2.2.3向量数乘运算及其几何意义
- 格式:ppt
- 大小:1.95 MB
- 文档页数:17
2.2.3 向量数乘运算及其几何意义学习目标 1.了解向量数乘的概念,并理解这种运算的几何意义.2.理解并掌握向量数乘的运算律,会运用向量数乘运算律进行向量运算.3.理解并掌握两向量共线的性质及其判定方法,并能熟练地运用这些知识处理有关共线向量问题.知识点一 向量数乘的定义实数λ与向量a 的积是一个向量,这种运算叫做向量的数乘,记作λa ,其长度与方向规定如下: (1)|λa |=|λ||a |.(2)λa (a ≠0)的方向⎩⎪⎨⎪⎧当λ>0时,与a 方向相同;当λ<0时,与a 方向相反.特别地,当λ=0或a =0时,0a =0或λ0=0. 知识点二 向量数乘的运算律 1.λ(μa )=(λμ)a . 2.(λ+μ)a =λa +μa . 3.λ(a +b )=λa +λb . 知识点三 向量共线定理 1.向量共线定理向量a (a ≠0)与b 共线,当且仅当有唯一一个实数λ,使b =λa . 2.向量的线性运算向量的加、减、数乘运算统称为向量的线性运算,对于任意向量a ,b ,以及任意实数λ,μ1,μ2,恒有λ(μ1a ±μ2b )=λμ1a ±λμ2b . 思考 共线向量定理中为什么规定a ≠0?答案 若将条件a ≠0去掉,即当a =0时,显然a 与b 共线. (1)若b ≠0,则不存在实数λ,使b =λa . (2)若b =0,则对任意实数λ,都有b =λa .1.若向量b 与a 共线,则存在唯一的实数λ使b =λa .( × ) 提示 当b =0,a =0时,实数λ不唯一. 2.若b =λa ,则a 与b 共线.( √ ) 提示 由向量共线定理可知其正确.3.若λa =0,则a =0.( × ) 提示 若λa =0,则a =0或λ=0.题型一 向量的线性运算例1 (1)3(6a +b )-9⎝⎛⎭⎫a +13b =________. 考点 向量的线性运算及应用 题点 向量的线性运算 答案 9a解析 3(6a +b )-9⎝⎛⎭⎫a +13b =18a +3b -9a -3b =9a . (2)若3(x +a )+2(x -2a )-4(x -a +b )=0,则x =______. 考点 向量的线性运算及应用 题点 向量的线性运算 答案 4b -3a解析 由已知得3x +3a +2x -4a -4x +4a -4b =0, 所以x +3a -4b =0,所以x =4b -3a . 反思感悟 向量线性运算的基本方法(1)类比法:向量的数乘运算类似于代数多项式的运算,例如,实数运算中的去括号、移项、合并同类项、提取公因式等变形手段在数与向量的乘积中同样适用,但是这里的“同类项”、“公因式”是指向量,实数看作是向量的系数.(2)方程法:向量也可以通过列方程来解,把所求向量当作未知数,利用解方程的方法求解,同时在运算过程中多注意观察,恰当的运用运算律,简化运算. 跟踪训练1 计算:(a +b )-3(a -b )-8a . 考点 向量的线性运算及应用 题点 向量的线性运算解 (a +b )-3(a -b )-8a =(a -3a )+(b +3b )-8a =-2a +4b -8a =-10a +4b .题型二 向量共线的判定及应用命题角度1 判定向量共线或三点共线 例2 已知非零向量e 1,e 2不共线.(1)若a =12e 1-13e 2,b =3e 1-2e 2,判断向量a ,b 是否共线.考点 向量共线定理及其应用 题点 利用向量共线定理判定向量共线 解 ∵b =6a ,∴a 与b 共线.(2)若AB →=e 1+e 2,BC →=2e 1+8e 2,CD →=3(e 1-e 2),求证:A ,B ,D 三点共线. 考点 向量共线定理及其应用 题点 利用向量共线定理判定三点共线证明 ∵AB →=e 1+e 2,BD →=BC →+CD →=2e 1+8e 2+3e 1-3e 2=5(e 1+e 2)=5AB →, ∴AB →,BD →共线,且有公共点B , ∴A ,B ,D 三点共线.反思感悟 (1)向量共线的判断(证明)是把两向量用共同的已知向量来表示,进而互相表示,从而判断共线.(2)利用向量共线定理证明三点共线,一般先任取两点构造向量,从而将问题转化为证明两向量共线,需注意的是,在证明三点共线时,不但要利用b =λa (a ≠0),还要说明向量a ,b 有公共点.