八年级数学上册 15.2.1 分式的乘除学案(新版)新人教版【教案】
- 格式:doc
- 大小:108.51 KB
- 文档页数:3
分式的乘除一、教学目标:理解分式乘除法的法则,会进行分式乘除运算.二、重点、难点1.重点:会用分式乘除的法则进行运算.2.难点:灵活运用分式乘除的法则进行运算 .三、例、习题的意图分析1.P10本节的引入还是用问题1求容积的高,问题2求大拖拉机的工作效率是小拖拉机的工作效率的多少倍,这两个引例所得到的容积的高是nm ab v ⋅,大拖拉机的工作效率是小拖拉机的工作效率的⎪⎭⎫ ⎝⎛÷n b m a 倍.引出了分式的乘除法的实际存在的意义,进一步引出P14[观察]从分数的乘除法引导学生类比出分式的乘除法的法则.但分析题意、列式子时,不易耽误太多时间.2.P11例1应用分式的乘除法法则进行计算,注意计算的结果如能约分,应化简到最简.3.P11例2是较复杂的分式乘除,分式的分子、分母是多项式,应先把多项式分解因式,再进行约分.4.P12例3是应用题,题意也比较容易理解,式子也比较容易列出来,但要注意根据问题的实际意义可知a>1,因此(a-1)2=a 2-2a+1<a 2-2+1,即(a-1)2<a 2-1.这一点要给学生讲清楚,才能分析清楚“丰收2号”单位面积产量高.(或用求差法比较两代数式的大小)四、课堂引入1.出示P10本节的引入的问题1求容积的高nm ab v ⋅,问题2求大拖拉机的工作效率是小拖拉机的工作效率的⎪⎭⎫ ⎝⎛÷n b m a 倍. [引入]从上面的问题可知,有时需要分式运算的乘除.本节我们就讨论数量关系需要进行分式的乘除运算.我们先从分数的乘除入手,类比出分式的乘除法法则.1.从上面的算式可以看到分式的乘除法法则.2.类比分数的乘除法法则,你能说出分式的乘除法法则?类似分数的乘除法法则得到分式的乘除法法则的结论.五、例题讲解P111.[分析]这道例题就是直接应用分式的乘除法法则进行运算.应该注意的是运算结果应约分到最简,还应注意在计算时跟整式运算一样,先判断运算符号,在计算结果.P112.[分析] 这道例题的分式的分子、分母是多项式,应先把多项式分解因式,再进行约分.结果的分母如果不是单一的多项式,而是多个多项式相乘是不必把它们展开.P12.[分析]这道应用题有两问,第一问是:哪一种小麦的单位面积产量最高?先分别求出“丰收1号”、“丰收2号”小麦试验田的面积,再分别求出“丰收1号”、“丰收2号”小麦试验田的单位面积产量,分别是15002-a 、()21500-a ,还要判断出以上两个分式的值,哪一个值更大.要根据问题的实际意义可知a>1,因此(a-1)2=a 2-2a+1<a 2-2+1,即(a-1)2<a 2-1,可得出“丰收2号”单位面积产量高.六、随堂练习计算 (1)ab c 2c b a 22⋅ (2)322542n m m n ⋅- (3)⎪⎭⎫ ⎝⎛-÷x x y 27 (4)-8xy x y 52÷ (5)4411242222++-⋅+--a a a a a a (6))3(2962y y y y -÷++- 七、课后练习计算(1)⎪⎪⎭⎫ ⎝⎛-⋅y x y x 132 (2)⎪⎭⎫ ⎝⎛-÷a bc ac b 2110352 (3)()y x axy 28512-÷ (4)b a ab ab b a 234222-⋅- (5))4(12x x x x -÷-- (6)3222)(35)(42x y x x y x --⋅-八、答案:六、(1)ab (2)n m 52- (3)14y - (4)-20x 2 (5))2)(1()2)(1(+--+a a a a(6)23+-y y七、(1)x 1- (2)227c b - (3)ax 103- (4)bb a 32+(5)x x -1 (6)2)(5)(6y x y x x -+课后反思:。
