22142x y +=, ∴曲线C 为椭圆,标准方程为:22142x y +=.(2)①当直线l 与y 轴垂直时,即:1l y =,由椭圆对称性可知:PA PB =,QA QB ∴=,∴点Q 在y 轴上;②当直线l 与x 轴垂直时,即:0l x =,则(2A ,(0,2B -, 若存在定点Q ,则由①知:点Q 在y 轴上,可设()()0,1Q t t ≠,由QA PA QB PB =221212t t --=++1t =(舍)或2t =,()0,2Q ∴; 则若存在定点Q 满足题意,则Q 点坐标必然是()0,2,只需证明当直线l 斜率存在时,对于()0,2Q ,都有QA PAQB PB=成立即可. 设:1l y kx =+,()11,A x y ,()22,B x y ,由221142y kx x y =+⎧⎪⎨+=⎪⎩得:()2212420k x kx ++-=,其中23280k ∆=+>恒成立,122122412212k x x k x x k ⎧+=-⎪⎪+∴⎨⎪=-⎪+⎩,121212112x x k x x x x +∴+==,设点B 关于y 轴的对称点为B ',则()22,B x y '-, 11111211QA y kx k k x x x --===-,22222211QB y kx k k x x x '--===-+--, 12112220QA QB k k k k k x x '⎛⎫∴-=-+=-= ⎪⎝⎭,即,,Q A B '三点共线,12QA QA x PAQB QB x PB∴==='; 综上所述:存在定点()0,2Q ,使得QA PAQB PB=恒成立. 6.(2022届浙江省嘉兴市高三4月二模)已知椭圆22122:1(0)x y C a b a b+=>>的左、右焦点分别为1F ,2F ,椭圆1C 上的点31,2A ⎛⎫- ⎪⎝⎭到两焦点1F ,2F 的距离之和为4.(1)求椭圆1C 的标准方程;(2)若抛物线22:2(0)C y px p =>的焦点F 与椭圆1C 的右焦点2F 重合,过点(,0)(0)P m m >作直线1l 交抛物线2C 于点M ,N ,直线MF 交抛物线2C 于点Q ,以Q 为切点作抛物线2C 的切线2l ,且21l //l ,求MNQ △面积S 的最小值.【答案】(1)22143x y +=;(2)16.【解析】 (1)因为椭圆1C 上的点31,2A ⎛⎫- ⎪⎝⎭到两焦点1F ,2F 的距离之和为4,所以有24a =,即2a =,将点31,2A ⎛⎫- ⎪⎝⎭代入椭圆1C 的方程22214x yb+=,得219144b+=,从而23b =, 所以椭圆1C 的标准方程为22143x y +=; (2)由(1)知椭圆的右焦点为(1,0),因为抛物线2C 的焦点与椭圆1C 的右焦点重合,所以12p=,即2p =,从而抛物线2C 的方程为24y x =.设()11,M x y ,()22,N x y ,设直线MN 为:(0)x ty m t =+≠,联立24x ty my x =+⎧⎨=⎩,消去x 得2440y ty m --=,所以121244y y t y y m +=⎧⎨=-⎩①, 直线2114:14y MF x y y -=+与抛物线22:4C y x =联立,消去x 得 2211440y y y y ---=,所以得Q 点的纵坐标为14y -,所以21144,Q y y ⎛⎫- ⎪⎝⎭,因为21l //l ,所以直线2l 为:21144t x ty y y =++与抛物线22:4C y x =联立,消去x 得2211161640t y ty y y ---=,故2221114240t t t y y y ⎛⎫∆=++=+= ⎪⎝⎭,得12y t =-,代入①式可以得224y t t =+,122244y y t m t t ⎛⎫=-+=- ⎪⎝⎭,即212m t=+,又有()2,2Q t t ,直线MN 为212(0)x ty t t =++≠,得2221||12MN t t t =+++222121Q MN d t t t -⎫=++⎪⎭+所以33222222112222216MNQ S t t t t ⎛⎫⎛⎫=++≥⋅ ⎪ ⎪ ⎪⎝⎭⎝=⎭△, 当且仅当1t =±时取到最小值.7.(2022届山西省吕梁市高三第二次模拟)已知O 为坐标原点,椭圆2222:1(0)x y C a b a b+=>>6(6,1)P . (1)求椭圆C 的方程;(2)直线l 与椭圆C 交于A ,B 两点,直线OA 的斜率为1k ,直线OB 的斜率为2k ,且1213k k =-,求OA OB ⋅的取值范围.【答案】(1)22193x y +=;(2)[3,0)(0,3]-.