向量加减法运算及其几何意义
- 格式:pptx
- 大小:759.74 KB
- 文档页数:27
向量减法运算及其⼏何意义,向量的数乘运算及其⼏何意义教案§2.2.2向量减法运算及其⼏何意义⼀.知识点梳理1.⽤“相反向量”定义向量的减法:1?“相反向量”的定义:与a 长度相同、⽅向相反的向量记作 -a2?规定:零向量的相反向量仍是零向量,且-(-a ) = a 。
任⼀向量与它的相反向量的和是零向量即a + (-a ) = 0。
如果a 、b 互为相反向量,则a = -b , b = -a , a + b = 0 3?向量减法的定义:向量a 加上b 的相反向量,叫做a 与b 的差即:a - b = a + (-b ) 求两个向量差的运算叫做向量的减法2.⽤加法的逆运算定义向量的减法:若b + x = a ,则x 叫做a 与b 的差,记作a - b3减法的三⾓形法则:在平⾯内取⼀点O ,作OA = a , OB = b , 那么连接两个向量的终点并指向被减向量⽅向的向量就是两个向量的差向量. 即a - b 可以表⽰为从向量b 的终点指向向量a 的终点的向量注意:1?AB 表⽰a - b 强调:差向量“箭头”指向被减数.4.向量减法运算的记忆⼝决:共起点,连终点,⽅向指向被减数(⽅向由后指前)5.向量减法与向量加法的⽐较:(1)加法:⾸尾相连,从头指尾(前向量的头指向后向量的尾)(2)减法:共起点,连终点,⽅向指向被减数 6.向量减法的字母公式:CB AC AB =-⼆.例题讲解例1.已知向量a 、b 、c 、d ,求作向量a -b 、c -d解:在平⾯上取⼀点O ,作OA = a , OB = b , OC = c , OD = d ,作BA, DC, 则BA= a-b, DC= c-d例2.已知,在平⾏四边形ABCD中,aAD=,⽤a,b表⽰向量AC、AB=,bDB解:由平⾏四边形法则得: D CAC= a + b,DB= ADAB- = a-b bA aB 例3.若|AB|=8,|AC|=5,则|BC|的取值范围是( )A.[3,8]B.(3,8)C.[3,13]D.(3,13)解析:BC=AC-AB.(1)当AB、AC同向时,|BC|=8-5=3;(2)当AB、AC反向时,|BC|=8+5=13;(3)当AB、AC不共线时,3<|BC|<13.综上,可知3≤|BC|≤13.答案:C点评:此题可直接应⽤重要性质||a|-|b||≤|a+b|≤|a|+|b|求解.三.课堂练习1. 如下图所⽰,已知⼀点O到ABCD的3个顶点A、B、C的向量分别是a、b、c,则向量OD等于( )A.a+b+cB.a-b+cC.a+b-cD.a-b-c解析:如图5,点O到平⾏四边形的三个顶点A、B、C的向量分别是a、b、c,结合图形有OD=OA+AD=OA+BC=OA+OC-OB=a-b+c.答案:B2 判断题:(1)若⾮零向量a与b的⽅向相同或相反,则a+b的⽅向必与a、b之⼀的⽅向相同.(2)△ABC中,必有AB+BC+CA=0.(3)若AB+BC+CA=0,则A、B、C三点是⼀个三⾓形的三顶点.(4)|a+b|≥|a-b|.解:(1)a与b⽅向相同,则a+b的⽅向与a和b⽅向都相同;若a与b⽅向相反,则有可能a与b互为相反向量,此时a+b=0的⽅向不确定,说与a、b之⼀⽅向相同不妥.(2)由向量加法法则AB+BC=AC,AC与CA是互为相反向量,所以有上述结论.(3)因为当A、B、C三点共线时也有AB+BC+AC=0,⽽此时构不成三⾓形.(4)当a与b不共线时,|a+b|与|a-b|分别表⽰以a和b为邻边的平⾏四边形的两条对⾓线的长,其⼤⼩不定.当a 、b 为⾮零向量共线时,同向则有|a +b |>|a -b |,异向则有|a +b |<|a -b |; 当a 、b 中有零向量时,|a +b |=|a -b |. 综上所述,只有(2)正确.四.内容⼩结本节我们学习的内容如下: 1.相反向量的概念 2.向量减法的定义 3.向量减法的运算法则§2.2.2向量的数乘运算及其⼏何意义教学⽬标:1.向量的数乘运算的概念 2.向量的数乘运算法则 3.向量的数乘运算的⼏何意义 4.平⾯向量基本定理教学重点:1.