DC-DC变换器的动态建模和控制
- 格式:ppt
- 大小:3.45 MB
- 文档页数:73
I. 引言现代电子设备和电子系统通常由高密度、高速度的电路组成,这样的电路具有低压大电流的特性。
为了带动这样的负载,电源必须能在一个很宽的电流范围内提供稳定的电压,其稳态及暂态的整流特性也必须相当出色。
建模与仿真在现代DC-DC变换器的设计过程中扮演了很重要的角色。
它能让工程师在制作实际电路之前评估变换器的性能。
因此,我们可以在设计之初就发现并更正可能存在的设计缺陷,以提高生产率并节约生产本钱。
DC-DC变换器的建模和仿真在过去的十年里是一个热点[1]。
一般来说,变换器建模方法有两种:开关模型、平均模型。
在开关模型中,模型仿真了变换器的开关动作,仿真波形是包含了开关纹波的波形,这与实际看到的波形很相似。
而平均模型只仿真了变换器的平均特性,仿真波形也是平滑而连续的,这个波形代表了平均值而非实际值。
众所周知,对平均模型进展仿真要比开关模型快。
因此,平均模型常用于变换器动态性能的总体评估。
在过去,平均模型的仿真主要是用SPICE来完成的[2]。
SPICE的缺点在于仿真的对象必须是电路的形式,如果模型原型是复杂的方程式,那么要花费很大的精力将其转换成等效的电路形式。
尽管SPICE的新版本也开场支持建立纯数学模型,但是改善仍然有限。
最近,参考文献[3]介绍了一个不错的可以用在DC-DC变换器建模和仿真方面的工具——SIMULINK[4]。
然而,作者使用的变换器模型是线性化的,在大信号条件下,这个模型的仿真效果并不理想。
为了克制上述缺点,本论文讨论了如何应用SIMULINK在大信号条件下对DC-DC变换器进展平均模型的建模与方针。
本文拓展了文献[3]的研究,在变换器的功率和控制局部使用了非线性化的模型,从而改良了模型在大信号条件下的仿真效果。
下面将分别讨论Buck变换器的非线性化的模型,及相关的三个输出电压控制策略。
A. Buck变换器主电路拓扑Buck变换器主拓扑如图1所示:图1 Buck变换器Fig.1. Buck Converter在电流连续的模式下〔CCM〕——即开关开通的时候,电感电流连续——变换器表现为两个电路状态。
DC―DC开关变换器的建模与非线性行为控制一、Buck-Boost变换器工作原理Buck-Boost变换器电路如图1(a)所示。
Buck-Boost变换器功率级工作原理:当功率开关管S导通时,二极管D受反向电压关断,电感电流>上升。
当上升达到参考电流I时,S断开,>通过D进行续流,此时D导通。
如果在下一个时钟脉冲到来时大于0,则电路工作于连续导电模式(CCM),电路波形图1(b)所示;如果在下一个时钟脉冲到来前已降到0,则电路工作于不连续导电模式(DCM),此时开关S和D都关断,电路波形图1(c)所示。
控制级工作原理:将电感电流的采样值与参考电流I输入比较放大器A(其放大系数为K),得到误差信号e=(I-),该误差信号与锯齿波信号相比较,控制输出信号调节占空比D,进而控制开关S的导通时。
二、Buck-Boost变换器非线性行为在进行Buck-Boost变换器非线性行为分析前,做如下假设:(1)负载上的电压V恒定不变,可看作是一个电压源。
在实际电路中只要滤波电容足够大,这一假设是成立的;(2)变换器中所有器件均为理想器件,忽略其寄生参数。
1、连续导电模式在t=t(n=0,1,2,…)时刻,S闭合。
此时系统的微分方程为:(1)在t=t+DT(n=0,1,2,…)(D为系统的占空比)时刻,S 断开,此时系统的微分方程为:(2)当电感电流达到参考电流值时,电路开关S由导通转换为关断。
电感电流在时刻的采样值与基准电流I输入比较器A,A的反馈倍数为K,系统的采样控制方程为:(3)en输入PWM控制器,与锯齿波相比较,形成的占空比规律如下:(4)采用A开关映射的数据采样方法,即在开关S闭合的时刻采样数据。
设在t=tn(n=0,1,2…)和t=tn+T (n=0,1,2…)时刻电感电流采样值分别为in,in+1,则系统的离散方程为:(5)将式(3)和式(4)代入式(5),得:(6)其中:式(6)即为系统CCM的离散迭代方程。