【解析】 (1)由题意,226611c a a b ⎧=⎪⎪⎨⎪+=⎪⎩,又222a b c =+,解得3,3a b ==所以椭圆C 为22193x y +=. (2)设()()1122,,,A x y B x y ,若直线l 的斜率存在,设l 为y kx t =+,联立22193y kx tx y =+⎧⎪⎨+=⎪⎩,消去y 得:()222136390+++-=k x ktx t ,22Δ390k t =+->,则12221226133913kt x x k t x x k -⎧+=⎪⎪+⎨-⎪=⎪+⎩,又12k k =121213y y x x =-, 故121213=-y y x x 且120x x ≠,即2390-≠t ,则23≠t ,又1122,y kx t y kx t =+=+,所以()()()222222222121212221212122691133939313-+++++-+==+=+==---+k t t kx t kx t kt x x t y y t k k k k t x x x x x x t k , 整理得222933=+≥t k ,则232≥t 且Δ0>恒成立. 221212121212222122393333133313--⎛⎫⋅=+=-==⋅=⋅=- ⎪+⎝⎭t t OA OB x x y y x x x x x x k t t , 又232≥t ,且23≠t ,故2331[3,0)(0,3)⎛⎫-∈- ⎪⎝⎭t . 当直线l 的斜率不存在时,2121,x x y y ==-,又12k k =212113-=-y x ,又2211193x y +=,解得2192x =,则222111233⋅=-==OA OB x y x . 综上,OA OB ⋅的取值范围为[3,0)(0,3]-.8.(2022届浙江省温州市高三3月适应性测试)已知椭圆()22122:10x y C a b a b+=>>离心率为662⎝⎭;圆()()2223:4C x m y n -+-=的圆心为M ,M 是椭圆上1C 上的点,过O 作圆2C 两条斜率存在的切线,交椭圆1C 于A ,B .(1)求椭圆1C 方程;(2)记d OA OB =+,求d 的最大值. 【答案】(1)2213x y +=(2)22【解析】 (1)依题意22222226216a b a b c c a ⎧⎪⎪⎝⎭⎝⎭+=⎪⎪⎪=+⎨⎪⎪=⎪⎪⎪⎩,解得3,1,2a b c ==所以椭圆1C 的方程为2213x y +=.(2)设过原点的圆()()2223:4C x m y n -+-=的切线方程为y kx =,即0kx y , 231km n k -=+()222348340m k mnk n -++-=, 其两根12,k k 满足21223434n k k m -=-,设12,OA OB k k k k ==,(),M m n 是椭圆1C 上的点,所以22221,133m m n n +==-. 2221222243341334133434343m m n k k m m m ⎛⎫--- ⎪-⎝⎭====----. 设()()1122,,,A x kx B x kx ,则2211221,1OA k x OB k x +=+,且2222221211221,133x x k x k x +=+=,2212221233,1313x x k k ==++ 所以()()222222112211OA OB k x k x +=+++()222222222222222222121122112211221122333362x x k x k x k x k x k x k x k x k x =+++=-+-++=-+ 2212221233621313k k k k ⎛⎫=-+ ⎪++⎝⎭()()()()222212212212313313621313k k k k k k +++=-⨯++ 2222221212122222221212123318332626262=41339233k k k k k k k k k k k k ++++=-⨯=-⨯=-+++++. 所以由基本不等式得()22222d OA OB OA OB =+≤+=,当且仅当OA OB =时等号成立. 所以d 的最大值为229.(2022届云南省高三第二次统一检测)已知曲线C ()22110x y x -++=,点D 的坐标为()1,0,点P 的坐标为()1,2.(1)设E 是曲线C 上的点,且E 到D 的距离等于4,求E 的坐标;(2)设A ,B 是曲线C 上横坐标不等于1的两个不同的动点,直线P A ,PB 与y 轴分别交于M 、N 两点,线段MN 的垂直平分线经过点P .证明:直线AB 的斜率为定值. 【答案】(1)(3,23或(3,23-(2)证明见解析 【解析】 (1)∵曲线C ()22110x y x -++=,移项平方得()()22211x y x -+=+,化简得24y x =, ∴曲线C 的方程为24y x =.∴()1,0D 为抛物线24y x =的焦点,直线1x =-为抛物线24y x =的准线. 