直流变换器的建模与控制
- 格式:pdf
- 大小:1.64 MB
- 文档页数:53
目录1.引言 (2)1.1研究意义 (2)1.2研究内容 (2)2.直流-直流变换器的工作原理 (2)4 H桥DC/DC变换系统的电路仿真模型建立与实现 (6)5 结论 (11)心得体会 (12)1.引言1.1研究意义电能是现代工农业、交通运输、通信和人们日常生活不可缺少的能源。
电能一般分为直流电和交流电两大类,现代科学技术的发展使人们对电能的要求越来越高,不仅需要将将交流电转变为直流电,直流电转变为交流电,以满足供电能源与用电设备之间的匹配关系,还需要通过对电压、电流、频率、功率因数和谐波等的控制和调节,以提高供电的质量和满足各种各样的用电要求,这些要求在电力电子技术出现之前是不可能实现的,随着现代电力电子技术的发展,各种新型电力电子器件的研究、开发和应用,使人们可以用电力电子变流技术为各种各样的用电要求提供高品质的电源,提高产品的质量和性能,提高生产效率,改善人们的生活环境。
所谓变流就是指交流电和直流电之间的转换,对交直流电压、电流的调节,和对交流电的频率、相数、相位的变换和控制。
而电力电子变流电路就是应用电力电子器件实现这些转换的线路,一般这些电路可以分为四大类。
(1)交流—直流变流器。
(2)直流—直流斩波调压器。
(3)直流—交流变流器。
(4)交流—交流变流器。
本课题所要研究的是直流—直流斩波调压。
1.2 研究内容(1)工作原理分析(2)系统建模及参数设置(3)波形分析2.直流-直流变换器的工作原理直流—直流变流电路的功能是将直流电变为另一固定电压或可调电压的直流电,包括直接直流变流电路和间接直流变流电路。
直接直流变流电路也称斩波电路,它的功能是将直流电变为另一固定电压或可调电压的直流电,一般是指直接将直流电变为另一直流电,这种情况下输入与输出之间不隔离。
间接直流变流电路是在直流变流电路中增加了交流环节,在交流环节中通常采用变压器实现输入输出间的隔离,因此也称为带隔离的直流—直流变流电路或直—交—直电路。
2 Buck 直流变换器的工作原理及动态建模DC/DC 变换器的概念7【】15【】19【】将一个固定的直流电压变换成可变的直流电压称之为DC/DC 变换,亦称为直流斩波。
用斩波器斩切直流的基本思想是:如果改变开关的动作频率,或者改变直流电流通和断的时间比例,就可以改变加到负载上的电压、电流的平均值。
Buck 变换器又称降压变换器、串连开关稳压电源、三端开关型降压稳压器。
基本的DC/DC 变换器按输入输出之间是否有电气隔离可分为两类:隔离型DC/DC 变换器和非隔离型DC/DC 变换器。
非隔离型DC/DC 变换器中存在四种基本的变换器拓扑,它们是降压式(Buck )型,升压式(Boost)型,升降压式(Buck-boost)型,Cuk 型,此外还有Sepic 型和Zeta 型变换器。
二电平Buck 直流变换器的工作原理及主电路图2【】13【】25【】26【】1 主电路拓扑Buck 变换器是一种输出电压等于或小于输入电压的单管非隔离直流变换器。
它的拓扑为电压源、串联开关和电流负载组合而成。
如图所示:图 Buck 电路主电路拓扑为了分析稳态特性,简化推导公式的过程,特作如下假定。
(1) 开关晶体管、二极管均是理想元件。
也就是可以瞬间的导通和截至,而且导通时降压为零,截至时漏电流为零。
(2) 电感、电容是理想元件。
电感工作在线性区而未饱和,寄生电阻为零,电容的等效串联电阻为零。
(3) 输出电压中的纹波电压与输出电压的比值小到允许忽略。
Buck 变换器的工作原理:当开关管S 导通时,电容开始充电,i U 通过向负载传递能量,此时,L i 增加,电感内的电流逐渐增加,储存的磁场能量也逐渐增加,而续流二极管因反向偏置而截至;当S 关断时,由于电感电流L i 不能突变,故L i 通过二极管VD 续流,电感电流逐渐减小,由于二极管VD 的单向导电性,L i 不可能为负,即总有L 0i ,从而可在负载上获得单极性的输出电压。
I. 引言现代电子设备和电子系统通常由高密度、高速度的电路组成,这样的电路具有低压大电流的特性。
为了带动这样的负载,电源必须能在一个很宽的电流范围内提供稳定的电压,其稳态及暂态的整流特性也必须相当出色。
建模与仿真在现代DC-DC变换器的设计过程中扮演了很重要的角色。
它能让工程师在制作实际电路之前评估变换器的性能。
因此,我们可以在设计之初就发现并更正可能存在的设计缺陷,以提高生产率并节约生产本钱。
DC-DC变换器的建模和仿真在过去的十年里是一个热点[1]。
一般来说,变换器建模方法有两种:开关模型、平均模型。
在开关模型中,模型仿真了变换器的开关动作,仿真波形是包含了开关纹波的波形,这与实际看到的波形很相似。
而平均模型只仿真了变换器的平均特性,仿真波形也是平滑而连续的,这个波形代表了平均值而非实际值。
众所周知,对平均模型进展仿真要比开关模型快。
因此,平均模型常用于变换器动态性能的总体评估。
在过去,平均模型的仿真主要是用SPICE来完成的[2]。
SPICE的缺点在于仿真的对象必须是电路的形式,如果模型原型是复杂的方程式,那么要花费很大的精力将其转换成等效的电路形式。
尽管SPICE的新版本也开场支持建立纯数学模型,但是改善仍然有限。
最近,参考文献[3]介绍了一个不错的可以用在DC-DC变换器建模和仿真方面的工具——SIMULINK[4]。
然而,作者使用的变换器模型是线性化的,在大信号条件下,这个模型的仿真效果并不理想。
为了克制上述缺点,本论文讨论了如何应用SIMULINK在大信号条件下对DC-DC变换器进展平均模型的建模与方针。
本文拓展了文献[3]的研究,在变换器的功率和控制局部使用了非线性化的模型,从而改良了模型在大信号条件下的仿真效果。
下面将分别讨论Buck变换器的非线性化的模型,及相关的三个输出电压控制策略。
A. Buck变换器主电路拓扑Buck变换器主拓扑如图1所示:图1 Buck变换器Fig.1. Buck Converter在电流连续的模式下〔CCM〕——即开关开通的时候,电感电流连续——变换器表现为两个电路状态。
通过DC/DC转换器稳态建模来教学的方法
随着电力电子技术的不断发展及其应用范围的不断拓广,利用全控器件构成的开关变换器得到越来越广泛的应用。
为了适应这种变化,各国高校都在电力电子技术的教学中增加了相关的内容[1][2]。
本文在参考国外先进教学方法的基础上,总结多年的教学经验,归纳整理出一套为DC/ DC 变换器建立稳态模型,并利用稳态模型分析直流变换器的稳态工作特性的教学方法和研究思路。
1直流变换器中元器件稳态损耗模型
为了在直流变换器的稳态模型中能够有效估算元器件的寄生参数所引起的损耗,必须首先为各种元器件建立稳态损耗模型[3]。
1. 1电感与电容元件的损耗模型
电感线圈的损耗主要包括铜损和铁损,利用泰克示波器可以测出这两类损耗。
在模型中可以用与电感串联的电阻来表征。