向量的数乘运算法则 2.向量的数乘运算的⼏何意义教学难点:平⾯向量基本定理的理解与运⽤⼀.知识点梳理1.向量的数乘运算定义:规定⼀个实数λ与向量a 的积是⼀个向量,这种运算叫做向量的数乘运算记作λa. 它的长度和⽅向规定如下:(1)|λa|=|λ||a|. (2)0λ>时,λa 的⽅向与a 的⽅向相同;当0λ<时,λa 的⽅向与a的⽅向相反;特别地,当0λ=或0a = 时,0λa =.2.运算律:设a 、b为任意向量,λ、µ为任意实数,则有:(1)()λµa λa µa +=+ ;(2)()()λµa λµa = ;(3)()λa b λa λb +=+.通常将(2)称为结合律,(1)(3)称为分配律。
向量减法运算的几何意义
向量减法的几何意义是共起点,连终点,方向指着被减量。
向量是将几何问题转化为代数问题的桥梁,向量的加减则是用代数方法进行几何运算,三角形定则解决向量加法的方法:将各个向量依次首尾顺次相接,结果为第一个向量的起点指向最后一个向量的终点。
平行四边形定则解决向量减法的方法,将两个向量平移至公共起点,以向量的两条边作平行四边形,结果由减向量的终点指向被减向量的终点,平行四边形定则只适用于两个非零非共线向量的加减。
向量减法的内容
向量减法法则是三角形法则,同样将两向量的始点,就是没箭头的那个点放在一起,将两个终点连接,就是差,差向量方向指向被减向量,向量加法法则就是平行四边形法则,两个加数作为平行四边形相邻的两边,则和是两向量的公共顶点与对点相连的对角线。
在数学中,向量也称为欧几里得向量,几何向量,矢量,指具有大小和方向的量。
它可以形象化地表示为带箭头的线段,箭头所指,代表向量的方向,线段长度,代表向量的大小,与向量对应的量叫做数量,物理学中称标量,数量或标量只有大小,没有方向。
高考数学中向量的几何意义及其应用实例高考数学是学生升入大学的重要关键,而其中向量是重要的数学知识之一。
向量是一种带有方向和大小的量,它在几何中有着广泛的应用和实例。
本篇文章将从向量的几何意义和应用实例两个方面来深入探讨。
一、向量的几何意义向量是几何中一个重要的概念,它由大小和方向组成。
在直角坐标系中,向量可以表示为一组有序的数对(x,y),表示向量的方向是从原点指向点(x,y)。
向量的几何意义可以用来解决几何问题,如平面几何、立体几何等。
1. 向量的长度向量的长度是指向量的大小,它表示从原点到向量所代表的终点的距离,也称为向量的模。
向量的长度可以用勾股定理求解,即向量长度的平方等于向量的横坐标的平方加向量的纵坐标的平方。
2. 向量的方向向量的方向是向量的指向,也是向量的几何意义之一。
向量的方向可以通过两点间的连线来表示,即通过终点与起点组成的向量来表示。
3. 向量的加减法向量的加减法在向量运算中也非常重要,可以应用于几何问题。
向量的加法是将两个向量的坐标进行相加;向量的减法则是将另一个向量的坐标进行取反后相加。
二、向量的应用实例向量的几何意义在实际生活中有着广泛的应用,以下将介绍向量在不同领域的应用实例。
1. 物理领域向量在物理领域的应用非常广泛,如在力学、物理光学等方面都有很好的应用。
在力学中,向量可以用来表示物体受到的力的方向和大小,帮助我们解决物理问题。
在光学中,向量可以表示光线的传播方向,帮助我们分析光线的传播规律。
2. 地理领域在地图上,通过向量的概念可以识别地理位置,如向量可以表示两个城市之间的方向和距离。
向量的应用还可以帮助我们计算地球表面的距离和方向。
3. 计算机领域在计算机领域中,向量也有着广泛的应用。
在计算机图像处理领域中,向量可以用来表示图像中的颜色和亮度等信息。
另外,在计算机游戏中,向量可以用来表示游戏场景中的移动方向和速度等信息。
结语:向量是数学中一个重要的概念,不仅在数学领域有着广泛的应用,同时也在物理、地理、计算机等其他领域中发挥着重要的作用。
向量加减运算及几何意义一、向量加法的定义和运算规则向量加法是指将两个向量相加得到一个新的向量。
设有两个向量A和A,它们的加法可以表示为:A=A+A其中,A表示两个向量相加得到的新向量。
向量加法的运算规则如下:1.交换律:A+A=A+A2.结合律:(A+A)+A=A+(A+A)3.零向量:对于任意向量A,都有A+A=A,其中A表示零向量。
