向量减法及几何意义
- 格式:pptx
- 大小:593.89 KB
- 文档页数:18
向量减法运算及其⼏何意义,向量的数乘运算及其⼏何意义教案§2.2.2向量减法运算及其⼏何意义⼀.知识点梳理1.⽤“相反向量”定义向量的减法:1?“相反向量”的定义:与a 长度相同、⽅向相反的向量记作 -a2?规定:零向量的相反向量仍是零向量,且-(-a ) = a 。
任⼀向量与它的相反向量的和是零向量即a + (-a ) = 0。
如果a 、b 互为相反向量,则a = -b , b = -a , a + b = 0 3?向量减法的定义:向量a 加上b 的相反向量,叫做a 与b 的差即:a - b = a + (-b ) 求两个向量差的运算叫做向量的减法2.⽤加法的逆运算定义向量的减法:若b + x = a ,则x 叫做a 与b 的差,记作a - b3减法的三⾓形法则:在平⾯内取⼀点O ,作OA = a , OB = b , 那么连接两个向量的终点并指向被减向量⽅向的向量就是两个向量的差向量. 即a - b 可以表⽰为从向量b 的终点指向向量a 的终点的向量注意:1?AB 表⽰a - b 强调:差向量“箭头”指向被减数.4.向量减法运算的记忆⼝决:共起点,连终点,⽅向指向被减数(⽅向由后指前)5.向量减法与向量加法的⽐较:(1)加法:⾸尾相连,从头指尾(前向量的头指向后向量的尾)(2)减法:共起点,连终点,⽅向指向被减数 6.向量减法的字母公式:CB AC AB =-⼆.例题讲解例1.已知向量a 、b 、c 、d ,求作向量a -b 、c -d解:在平⾯上取⼀点O ,作OA = a , OB = b , OC = c , OD = d ,作BA, DC, 则BA= a-b, DC= c-d例2.已知,在平⾏四边形ABCD中,aAD=,⽤a,b表⽰向量AC、AB=,bDB解:由平⾏四边形法则得: D CAC= a + b,DB= ADAB- = a-b bA aB 例3.若|AB|=8,|AC|=5,则|BC|的取值范围是( )A.[3,8]B.(3,8)C.[3,13]D.(3,13)解析:BC=AC-AB.(1)当AB、AC同向时,|BC|=8-5=3;(2)当AB、AC反向时,|BC|=8+5=13;(3)当AB、AC不共线时,3<|BC|<13.综上,可知3≤|BC|≤13.答案:C点评:此题可直接应⽤重要性质||a|-|b||≤|a+b|≤|a|+|b|求解.三.课堂练习1. 如下图所⽰,已知⼀点O到ABCD的3个顶点A、B、C的向量分别是a、b、c,则向量OD等于( )A.a+b+cB.a-b+cC.a+b-cD.a-b-c解析:如图5,点O到平⾏四边形的三个顶点A、B、C的向量分别是a、b、c,结合图形有OD=OA+AD=OA+BC=OA+OC-OB=a-b+c.答案:B2 判断题:(1)若⾮零向量a与b的⽅向相同或相反,则a+b的⽅向必与a、b之⼀的⽅向相同.(2)△ABC中,必有AB+BC+CA=0.(3)若AB+BC+CA=0,则A、B、C三点是⼀个三⾓形的三顶点.(4)|a+b|≥|a-b|.解:(1)a与b⽅向相同,则a+b的⽅向与a和b⽅向都相同;若a与b⽅向相反,则有可能a与b互为相反向量,此时a+b=0的⽅向不确定,说与a、b之⼀⽅向相同不妥.(2)由向量加法法则AB+BC=AC,AC与CA是互为相反向量,所以有上述结论.(3)因为当A、B、C三点共线时也有AB+BC+AC=0,⽽此时构不成三⾓形.(4)当a与b不共线时,|a+b|与|a-b|分别表⽰以a和b为邻边的平⾏四边形的两条对⾓线的长,其⼤⼩不定.当a 、b 为⾮零向量共线时,同向则有|a +b |>|a -b |,异向则有|a +b |<|a -b |; 当a 、b 中有零向量时,|a +b |=|a -b |. 综上所述,只有(2)正确.四.