矿井提升设备的选型和设计
- 格式:docx
- 大小:11.76 KB
- 文档页数:3
摘要为了防止提升机过卷事故的发生,人们在电控安全回路中设置了大、小过卷双重保护开关,但是由于人为的操作失误以及设备故障等原因,仍然会发生过卷事故,给企业造成了重大的损失。
本设计就是为了防止矿井提升机重大事故之一—箕斗过卷后断绳下坠的发生而进行的。
在设计中充分分析了事故发生的原因,应用物理学、力学等理论知识,经过分析,方案比较、校核验算等步骤,设计出有效防止这一事故发生的装置——箕斗逆止器。
箕斗逆止器就是为了防止箕斗断绳下坠的装置。
将其安装于正常的卸载位置以上处,当箕斗过卷时,逆止器快速动作,伸出承接装置,将下落的箕斗托于井架上,避免更大的事故的发生,等待事故处理完毕后,又可恢复正常工作。
所以本设计是本着安全、可靠、灵活、简单的原则来进行设计的。
关键词:提升机;安全系数;强度目录绪论 (1)1 矿井提升设备的选型设计 (2)1.1副井提升机的选型设计 (2)1.1.1 设计依据 (2)1.1.2设备类型的确定 (2)1.1.3 提升钢丝绳的选型 (3)1.1.4 提升机的选型 (5)1.1.5 校验提升机强度 (5)1.1.6 井塔高度的确定 (6)1.1.7预选电动机 (6)1.1.8天轮的选型计算 (7)1.1.9提升机与井筒相对位置的计算 (7)1.1.10运动学参数计算 (9)1.2主井提升机的选型设计 (10)1.2.1设计依据 (11)1.2.2设备类型型的确定 (11)1.2.3箕斗的选型 (12)1.2.4提升钢丝绳的选型 (13)1.2.5选择电动机 (14)1.2.6井塔高度的确定 (14)1.2.7 预选电动机 (15)1.2.8 提升系统总变位质量 (15)1.2.9 提升机加减速度的确定 (16)1.2.10 运动学参数的计算 (16)1.2.11 动力学参数计算 (18)1.2.12 电动机功率校验 (19)1.2.13 防滑校验 (19)1.2.14提升电耗及效率 (21)2 罐笼逆止器的设计 (22)2.1 方案的确定 (23)2.2 托爪设计 (27)2.3 复位弹簧的设计算 (32)2.4 收爪油缸的设计 (33)2.5 缓冲油缸的设计 (38)2.6 底坐设计及计算 (41)2.7 托梁强度校核 (43)3 提升机信号联锁系统的改造 (45)3.1原信号联锁系统的缺陷 (45)3.2改造后的电路及工作原理 (46)3.3主要元器件的选择 (47)后记 (48)参考文献 (50)绪论矿山提升机是矿山大型固定机械之一,矿山提升机从最初的蒸汽机拖动的单绳缠绕式提升机发展到今天的交——交变频直接拖动的多绳摩擦式提升机和双绳缠绕式提升机已经历了170多年的发展历史,它是矿山井下生产系统和地面工业广场相连接的枢纽,被喻为矿山运输的咽喉。
第三章矿井提升设备选型设计第一节提升方式的确定及提升设备选型依据一、矿并提升设备的作用矿井提升设备是矿井重要的大型机电设备之一,它是联系矿井井下与地面时主要生产设备.矿井提升设备的任务是提升有益矿物(煤炭、矿石等)和矸石,升降人员和设备,下放材料等。
矿井提升设备的工作特点是在一定的距离内,以变速和匀速作往复直线运动,而且起动和停止频繁,因此它须具有良好的控制系统和完善的保护装置,以保证安全可靠地运转。
矿井提升设备的合理选型和正确的维护、管理和使用,对确保矿井提升设备的经济与安全运转具有重大的意义.二、矿井提升设备的组成部分矿井提升设备一般包活捉升机、电动机、提升钢丝绳、提升容器、天轮、井架、装卸载设备,以及电控设备与安全保护装置等.矿井提升机主要由缠绕机构(或主导轮)、减速器、联铀器、离合器、制动系统、深度指示器、液压站及操纵台等部分组成。
三、矿井提升系统根据提升方式的不同,矿井提升系统可分为以下几种:(1)竖并普通罐笼提升系统(2)竖井箕斗提升系统(3)斜井箕斗提升系统(4)斜井串车提升系统四、矿井提升设备的分类(一)按用途分类(1)主井提升设备,专供提升煤炭用的提升设备。