二、向量减法的定义和运算规则向量减法是指将一个向量减去另一个向量得到一个新的向量。
设有两个向量A和A,它们的减法可以表示为:A=A-A其中,A表示将向量A从向量A中减去得到的新向量。
向量减法的运算规则如下:1.减法的定义:A-A=A+(-A),其中-A表示向量A的负向量。
2.减法与加法的关系:A-A=A+(-A)=-(A-A)三、向量加减运算的几何意义1.位移:设有两个向量A和A,A表示物体的起始位置,A表示物体的终止位置。
向量加法A=A+A表示物体从起始位置到终止位置的位移向量。
2.速度:速度是位移随时间的变化率,可以用向量表示。
设有两个位移向量A和A,A表示物体在起始时刻的位置,A表示物体在终止时刻的位置。
则速度向量A=A-A表示物体在起始时刻到终止时刻的平均速度向量。
3.加速度:加速度是速度随时间的变化率,也可以用向量表示。
设有三个速度向量A、A和A,A表示物体在起始时刻的速度,A表示物体在中间时刻的速度,A表示物体在终止时刻的速度。
则加速度向量A=(A-A)/t表示物体在起始时刻到终止时刻的平均加速度向量,其中t表示时间间隔。
4.平行四边形法则:设有两个向量A和A,它们的和向量A=A+A可以用平行四边形法则来表示。
将向量A和A的起点放在一起,将它们的终点连接起来,得到一个平行四边形,那么向量A就是该平行四边形的对角线向量。
总结:向量加减运算的几何意义主要体现在描述物体的位移、速度和加速度等几何特征上。
它们可以帮助我们理解物体在空间中的运动规律,并且可以通过向量的加减运算得到物体的位移、速度和加速度等重要信息。
《向量的加法运算及其几何意义》教案完美版第一章:向量概念的复习1.1 向量的定义1.2 向量的基本性质1.3 向量的表示方法1.4 向量的模长与方向第二章:向量的加法运算2.1 向量加法的定义2.2 向量加法的基本性质2.3 向量加法的几何意义2.4 向量加法的运算规则第三章:向量的减法运算3.1 向量减法的定义3.2 向量减法与向量加法的关系3.3 向量减法的几何意义3.4 向量减法的运算规则第四章:向量的数乘运算4.1 向量数乘的定义4.2 向量数乘的基本性质4.3 向量数乘的几何意义4.4 向量数乘的运算规则第五章:向量加法运算的坐标表示5.1 坐标系的建立5.2 向量坐标的定义5.3 向量加法运算的坐标表示方法5.4 向量加法运算的坐标运算规则第六章:向量加法运算的图形验证6.1 向量加法图形的表示方法6.2 向量加法的平行四边形法则6.3 向量加法的三角形法则6.4 向量加法的图形验证练习第七章:向量的减法与数乘的图形意义7.1 向量减法的图形意义7.2 向量减法的三角形法则7.3 向量数乘的图形意义7.4 向量数乘的三角形法则第八章:向量加减法的综合应用8.1 向量加减法的混合运算8.2 向量加减法的坐标应用8.3 向量加减法的几何解释8.4 向量加减法的综合练习第九章:向量数乘的应用9.1 向量数乘与向量长度的关系9.2 向量数乘与向量方向的关系9.3 向量数乘的几何应用9.4 向量数乘的实际问题应用第十章:总结与提高10.1 向量加法、减法、数乘的总结10.2 向量运算在几何中的应用10.3 向量运算在坐标系中的应用10.4 向量运算的综合练习与提高重点和难点解析一、向量概念的复习补充说明:向量是具有大小和方向的量,可用箭头表示。
向量具有平行四边形法则、三角形法则等基本性质。
向量可用字母和箭头表示,例如→a、→b。
向量的模长表示向量的大小,方向表示向量的指向。
二、向量的加法运算补充说明:向量加法是将两个向量首尾相接,形成一个新的向量。
向量的运算和几何意义向量是几何学中的重要概念,它不仅可以进行运算,还具有重要的几何意义。
本文将对向量的运算和几何意义进行探讨,并分析其在实际应用中的重要性。
一、向量的定义和表示在数学中,向量可以定义为具有大小和方向的量。
向量可以用箭头来表示,箭头的长度代表向量的大小,箭头的方向代表向量的方向。
一个向量通常用它的起点和终点来表示,也可以用坐标表示。
二、向量的加法和减法向量的加法和减法是指将两个向量相加或相减得到一个新的向量。