跟踪训练2 已知非零向量e 1,e 2不共线,如果AB →=e 1+2e 2,BC →=-5e 1+6e 2,CD →=7e 1-2e 2,则共线的三个点是________. 考点 向量共线定理及其应用 题点 利用向量共线定理判定三点共线 答案 A ,B ,D解析 ∵AB →=e 1+2e 2,BD →=BC →+CD → =-5e 1+6e 2+7e 1-2e 2=2(e 1+2e 2)=2AB →, ∴AB →,BD →共线,且有公共点B , ∴A ,B ,D 三点共线.命题角度2 利用向量共线求参数值例3 已知非零向量e 1,e 2不共线,欲使k e 1+e 2和e 1+k e 2共线,试确定k 的值. 考点 向量共线定理及其应用 题点 利用向量共线定理求参数 解 ∵k e 1+e 2与e 1+k e 2共线, ∴存在实数λ,使k e 1+e 2=λ(e 1+k e 2), 则(k -λ)e 1=(λk -1)e 2,由于e 1与e 2不共线,只能有⎩⎪⎨⎪⎧k -λ=0,λk -1=0,∴k =±1.反思感悟 利用向量共线定理,即b 与a (a ≠0)共线⇔b =λa ,既可以证明点共线或线共线问题,也可以根据共线求参数的值.跟踪训练3 设两个不共线的向量e 1,e 2,若a =2e 1-3e 2,b =2e 1+3e 2,c =2e 1-9e 2,问是否存在实数λ,μ,使d =λa +μb 与c 共线? 考点 向量共线定理及其应用 题点 利用向量共线定理求参数 解 d =λ(2e 1-3e 2)+μ(2e 1+3e 2) =(2λ+2μ)e 1+(3μ-3λ)e 2,要使d 与c 共线,则存在实数k ,使得d =k c , 即(2λ+2μ)e 1+(-3λ+3μ)e 2=2k e 1-9k e 2. 因为e 1与e 2不共线,所以⎩⎪⎨⎪⎧2λ+2μ=2k ,-3λ+3μ=-9k ,得λ=-2μ.故存在实数λ和μ,使得d 与c 共线,此时λ=-2μ. 题型三 用已知向量表示其他向量例4 在△ABC 中,若点D 满足BD →=2DC →,则AD →等于( ) A.13AC →+23AB → B.53AB →-23AC →C.23AC →-13AB → D.23AC →+13AB → 考点 向量共线定理及其应用 题点 用已知向量表示未知向量 答案 D解析 示意图如图所示,由题意可得AD →=AB →+BD →=AB →+23BC →=AB →+23(AC →-AB →)=13AB →+23AC →.跟踪训练4 如图所示,四边形OADB 是以向量OA →=a ,OB →=b 为邻边的平行四边形.又BM=13BC ,CN =13CD ,试用a ,b 表示OM →,ON →,MN →.考点 向量共线定理及其应用 题点 用已知向量表示未知向量解 因为BM →=13BC →=16BA →=16(OA →-OB →)=16(a -b ),所以OM →=OB →+BM →=b +16a -16b =16a +56b .因为CN →=13CD →=16OD →,所以ON →=OC →+CN →=12OD →+16OD →=23OD →=23(OA →+OB →)=23(a +b ). MN →=ON →-OM →=23(a +b )-16a -56b =12a -16b .向量的综合应用典例 如图,设O 是△ABC 内一点,且满足OA →+2OB →+3OC →=0,则△ABC 与△AOC 的面积之比为________.答案 3解析 如图所示,分别取BC ,AC 边的中点D ,E ,则OB →+OC →=2OD →,① OA →+OC →=2OE →,② 由①×2+②可得OA →+2OB →+3OC →=2(2OD →+OE →).又因为OA →+2OB →+3OC →=0, 所以2OD →+OE →=0,即OE →=-2OD →, 所以OD →,OE →共线,且|OE →|=2|OD →|.所以S △AOC =2S △COE =2×23S △CDE =2×23×14S △ABC =13S △ABC ,所以S △ABC S △AOC=3.[素养评析] 本题主要考查向量共线条件的应用,解题时需充分利用好几何图形,借助几何直观使问题得解,这正体现了数学中直观想象的核心素养.1.