在特大、大和中型矿井,提升容器多采用箕斗,小型矿井多采用罐笼或矿车;(2)副井提升设备,专供提升歼石、升降人员、运送材料和设备的提升设备。
提升容器多为普通罐笼或翻转罐笼。
(二)按缠绳机构的型式分类(1)单绳缠绕式提升机,即等直径圆柱形卷筒提升机,多用于井深在350m以下的大、中、小型矿井提升,此外还有变直径圆柱圆锥形卷筒提升机;(2)多绳摩擦式提升机,适用于井筒较深、产量较大的矿井提升.(三)按井筒倾角分类(1)竖并提升设备;(2)斜井提升设备.(四)按提升容器分类(1)罐笼提升设备;(2)箕斗提升设备;(3)串车提升设备;斜井串车提升(5)吊桶提升设备。
(五)按拖动装置分类(1)交流感应电动机施动的提升设备;(2)直流电动机施动的提升设备;(3)液压传动的提升设备。
矿井提升机选型设计汇总一、选型设计原则1.根据矿井特点选择合适的提升机型号和规格。
不同的矿井具有不同的特点,例如矿山的井径、提升深度、产煤量等都会影响到提升机的选型。
因此,在选型设计过程中应根据矿井具体情况选择合适的提升机型号和规格。
2.不仅考虑提升能力,还要考虑安全性能。
提升机的主要功能是提升煤炭或矿石等物料,因此提升能力是选型设计的主要指标。
但是,为了保障矿工的安全,选型过程中还应考虑提升机的安全性能,如防爆、防腐蚀等。
3.考虑维修和运维的便利性。
二、选型设计步骤1.收集矿井的相关数据。
首先,需要收集矿井的相关数据,包括井径、提升深度、产煤量、矿石硬度等。
这些数据将为后续的选型过程提供依据。
2.确定提升能力需求。
根据矿井的产煤量和提升深度,确定提升机的提升能力需求。
一般来说,提升机的提升能力应超过矿井的产煤量,以确保生产过程的顺畅进行。
3.选择合适的型号和规格。
根据提升能力需求和矿井特点,选择合适的提升机型号和规格。
可以参考相关的技术资料和矿山设备供应商的建议,做出选择。
4.考虑安全性能。
在选型设计过程中,要考虑提升机的安全性能,如防爆和防腐蚀等。
可以选择具有安全认证和良好口碑的品牌和型号。
5.考虑维修和运维的便利性。
为方便后续的维修和运维工作,要考虑提升机的维修和运维的便利性。
例如,可以选择易损件更换方便、维修作业空间大等特点的提升机。
三、案例分析以一些矿山为例,该矿山的井径为4米,提升深度为1000米,产煤量为5000吨/天,需要选取一台提升机进行矿石的提升。
四、总结矿井提升机的选型设计是矿山生产中的重要环节。
在选型过程中,应根据矿井的特点选择合适的提升机型号和规格,同时考虑提升能力、安全性能和维修运维的便利性。
通过合理的选型设计,可以提高矿山工作效率,保障矿工的安全生产。
提升系统选型及验算方法一、提升井架井筒利用矿建用凿井井架施工,凿井井架必须能承载井筒装备安装施工荷载,且其天轮平台满足提升悬吊天轮布置的要求。
必要时可采用永久井架施工。
二、提升机井筒装备安装用的提升机,应根据井筒安装的提升方式及提升量进行选择。
必要时可采用矿永久提升机施工。
列出提升机技术参数表(表3.4.3)。
三、提升系统选型验算根据矿建所用提升机或矿永久提升机进行提升能力验算。
(1)、提升绞车凿井提升计算①滚筒直径(D)D≥60ds D≥900δ式中:ds—钢丝绳直径,mm;δ—钢丝绳最粗钢丝直径,mm;②选定提升机型号DT≥D DT—所选提升机的滚筒直径,Mm;③校验滚筒宽度B={[(H0+30)/3.14DT]+3}(ds+ε)≤BT式中:30—钢丝绳试验长度,m;DT—提升机名义直径,mm ;3—摩擦圈数;BT—提升机滚筒宽度,mm;ε—钢丝绳绳圈间隙,取2~3mm ;④计算提升高度H0=H1+H2+H3+H4,m。
其中:H1—井筒深度,mH2—井架高度,mH3—提升天轮半径,mH4—提升天轮梁高度,取0.75m⑤设计选用多层股不旋转钢丝绳作为提升绳,绳重Ps= kg/m,钢丝绳最小破断拉力Q断为kg,配提升钩头,提升钩头应与提升荷载配套。