设()00,E x y ,则01ED x =+. ∵4ED =,∴014x +=,解得03x =.∴20412y x ==,解得023y =± ∴E 的坐标为(3,23或(3,23-.(2)∵()1,2P ,曲线C 的方程为24y x =,2241=⨯, ∴点()1,2P 在曲线C 上.∵A 、B 是曲线C 上横坐标不等于1的两个不同的动点,直线P A 、PB 与y 轴分别交于点M 、N ,∴直线P A 、PB 的斜率都存在,且都不为0,分别设为k 、1k ,则10kk ≠,直线P A 的方程为()21y k x -=-,即2y kx k =+-.当0x =时,2y k =-,即()0,2M k -. 同理可得()10,2N k -.∵线段MN 的垂直平分线经过点P , ∴12222k k -+-=,即1k k =-.由224y kx k y x=+-⎧⎨=⎩,得:()2222222440k x k k x k k --++-+=. 设()11,A x y ,则1,1x 是()2222222440k x k k x k k --++-+=的解.由韦达定理得:2112441k k x x k -+=⋅=.∴21244422k k y k k k k-+=⨯+-=-.∴22444,2k k A k k ⎛⎫-+- ⎪⎝⎭. 同理可得22444,2k k B k k ⎛⎫++- ⎪-⎝⎭. ∴2222442214444ABk k k k k k k k k ---+==-++-+-. ∴直线AB 的斜率为定值.10.(2022届河南省五市高三第二次联合调研)已知椭圆C :22221x y a b+=(0a b >>)的上顶点和两焦点构成的三角形为等腰直角三角形,且面积为2,点M 为椭圆C 的右顶点. (1)求椭圆C 的方程;(2)若经过点(,0)P t 的直线l 与椭圆C 交于,A B 两点,实数t 取何值时以AB 为直径的圆恒过点M ?【答案】(1)22142x y +=,(2)23t = 【解析】 (1)由题意知:2b cbc =⎧⎨=⎩解得:2b c ==2a =,所以椭圆C 的方程为22142x y +=. (2)由(1)知:(2,0)M ,若直线l 的斜率不存在,则直线l 的方程为x t =(22t -<<), 此时222t A t ⎛- ⎝,2,22t B t ⎛-⎝, 由0MA MB ⋅=得2222,2022t t t t ⎛⎛--⋅---= ⎝⎝, 解得23t =或2t =(舍),即23t =. 若直线l 的斜率存在,不妨设直线l :()y k x t =-,11(,)A x y ,22(,)B x y 联立()22142y k x t x y ⎧=-⎪⎨+=⎪⎩,得()()22222124240k x k ty k t +-+-=.所以,2122412k tx x k +=+,221222412k t x x k -=+.由题意知:0MA MB ⋅=,即1122(2,)(2,)0x y x y -⋅-=, 易得()()()()222212121240kx x k t x x k t +-++++=,()()()()()22222222124244120k k tk t k t k t k +--++++=(),整理得,()223840k t t -+=,因为k 不恒为0故解得23t =或2t =(舍), 综上,23t =时以AB 为直径的圆恒过点M . 11.(2022届江苏省南通市高三二模))已知椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别是F 1,F 2,焦距为2,点P 是椭圆C 上一动点,12PF F △的内切圆的面积的最大值为3π. (1)求椭圆C 的方程;(2)延长12,PF PF 与椭圆C 分别交于点A ,B ,问:1212PF PF F AF B+是否为定值?并说明理由.【答案】(1)22143x y +=,(2)是,理由见解析 【解析】 (1)设12PF F △的内切圆的半径为r ,点P 的坐标为()00,x y . 因为焦距为2,所以122F F =,故1c =. 12PF F △的面积()12012121122S F F y PF PF F F r =⋅=++⋅,故0(1)y a r =+. 对于给定的椭圆,要使 12PF F △的内切圆的面积最大,即r 最大,即0y 最大, 由于12PF F △的内切圆的面积的最大值为3π,故此时3r =, 所以0y b =时,有3(1)b a =+①又221a b -=.②由①②,得224,3a b ==,所以椭圆C 的方程22143x y +=. (2)由题意知:12(1,0),(1,0)F F - ,设()()1122,,,A x y B x y ,直线1PF 的方程为1x my =-,与(1)中所求椭圆22:143x y C +=联立方程组并消去x 得, ()2234690my my +--=,24(1)0m ∆=+> ,所以012934y y m -=+,所以221001103409PF y m y F A y -+==-. 