下列各式计算正确的有( ) (1)(-7)6a =-42a ; (2)7(a +b )-8b =7a +15b ; (3)a -2b +a +2b =2a ; (4)4(2a +b )=8a +4b .A .1个B .2个C .3个D .4个 考点 向量的线性运算及应用 题点 向量的线性运算 答案 C解析 (1)(3)(4)正确,(2)错,7(a +b )-8b =7a +7b -8b =7a -b . 2.在△ABC 中,M 是BC 的中点,则AB →+AC →等于( ) A.12AM → B.AM → C .2AM → D.MA → 考点 向量的线性运算及应用 题点 向量的线性运算 答案 C解析 如图,作出平行四边形ABEC ,因为M 是BC 的中点,所以M 也是AE 的中点,由题意知,AB →+AC →=AE →=2AM →,故选C.3.设e 1,e 2是两个不共线的向量,若向量m =-e 1+k e 2 (k ∈R )与向量n =e 2-2e 1共线,则( ) A .k =0B .k =1C .k =2D .k =12考点 向量共线定理及其应用 题点 利用向量共线定理求参数 答案 D解析 当k =12时,m =-e 1+12e 2,n =-2e 1+e 2.∴n =2m ,此时m ,n 共线.4.已知P ,A ,B ,C 是平面内四点,且P A →+PB →+PC →=AC →,则下列向量一定共线的是( ) A.PC →与PB → B.P A →与PB → C.P A →与PC →D.PC →与AB →考点 向量共线定理及其应用 题点 利用向量共线定理判定向量共线 答案 B解析 因为P A →+PB →+PC →=AC →, 所以P A →+PB →+PC →+CA →=0, 即-2P A →=PB →,所以P A →与PB →共线.5.如图所示,已知AP →=43AB →,用OA →,OB →表示OP →.考点 向量共线定理及其应用 题点 用已知向量表示未知向量 解 OP →=OA →+AP →=OA →+43AB →=OA →+43(OB →-OA →)=-13OA →+43OB →.1.实数与向量可以进行数乘运算,但不能进行加减运算,例如λ+a ,λ-a 是没有意义的. 2.λa 的几何意义就是把向量a 沿着a 的方向或反方向扩大或缩小为原来的|λ|倍.向量a|a |表示与向量a 同向的单位向量.3.向量共线定理是证明三点共线的重要工具,即三点共线问题通常转化为向量共线问题.一、选择题1.下列说法中正确的是( ) A .λa 与a 的方向不是相同就是相反 B .若a ,b 共线,则b =λa C .若|b |=2|a |,则b =±2a D .若b =±2a ,则|b |=2|a | 考点 向量数乘的定义及运算 题点 向量数乘的定义及几何意义 答案 D解析 显然当b =±2a 时,必有|b |=2|a |. 2.3(2a -4b )等于( ) A .5a +7b B .5a -7b C .6a +12bD .6a -12b考点 向量的线性运算及应用 题点 向量的线性运算 答案 D解析 利用向量数乘的运算律,可得3(2a -4b )=6a -12b ,故选D.3.已知a ,b 是不共线的向量,AB →=λa +2b ,AC →=a +(λ-1)b ,且A ,B ,C 三点共线,则实数λ的值为( ) A .-1 B .2 C .-2或1D .-1或2考点 向量共线定理及其应用 题点 利用向量共线定理求参数 答案 D解析 因为A ,B ,C 三点共线, 所以存在实数k 使AB →=kAC →. 因为AB →=λa +2b ,AC →=a +(λ-1)b , 所以λa +2b =k [a +(λ-1)b ].因为a 与b 不共线,所以⎩⎪⎨⎪⎧λ=k ,2=k (λ-1),解得λ=2或λ=-1.4.如图,△ABC 中,AB →=a ,AC →=b ,DC →=3BD →,AE →=2EC →,则DE →等于( )A .-13a +34bB.512a -34bC.34a +13b D .-34a +512b考点 向量共线定理及其应用 题点 用已知向量表示未知向量 答案 D解析 DE →=DC →+CE →=34BC →+⎝⎛⎭⎫-13AC → =34(AC →-AB →)-13AC →=-34AB →+512AC →=-34a +512b ,故选D.5.如图,AB 是⊙O 的直径,点C ,D 是半圆弧AB 上的两个三等分点,AB →=a ,AC →=b ,则AD →等于( )A .a -12bB.12a -b C .a +12bD.12a +b 考点 向量共线定理及其应用 题点 用已知向量表示未知向量 答案 D解析 连接CD ,OD ,如图所示.