⑥提升容器自重:吊桶:Q Z=G1+ G2+ G3+ G4;其中:G1—吊桶重量,kgG2—钩头重量,kgG3—滑架重量,kgG4—滑架缓冲器重量,kg⑦提升载荷:Q=最大提升重量,kg;Q绳:提升钢丝绳重:提升高度绳重,kg⑧提升钢丝绳静张力:Q总= Q + Q绳,kg;其中:Q—最大提升重量,kgQ绳—提升高度的钢丝绳重量,kg提升人员时:Q人总= Q Z +n Q人+ Q绳,kg其中:Q1—提升容器总重量,kgQ人—吊桶乘人总重量,取75kg/人Q绳—提升高度的钢丝绳重量,kgn—吊桶乘人数,根据吊桶容积确定以上计算的钢丝绳静张力Q总应小于绞车最大静张力差,可以满足使用。
河北工程大学毕业设计论文专业:机械电子工程题目:矿井提升设备选型设计指导老师:目录摘要 (1)Abstract (2)第1章概述 (1)1.1 地形地貌 (1)1.2 气象 (1)1.3 井田范围 (1)1.4 可采煤层及开采技术条件 (2)1.5 可采煤层顶底板岩性 (2)1.6 提升系统及能力 (3)1.7 通风系统及能力 (3)1.8 排水系统及能力 (4)1.9 供电系统及能力 (4)1.10 地面储装系统及能力 (4)第2章工业广场布置情况 (5)第3章矿井提升设备选型设计 (5)3.1 原始数据设备选型设计 (5)3.2 提升容器的选择 (6)3.3 提升钢丝绳的选择 (7)3.4 提升机的选择 (7)3.5 提升电动机的预选 (9)3.6 提升机与井筒相对位置 (9)3.7 提升系统变位质量 (11)3.8 速度图各参数的确定 (12)3.9 提升速度图计算 (13)3.10 提升动力学计算 (14)3.11 电动机功率的验算 (15)3.12 提升设备电耗及效率设备实际年产提升能力 (16)第4章 TAK-A型提升机拖动控制系统简介 (18)4.1 加速阶段 (18)4.2 等速阶段 (19)4.3 减速阶段 (19)4.4 节爬行与停车阶段 (20)第5章设计说明..........................................21—25 第6章谢辞 (26)第7章参考文献 (27)第1章矿井概况矿井提升设备是沿井筒提升煤炭,矸石,升降人员和设备。
下放材料的大型机械设备,它是矿井井下生产系统和地面工业广场相连接的枢纽,是矿山运输的咽喉,因此,矿井提升设备在矿山的全过程中占有极其重要的地位。
随着科学技术的发展,矿井原有提升设备,其成本和耗电量比较高,所以在新的设计中要确定合理的提升系统,结合本矿的具体条件,保证提升设备在造型和运转两个方面都是合理的,经济的。
1.1 地形地貌井田地表为一简单丘陵,由西向东缓慢倾斜,其坡度约为11.3‰,最高处在西部上官庄风井附近,海拔180m,最低在井田东部,海拔标高134m。
毕业论文之矿井提升及运输设备选型设计1. 引言矿井提升及运输设备在矿山生产中起着至关重要的作用。
矿井提升设备主要用于将地下矿石提升至地表,而运输设备则用于将矿石从矿井运输到矿石处理设备或出口。
在矿井提升及运输设备的选型设计过程中,需要考虑多个因素,如矿石性质、矿山地质条件、矿井深度等。
本文将详细介绍矿井提升及运输设备的选型设计流程,并提出一种基于这些因素的选型方法。
2. 矿井提升设备选型设计2.1 矿井提升设备的种类根据矿井的深度和矿石的产量大小,矿井提升设备可分为多种类型,如井架式提升机、斜井提升机、卧井提升机等。
不同类型的提升机适用于不同的矿山情况。
在选型时,需要考虑矿山的具体情况,以确保提升设备的安全可靠运行。
2.2 提升设备选型的影响因素矿石性质、坍落地压、矿井深度、提升速度等因素将直接影响到提升设备的选型。
矿石性质主要包括矿石的粒度、含水量、黏结程度等,这些因素将直接影响到提升设备的输送能力。
坍落地压是指地下岩石形成的顶板对矿井提升设备施加的压力,它关系到提升设备的结构强度和稳定性。
矿井深度越深,压力和温度越大,提升设备的选型需考虑到这些因素。
2.3 提升设备选型的方法矿井提升设备的选型一般采用经验公式和实验数据结合的方法。
根据矿石性质和矿井地质条件,可计算出提升设备的设计参数,然后与现有提升设备的性能进行对比,以确定最佳的选型方案。