内容⼩结本节我们学习的内容如下: 1.相反向量的概念 2.向量减法的定义 3.向量减法的运算法则§2.2.2向量的数乘运算及其⼏何意义教学⽬标:1.向量的数乘运算的概念 2.向量的数乘运算法则 3.向量的数乘运算的⼏何意义 4.平⾯向量基本定理教学重点:1.向量的数乘运算法则 2.向量的数乘运算的⼏何意义教学难点:平⾯向量基本定理的理解与运⽤⼀.知识点梳理1.向量的数乘运算定义:规定⼀个实数λ与向量a 的积是⼀个向量,这种运算叫做向量的数乘运算记作λa. 它的长度和⽅向规定如下:(1)|λa|=|λ||a|. (2)0λ>时,λa 的⽅向与a 的⽅向相同;当0λ<时,λa 的⽅向与a的⽅向相反;特别地,当0λ=或0a = 时,0λa =.2.运算律:设a 、b为任意向量,λ、µ为任意实数,则有:(1)()λµa λa µa +=+ ;(2)()()λµa λµa = ;(3)()λa b λa λb +=+.通常将(2)称为结合律,(1)(3)称为分配律。
向量的减法运算及其几何意义向量是数学中非常重要的概念之一,它不仅仅在数学领域中有着广泛的应用,还在物理、工程等其他领域中也有着重要的地位。
在向量的运算中,减法运算是一种基本的运算方式,它不仅可以用于计算向量的大小和方向,还可以用于解决一些实际问题。
本文将介绍向量的减法运算及其几何意义。
一、向量的基本概念向量是用来表示有大小和方向的量的,通常用箭头表示。
比如,我们可以用一条箭头来表示速度、力、位移等物理量。
在数学中,向量通常用一个有序数组表示,如:$vec{a} = (a_{1}, a_{2}, a_{3})$其中,$a_{1}$、$a_{2}$、$a_{3}$分别表示向量在$x$、$y$、$z$三个方向上的分量。
向量的大小用$|vec{a}|$表示,即:$|vec{a}| = sqrt{a_{1}^2 + a_{2}^2 + a_{3}^2}$ 向量的方向用一个与向量长度相等的单位向量$hat{a}$表示,即: $hat{a} = frac{vec{a}}{|vec{a}|}$二、向量的减法运算向量的减法运算是指将一个向量从另一个向量中减去,得到一个新的向量。
假设有两个向量$vec{a}$和$vec{b}$,它们的减法运算可以表示为:$vec{a} - vec{b} = (a_{1} - b_{1}, a_{2} - b_{2}, a_{3} - b_{3})$这个式子的意思是,将$vec{b}$的每个分量从$vec{a}$的对应分量中减去,得到一个新的向量。
比如,如果有两个向量$vec{a} = (1, 2, 3)$和$vec{b} = (4, 5, 6)$,则它们的减法运算为:$vec{a} - vec{b} = (1 - 4, 2 - 5, 3 - 6) = (-3, -3, -3)$ 这个结果表示,从$vec{a}$中减去$vec{b}$得到的新向量为$(-3, -3, -3)$。
三、向量减法的几何意义向量减法的几何意义是指,将一个向量从另一个向量中减去所得到的向量在几何上表示的意义。
向量减法运算的几何意义
向量减法的几何意义是共起点,连终点,方向指着被减量。
向量是将几何问题转化为代数问题的桥梁,向量的加减则是用代数方法进行几何运算,三角形定则解决向量加法的方法:将各个向量依次首尾顺次相接,结果为第一个向量的起点指向最后一个向量的终点。
平行四边形定则解决向量减法的方法,将两个向量平移至公共起点,以向量的两条边作平行四边形,结果由减向量的终点指向被减向量的终点,平行四边形定则只适用于两个非零非共线向量的加减。
向量减法的内容
向量减法法则是三角形法则,同样将两向量的始点,就是没箭头的那个点放在一起,将两个终点连接,就是差,差向量方向指向被减向量,向量加法法则就是平行四边形法则,两个加数作为平行四边形相邻的两边,则和是两向量的公共顶点与对点相连的对角线。