∵点C ,D 是半圆弧AB 上的两个三等分点, ∴AC =CD ,∠CAD =∠DAB=12×60°=30°. ∵OA =OD ,∴∠ADO =∠DAO =30°. 由此可得∠CAD =∠ADO =30°,∴AC ∥DO . 由AC =CD ,得∠CDA =∠CAD =30°, ∴∠CDA =∠DAO ,∴CD ∥AO , ∴四边形ACDO 为平行四边形, ∴AD →=AO →+AC →=12AB →+AC →=12a +b .6.已知m ,n 是实数,a ,b 是向量,则下列说法中正确的是( ) ①m (a -b )=m a -m b ;②(m -n )a =m a -n a ; ③若m a =m b ,则a =b ;④若m a =n a ,则m =n . A .②④ B .①② C .①③ D .③④ 考点 向量数乘的定义及运算 题点 向量数乘的运算及运算律 答案 B解析 ①和②属于数乘对向量与实数的分配律,正确;③中,若m =0,则不能推出a =b ,错误;④中,若a =0,则m ,n 没有关系,错误.7.在平行四边形ABCD 中,AC 与BD 交于点O ,E 是线段OD 的中点,AE 的延长线与CD 交于点F .若AC →=a ,BD →=b ,则AF →等于( ) A.14a +12b B.13a +23b C.12a +14b D.23a +13b 考点 向量共线定理及其应用 题点 用已知向量表示未知向量 答案 D解析 ∵△DEF ∽△BEA , ∴DF AB =DE EB =13,∴DF =13AB , ∴AF →=AD →+DF →=AD →+13AB →.∵AC →=AB →+AD →=a ,BD →=AD →-AB →=b , 联立得AB →=12(a -b ),AD →=12(a +b ),∴AF →=12(a +b )+16(a -b )=23a +13b .二、填空题8.(a +9b -2c )+(b +2c )=________.考点 向量的线性运算及应用题点 向量的线性运算答案 a +10b9.设向量a ,b 不平行,向量λa +b 与a +2b 平行,则实数λ=____________.考点 向量共线定理及其应用题点 利用向量共线定理求参数答案 12解析 ∵向量a ,b 不平行,∴a +2b ≠0,又∵向量λa +b 与a +2b 平行,则存在唯一的实数μ,使λa +b =μ(a +2b )成立,即λa +b =μa +2μb ,则⎩⎪⎨⎪⎧λ=μ,1=2μ,解得λ=μ=12. 10.在▱ABCD 中,AB →=a ,AD →=b ,AN →=3NC →,M 为BC 的中点,则MN →=________.(用a ,b表示)考点 向量共线定理及其应用题点 用已知向量表示未知向量答案 14b -14a 解析 如图,MN →=MB →+BA →+AN →=-12b -a +34AC → =-12b -a +34(a +b )=14b -14a . 11.若非零向量a 与b 不共线,k a +2b 与3a +k b 共线,则实数k 的值为________. 考点 向量共线定理及其应用题点 利用向量共线定理求参数答案 ±6解析 ∵k a +2b 与3a +k b 共线,∴存在实数λ,使得k a +2b =λ(3a +k b ),∴(k -3λ)a +(2-λk )b =0,∴(k -3λ)a =(λk -2)b .∵a 与b 不共线,∴⎩⎪⎨⎪⎧k -3λ=0,λk -2=0,∴k =±6. 12.如图,在△ABC 中,延长CB 到D ,使BD =BC ,当点E 在线段AD 上移动时,若AE →=λAB→+μAC →,则t =λ-μ的最大值是________.考点 向量共线定理及其应用题点 向量共线定理在平面几何中的应用答案 3解析 设AE →=kAD →,0≤k ≤1,则AE →=k (AC →+2CB →)=k [AC →+2(AB →-AC →)]=2kAB →-kAC →,∵AE →=λAB →+μAC →,且AB →与AC →不共线,∴⎩⎪⎨⎪⎧λ=2k ,μ=-k ,∴t =λ-μ=3k . 又0≤k ≤1,∴当k =1时,t 取最大值3.故t =λ-μ的最大值为3.三、解答题13.