此外,还需考虑到提升设备的安全系数和成本等因素。
3. 运输设备选型设计3.1 运输设备的种类运输设备主要包括皮带输送机、螺旋输送机、斗式提升机等。
不同类型的运输设备适用于不同的矿石性质和运输距离。
选型时,需根据矿山的具体情况选择合适的运输设备。
3.2 运输设备选型的影响因素矿石的颗粒大小、湿度、运输距离等因素将直接影响到运输设备的选型。
矿石的颗粒大小将影响到运输设备的输送能力和能耗。
湿度较高的矿石将影响到运输设备的摩擦系数和耐久性。
运输距离较长时,还需考虑到设备的能耗和运维成本。
2023年矿井提升系统安全技术规范一、引言为了确保矿井提升系统的安全运行,保护矿工的生命安全和财产安全,提高矿井生产效率,本文制定了2023年矿井提升系统安全技术规范。
该规范主要包括矿井提升系统结构设计、设备选型、安全管理等内容。
二、矿井提升系统结构设计1. 钢丝绳选择钢丝绳是矿井提升系统的核心组成部分,应选择符合国家标准的高强度钢丝绳,具备足够的承载能力和耐久性。
2. 提升装置设计提升装置应满足矿井的实际需求,同时考虑到安全性、可靠性和效率。
在设计过程中,应充分考虑各种异常情况的应对方案,如突发事故时的紧急停机等。
3. 安全防护设计矿井提升系统的设计中应考虑到各种可能发生的安全风险,如钢丝绳断裂、溜桶等,采取相应的安全防护措施,如设置断绳保护器、引导桶等。
三、设备选型1. 提升机选型提升机是矿井提升系统的核心设备,应选用符合国家标准的提升机,具备足够的承载能力和动力输出能力。
同时,还应考虑提升机的节能性能,以减少能源消耗。
2. 安全监控设备选型矿井提升系统应配备安全监控设备,如监控摄像头、温度传感器等。
选型时应综合考虑设备的性能、可靠性和成本。
3. 断裂保护装置选型矿井提升系统的断裂保护装置应选择符合国家标准的高可靠性设备,确保在钢丝绳断裂时能够及时停机,以避免安全事故的发生。
四、安全管理1. 安全培训所有从事矿井提升系统操作和维护的人员都应进行必要的安全培训,包括系统的结构和工作原理、操作规程、紧急事故处理等内容。
2. 定期检查和维护矿井提升系统应定期进行检查和维护,确保设备的正常运行。
检查和维护工作应由具备相关专业知识和经验的人员进行,并做好记录。
3. 紧急事故应急预案针对可能发生的矿井提升系统紧急事故,应制定相应的应急预案,并进行演练。
预案中应包括紧急停机程序、事故处理流程等内容。
五、结论本文制定了2023年矿井提升系统安全技术规范,主要包括矿井提升系统结构设计、设备选型、安全管理等内容。
2.1.主井提升(1)设计依据: ①设计规模:30万吨/a②原矿比重:3.4t/m³,松散系数:1.9③主井口标高为+112m ,改造后最低开采水平为-300m ;垂深H=412m ;④提升容器:主井提升矿岩采用双箕斗提升,选3.2m³翻转箕斗,箕斗自重5000kg ;箕斗最大载重5726kg ,有效载重4867kg ,载满系数为0.85。
罐道间距1404mm ,方钢管罐道尺寸180×180mm 。
⑤工作制度:年330天,每天三班,每班八小时。
(2)提升钢绳计算与选型井架高度H=23m ,卷筒中心至提升中心的距离b=40m ,钢丝绳弦长L=44.52m ,钢绳外偏角α1=1°9′,内偏角α2=1°10′。
式中:m=6.5------钢绳安全系数δ=1670MPa ------钢绳抗拉强度终Q =箕斗Q +大Q =55000+5726=10726kg ------ 钢绳终端荷重悬H =井H +架H =412+23=435m ------钢绳最大悬垂长度选提升钢绳6v ⨯34+FC 型,直径:Φ36mm ,单重:K P =5.25kg/m ,抗拉强度:δ=1670MPa 时,钢绳破断拉力总和:断Q =94493kg 。
提升钢绳安全系数验算:mkg H Q P K /5.4435-5.616701110726m11=⨯=-=悬终δ提货物为主时:m=K Q P H Q +断悬终=43525.51072694493⨯+=7.2>6.5 安全规程规定,提升钢绳悬挂时的安全系数:升降物料用的,不小于6.5。