因为点00(,)P x y 在直线1:1PF x my =-上,所以001x m y +=, 又点 00(,)P x y 在椭圆22:143x y C +=上,所以22003412x y +=,所以()20222100000113431452993x PF y x y x y F A ⎛⎫++ ⎪+++⎝⎭===. 同理,可得202523PF x F B -=, 所以1212103PF PF F A F B +=(定值). 12.(2022届浙江省稽阳高三4月联考)如图,点()()00,10A x x >在抛物线22x py =上,抛物线的焦点为F ,且||2AF =,直线y kx k =-交抛物线于B ,C 两点(C 点在第一象限),过点C 作y 轴的垂线分别交直线OA ,OB 于点P ,Q ,记PQO ,ACP △的面积分别为1S ,2S .(1)求0x 的值及抛物线的方程; (2)当0k <时,求12S S 的取值范围.【答案】(1)202,4x x y ==(2)10,3⎛⎫ ⎪⎝⎭【解析】 (1)12,22pAF p =+=∴=, 204,2x y x ∴==.(2)设()()1122,,,C x y B x y ,因为直线OA :12y x = 则()112,P yy ,直线OB 的方程为:22y y x x =,1212,y x Q y y ⎛⎫∴ ⎪⎝⎭, 联立方程组24y kx kx y=-⎧⎨=⎩消去y 可得:2440x kx k -+=,121244x x k x x k +=⎧∴⎨=⎩1121221,1x x x x x x x ∴+=∴=- ()()12111212111112212112y x y y PQ y y S S x y y PC y ⎛⎫- ⎪⋅⎝⎭∴==--- 2222211111121222221111112424112424x x x x x x x S S x x x x x x ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭∴==⎛⎫⎛⎫⎛⎫⎛⎫---- ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭ 21211221214414x S x x S x ∴==--,222111122222111144414444S x x x S x x x x ⎛⎫-+∴==-=-=-+ ⎪----⎝⎭ 又10,01k x <∴<<,-4<x12-4<-3, 221144141,103434x x ∴-<<--<+<--故1210,3S S ⎛⎫∈ ⎪⎝⎭.。
2020年高考数学(辽宁)第20题(理)试题优美解
试题(辽宁、 理科20)
如图,椭圆()22022:+=1>b>0,a,b x y C a a b 为常数,动圆222111:+=,<<C x y t b t a .点12,A A 分别为0C 的左、右顶点,1C 与0C 相交于,,,A B C D 四点
(1)求直线1AA 与直线2A B 交点M 的轨迹方程;
(2)设动圆22222:+=C x y t 与0C 相交于',',','A B C D 四点,其中
2<<b t a ,12t t ≠.若矩形ABCD 与矩形''''ABCD 的面积相等,
证明:2212+t t 为定值
解法
设()()1111,,,-A x y B x y ,又知()()12-,0,,0A a A a ,则
直线1A A 的方程为 ()11=
++y y x a x a ① 直线2A B 的方程为
()11-=--y y x a x a ② 由①②得 ()22221221-=--y y x a x a
③ 由点()11,A x y 在椭圆0C 上,故可得221122+=1x y a b ,从而有222112=1-x y b a ⎛⎫ ⎪⎝⎭
,代入③得 ()22
22-=1<-,<0x y x a y a b
(2)证明:设()22',A x y ,由矩形ABCD 与矩形''''ABCD 的面积相等,得 2222112211224=4,=x y x y x y x y ∴,因为点,'A A 均在椭圆上,所以
222222121
2221-=1-x x b x b x a a ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭
由12t t ≠,知12x x ≠,所以22212+=x x a 。
从而22212+=y y b ,因而222212+=+t t a b 为定值
试题或解法赏析.
本题主要考查圆的方程、椭圆方程、轨迹求法、解析几何中的定值问题,考查转化与化归能力、运算求解能力,是难题.。