计算:(1)6(3a -2b )+9(-2a +b );(2)12⎣⎡⎦⎤(3a +2b )-23a -b -76⎣⎡⎦⎤12a +37⎝⎛⎭⎫b +76a ; (3)6(a -b +c )-4(a -2b +c )-2(-2a +c ).考点 向量的线性运算及应用题点 向量的线性运算解 (1)原式=18a -12b -18a +9b =-3b .(2)原式=12⎝⎛⎭⎫3a -23a +2b -b -76⎝⎛⎭⎫12a +12a +37b =12⎝⎛⎭⎫73a +b -76⎝⎛⎭⎫a +37b =76a +12b -76a -12b =0. (3)原式=6a -6b +6c -4a +8b -4c +4a -2c=(6a -4a +4a )+(8b -6b )+(6c -4c -2c )=6a +2b .14.在平行四边形ABCD 中,M ,N 分别是DC ,BC 的中点,已知AM →=c ,AN →=d ,试用c ,d 表示AB →和AD →.考点 向量的线性运算及应用题点 用已知向量表示未知向量解 如图,设AB →=a ,AD →=b .∵M ,N 分别是DC ,BC 的中点,∴BN →=12b ,DM →=12a . ∵在△ADM 和△ABN 中,⎩⎪⎨⎪⎧AD →+DM →=AM →,AB →+BN →=AN →, 即⎩⎨⎧ b +12a =c ,①a +12b =d . ②①×2-②,得b =23(2c -d ), ②×2-①,得a =23(2d -c ). ∴AB →=43d -23c ,AD →=43c -23d .15.已知在四边形ABCD 中,AB →=a +2b ,BC →=-4a -b ,CD →=-5a -3b ,求证:四边形ABCD为梯形.考点 向量共线定理及其应用题点 向量共线定理在平面几何中的应用证明 如图所示.∵AD →=AB →+BC →+CD →=(a +2b )+(-4a -b )+(-5a -3b )=-8a -2b =2(-4a -b ),∴AD →=2BC →.∴AD →与BC →共线,且|AD →|=2|BC →|.又∵这两个向量所在的直线不重合,∴AD ∥BC ,且AD =2BC .∴四边形ABCD 是以AD ,BC 为两条底边的梯形.。
2.2.3向量数乘的运算及其几何意义教材分析向量具有丰富的实际背景和几何背景,向量既有大小,又有方向.但是引进向量,而不研究它的运算,则向量只是起到一个路标的作用;向量只有引进运算后才显得威力无穷.本章从第二节开始学习向量的加法、减法运算及其几何意义;本节接着学习向量的数乘运算及其几何意义.向量数乘运算以及加法、减法统称为向量的三大线性运算,向量的数乘运算其实是加法运算的推广及简化.教学时从加法入手,引入数乘运算,充分体现了数学知识之间的内在联系.实数与向量的乘积仍然是一个向量,既有大小,又有方向.特别是方向与已知向量是共线向量,进而引出共线向量定理.这样平面内任意一条直线l 就可以用点A 和某个向量aλ表示了.共线向量定理是本章节的重要的内容,应用相当广泛,且容易出错,尤其是定理的前提条件:向量a是非零向量.共线向量的应用主要用于证明点共线或线平行等,且与后学的知识有着密切的联系.课时分配本节内容用1课时的时间完成,主要讲解向量数乘定义、几何意义及其运算律;向量共线定理.教学目标重点:掌握向量数乘的定义、运算律,理解向量共线定理. 难点:向量共线定理的探究及其应用.知识点:向量数乘定义、几何意义及其运算律;向量共线定理.能力点:理解两个向量共线的等价条件,能够运用两向量共线条件判断两向量是否平行,进而判定点共线或直线平行.教育点:通过探究,体会类比迁移的思想方法,渗透研究新问题的思想和方法(从特殊到一般、分类讨论、转化化归、观察、猜想、归纳、类比、总结等);培养创新能力和积极进取精神;通过具体问题,体会数学在实际生活中的重要作用.自主探究点:向量数乘的运算律及向量共线定理.训练(应用)点:运用两向量共线条件判断两向量是否平行,进而判定点共线或直线平行.考试点:运用向量定义、运算律进行有关计算,运用共线定理解决向量共线、三点共线、直线平行等问题.易错易混点:共线定理中的条件限制.教具准备 尺规、多媒体等 课堂模式 学案导学 一、引入新课:1.复习向量的加法、减法,采用提问的形式. 问题1:向量加法的运算法则? 问题2:向量减法的几何意义?学生回答完毕后,教师通过多媒体上的图像让学生更直观感受.向量的加法:三角形法则(首尾相连)和平行四边形法则(共起点).向量的减法:=,= 则 -=。