通过验算,所选提升钢绳满足安全规程的要求。
(3)提升机选择依据提升机卷筒直径与提升钢绳直径D=80d 的关系,选提升机2JK -3×2.0/25型,卷筒直径Φ3m ,卷筒宽度2.0m ,提升速度V=4.71m/s ,转速n=750r/min ,钢绳最大静张力max F =135kN ,最大静张力差Δmax F =90kN 。
矿井提升设备的选型和设计矿井提升设备的选型和设计
矿井提升设备是指在矿井或矿山生产中用于提升、运输物料的机械设备,具有重要的作用。
在矿山生产中,常常需要大量的机械设备来完成采矿、运输、挖掘等工作,其中矿井提升设备的重要性不言而喻。
在选择和设计矿井提升设备时,必须考虑到一系列因素,来实现设备的高效、稳定、安全运行。
本文将从矿井提升设备选型和设计的角度,探讨如何实现设备的高效、稳定、安全运行。
一、矿井提升设备选型
1.1 设备的工作环境
矿井提升设备的工作环境通常很恶劣,必须选择符合矿井环境的设备。
矿井深度、矿井温度、湿度、通风等因素都会影响设备的运行,因此我们需要选择具有高温、抗潮、耐磨、防爆、防腐等特性的设备。
例如,蒸汽起重机和手摇起重机通常不适用于矿井环境,可以考虑选用电动起重机或电液起重机,这些设备可靠性高,操作方便。
1.2 负荷情况
负荷是指设备在工作过程中,所需承受的最大荷载。
在选型的过程中,需要考虑设备的负荷情况,来确定最适合负荷的设备。
在矿井提升设备中,钢丝绳和制动器是设备的主要受力
部件,受力条件是影响设备负荷情况的重要因素。
因此,在选型和设计钢丝绳和制动器时,必须考虑设备的负荷情况,来确保设备的安全和可靠性。
1.3 运输距离
运输距离是指矿井提升设备在工作过程中,需要运输物料的距离。
在选型的过程中,需要根据实际情况确定设备的运输距离,以便选择适当的提升高度和起重量。
例如,如果运输距离较短,可以选择起重量小、提升高度低的起重机,可以满足工程的需求;如果运输距离较长,需要选择起重量大、提升高度高的起重机,以满足工程的需求。
1.4 工作效率
工作效率是指设备在工作过程中,完成单位工作量所需的时间。
在选型时,需要考虑设备的工作效率,来确定最适合该工程的设备。
提高设备的工作效率对于提升生产效率至关重要,在实际工程中,可以通过选用高速、高效的设备和优化设备的工作流程等方法来提高设备的工作效率。
二、矿井提升设备设计
2.1 设备的结构设计
矿井提升设备的结构设计对设备的运行安全和可靠性有着重要的影响。
在设计设备结构时,需要考虑到设备的安全、可靠性和维修性等因素。
例如,起重机的强度、牢固性和稳定性是设备结构设计的重点,需要根据设备的负荷情况和运行要求,采用适当的材料和结构设计方案,确保设备的稳定性和可靠性。
2.2 控制系统设计
矿井提升设备的控制系统设计对于设备的运行稳定性和安全性有着很大的影响。
在设计控制系统时,需要根据设备的特性和工作要求,选择合适的控制模式和控制器,以便实现设备的高效、稳定、安全运行。
例如,在电液起重机的控制系统中,可以采用变频控制器和流量控制阀等设备,来调节设备的运行速度和台车的位置,以便满足不同工作场合的需求。
此外,为了保证设备的安全性,还需对设备进行完善的保护系统设计,以防止发生危险事故。
2.3 维修保养设计
设备的维修保养是设备运行过程中必须重视的一项工作。
在设计设备时,需要考虑到维修保养的需求,提高设备的维修性和保养便捷性。
例如,可以采用可拆卸结构设计,减少设备维修时间和维修成本;可以设置维修检修平台和维修工具存放处等辅助设施,方便维修和保养工作的开展。
结论:
矿井提升设备的选型和设计是保证设备高效、稳定、安全运行的关键环节。
在设备选型阶段中,应根据设备的工作环境、负荷情况、运输距离和工作效率等因素,选择最适合该工程的设备。
在设备设计阶段中,应从设备的结构、控制系统和维修保养等方面进行设计,以确保设备的稳定性、可靠性和安全性,为矿山生产提供有力的保障。