1. 向量的加法向量的加法即将两个向量的对应分量相加得到一个新的向量。
设有向量a=(a1, a2)和向量b=(b1, b2),则它们的和向量c=(a1+b1, a2+b2)。
2. 向量的减法向量的减法即将两个向量的对应分量相减得到一个新的向量。
设有向量a=(a1, a2)和向量b=(b1, b2),则它们的差向量c=(a1-b1, a2-b2)。
三、向量的数量积和向量积向量的数量积和向量积是向量的两种重要运算。
1. 向量的数量积向量的数量积又称为点积,用符号“·”表示。
设有向量a=(a1, a2)和向量b=(b1, b2),它们的数量积为a·b = a1*b1 + a2*b2。
在几何上,向量的数量积表示两个向量之间的夹角的余弦值乘以两个向量的模。
2. 向量的向量积向量的向量积又称为叉积,用符号“×”表示。
设有向量a=(a1, a2)和向量b=(b1, b2),它们的向量积为c=(0, 0, a1*b2 - a2*b1)。
向量的向量积表示两个向量所在平面的法向量,其模为两个向量构成的平行四边形的面积。
四、向量的几何意义向量在几何中具有重要的意义,可以表示平移、旋转、拉伸等几何变换。
1. 平移向量的几何意义之一是表示平移。
当一个向量作用在一个点上时,该点将按照向量的方向和大小发生平移。
2. 旋转向量的几何意义之二是表示旋转。
当一个向量作用在一个平面上时,该平面将按照向量的方向和大小发生旋转。
向量的加法运算及其几何意义导学案一、概念向量是由大小和方向同时确定的量,可以用有向线段来表示,通常用字母加箭头的形式表示,如→AB表示由点A指向点B的向量。
二、向量加法的运算规律1.交换律:A+B=B+A2.结合律:(A+B)+C=A+(B+C)3.零向量:对于任意向量A,A+0=A,其中0表示长度为0的向量,也称为零向量,记作0向量。
4.负向量:对于任意向量A,存在一个唯一的向量B,使得A+B=0,称向量B为A的负向量,记作-B。
三、向量加法的几何意义向量加法的几何意义可以通过平行四边形法则进行解释。
平行四边形法则:将两个向量的起点放在同一点,然后将这两个向量的终点相连,得到的线段所构成的平行四边形的对角线,即为两个向量的和向量。
具体操作步骤如下:1.将第一个向量的起点放在坐标原点O处,终点放在点A处;2.将第二个向量的起点也放在坐标原点O处,终点放在点B处;3.用直线段连接点A和B,得到一个平行四边形,记作OACB;4.连接O和C,并延长OAC和OCB,使其交于D点;5.OD就是所求的和向量,记作C=A+B。
四、示例以二维向量为例,假设有向量A(3,2)和向量B(1,-4),求和向量C=A+B。
1.将向量A的起点放在原点O,在坐标系上表示出向量A;2.将向量B的起点也放在原点O,在坐标系上表示出向量B;3.用直线段连接两个向量的终点,得到平行四边形OACB;4.连接O和C并延长OC,交于点D;5.OD就是所求的和向量C。
根据平行四边形法则,连线OC就是向量A和向量B的和向量C。
对于上述例子,可以得到C=(4,-2)。
五、向量加法的向量表示向量的坐标表示法,可以将向量拆分成水平方向上的分量和垂直方向上的分量。
向量A的水平分量记作Ax,垂直分量记作Ay;向量B的水平分量记作Bx,垂直分量记作By;向量C=A+B的水平分量记作Cx,垂直分量记作Cy。
根据向量相加的运算规律,可以得到:Cx=Ax+Bx,Cy=Ay+By。
向量的线性运算的几何意义
运算如下:
所谓的向量的线性运算是:向量之间的加减法和数乘运算,统称为向量的线性运算。
这里必须注意的是,在向量的线性运算过程之中,规定先计算数乘向量,再按从左往右的顺序进行运算,若有括号,先算括号内各项。
向量线性运算的规律:
向量能够进入数学并得到发展,首先应从复数的几何表示谈起。
18世纪末期,挪威测量学家威塞尔首次利用坐标平面上的点来表示复数a+bi(a,b为有理数,且不同时等于0),并利用具有几何意义的复数运算来定义向量的运算。
主要满足以下规律:
交换律:α+β=β+α。
结合律:(α+β)+γ=α+(β+γ)。
数量加法的分配律:(λ+μ)α=λα+μα。
向量加法的分配律:γ(α+β)=γα+γβ。