在数学中,向量也称为欧几里得向量,几何向量,矢量,指具有大小和方向的量。
它可以形象化地表示为带箭头的线段,箭头所指,代表向量的方向,线段长度,代表向量的大小,与向量对应的量叫做数量,物理学中称标量,数量或标量只有大小,没有方向。
向量加减运算及几何意义一、向量加法的定义和运算规则向量加法是指将两个向量相加得到一个新的向量。
设有两个向量A和A,它们的加法可以表示为:A=A+A其中,A表示两个向量相加得到的新向量。
向量加法的运算规则如下:1.交换律:A+A=A+A2.结合律:(A+A)+A=A+(A+A)3.零向量:对于任意向量A,都有A+A=A,其中A表示零向量。
二、向量减法的定义和运算规则向量减法是指将一个向量减去另一个向量得到一个新的向量。
设有两个向量A和A,它们的减法可以表示为:A=A-A其中,A表示将向量A从向量A中减去得到的新向量。
向量减法的运算规则如下:1.减法的定义:A-A=A+(-A),其中-A表示向量A的负向量。
2.减法与加法的关系:A-A=A+(-A)=-(A-A)三、向量加减运算的几何意义1.位移:设有两个向量A和A,A表示物体的起始位置,A表示物体的终止位置。
向量加法A=A+A表示物体从起始位置到终止位置的位移向量。
2.速度:速度是位移随时间的变化率,可以用向量表示。
设有两个位移向量A和A,A表示物体在起始时刻的位置,A表示物体在终止时刻的位置。
则速度向量A=A-A表示物体在起始时刻到终止时刻的平均速度向量。
3.加速度:加速度是速度随时间的变化率,也可以用向量表示。
设有三个速度向量A、A和A,A表示物体在起始时刻的速度,A表示物体在中间时刻的速度,A表示物体在终止时刻的速度。
则加速度向量A=(A-A)/t表示物体在起始时刻到终止时刻的平均加速度向量,其中t表示时间间隔。
4.平行四边形法则:设有两个向量A和A,它们的和向量A=A+A可以用平行四边形法则来表示。
将向量A和A的起点放在一起,将它们的终点连接起来,得到一个平行四边形,那么向量A就是该平行四边形的对角线向量。
总结:向量加减运算的几何意义主要体现在描述物体的位移、速度和加速度等几何特征上。
它们可以帮助我们理解物体在空间中的运动规律,并且可以通过向量的加减运算得到物体的位移、速度和加速度等重要信息。
平面向量向量减法运算及其几何意义
平面向量的减法运算是指将一个向量减去另一个向量,即将一个向量
从另一个向量的起点处移至终点处的操作。
设有平面上的两个向量u和v,其起点坐标分别为A和B,终点坐标
分别为C和D。
则用向量表示的字母表示如下:
向量u:AB→= vec(AB)
向量v:CD→= vec(CD)
平面向量减法运算定义为:用终点坐标表示的第二个向量反向平移至
起点坐标表示的第一个向量上。
即向量差u-v定义为:AE→= vec(AE), 其中E为D向量反向平移到
B点得到的点。
几何意义上来说,平面向量减法运算的结果是一个新的向量,它表示
了以第一个向量作为起点、第二个向量作为终点的向量。
为了更好地理解平面向量减法运算及其几何意义,可以从以下两个方
面加以说明:
1.矢量相加示意图:
首先,在平面上绘制向量u和v的起点A和C,终点B和D,并连接
AB和CD。
然后,选择一个与向量v等长,且与向量AB平行的向量,将其
起点放在D点,连接BD。
最后,将向量BD平行平移至A点,得到向量AE,即为u-v的结果。
2.减法与加法的关系:
平面向量减法运算可以理解为向量加法的逆运算。
也就是说,若u-v=AB→,则有u=v+AB→。
换句话说,当我们需要求u-v时,可以通过已知向量v和向量AB的终点坐标C,按照向量加法的定义,将向量v平移至C点得到向量CD→,然后连接AC,即可得到u=AC→。
总结起来,平面向量减法运算的几何意义是将第二个向量反向平移至第一个向量的起点处,得到一个新的向量。
在表示和操作上,减法与加法有着密切的关系。