第十五章 分式15.2 分式的运算15.2.1 分式的乘除 第1课时 分式的乘除.. ...23÷45=_______;57÷29=_______. V ,底面的长为a ,宽为b ,当容器的水占容积的mn时,求,小拖拉机n 天耕地b 公顷,大拖拉机的工作效率是小倍.;=A C B D÷=⨯=用_________作为积的分子,_________作为积的_________后,与被除式. 33g a xy( )A.22a xB.22axy C.232x y a D.xy 22.2222324ab a b c cd-÷= . 四、我的疑惑_____________________________________________________________________________________________________________________________________________________一、要点探究探究点1:分式的乘除 问题1:()()12??a c a c b db d ⨯=÷=要点归纳:分式的乘、除法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母.分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘.典例精析例1:方法总结:分子和分母都是单项式的分式的乘法,直接按“分子乘分子,分母乘分母”进行运算,其运算步骤为:(1)符号运算;(2)按分式的乘法法则运算.注意:分式的运算结果要化为最简分式或整式.例2:(1)222934x x x x --⋅+-;(2)222224693a a a a a a a +-÷-+-.方法总结:分子或分母是多项式的按以下方法进行:①在乘除过程中遇到整式则视其为分母为1,分子为这个整式的分式; ②把各分式中分子或分母里的多项式分解因式;课堂探究教学备注配套PPT 讲授1.问题引入 (见幻灯片3)2.探究点1新知讲授(见幻灯片5-14)③应用分式乘除法法则进行运算(注意:结果为最简分式或整式).探究点2:分式的化简求值例3:若x =1999,y =-2000,你能求出分式2222x xy y x yx xy x y++-•-+的值吗?方法总结:根据分式乘除法法则将代数式先进行计算化简,再代入求值. 同时注意字母的取值要使分数有意义!探究点3:分式乘除法的应用 例4:一条船往返于水路相距100 km 的A,B 两地之间,已知水流的速度是每小时2 km ,船在静水中的速度是每小时x km (x>2),那么船在往返一次过程中,顺流航行的时间与逆流航行的时间比是______.二、课堂小结3.老王家种植两块正方形土地,边长分别为a米和b米(a≠b),老李家种植一块长方形土地,长为2a米,宽为b米.他们种的都是花生,并且总产量相同,试问老王家种植的花生单位面积产量是老李家种植的单位面积产量的多少倍?5.先化简,再求值:(1)3x+3y2x2y·4xy2x2-y2,其中x=12,y=13;(2)x2-xx+1÷xx+1,其中x=3+1.当堂检测温馨提示:配套课件及全册导学案WORD版见光盘或网站下载:(无须登录,直接下载)。
《分式的乘除》【教材】人教版数学八年级上册15.2.1【教材分析】本节教材是八年级数学第十五章第二节第一课时的内容,是初中数学的重要内容之一。
一方面,这是在学习了分式基本性质、分式的约分和因式分解的基础上,进一步学习分式的乘除法;另一方面,又为学习分式加减法和分式方程等知识奠定了基础。
因此,我认为,本节课起着承前启后的作用。
【学情分析】学生在前面学习了分数的乘除法,分式基本性质,因式分解,现在所学的乘除法是分式基本性质的一个应用,一个实践。
学生在观察讨论交流的过程中,能主动探索,勇于发现,培养学生知识的迁移和联系能力以及转化的数学思想。
【教学目标】知识与技能:理解并掌握分式的乘除法法则,能进行简单的分式乘除法运算,能解决一些与分式乘除有关的实际问题。
过程与方法:经历从分数的乘除法运算到分式的乘除法运算的过程,归纳分式乘除法则,培养学生类比的探究能力,使学生感知数学知识具有普遍的联系性。
情感态度与价值观:教学中让学生在主动探究,合作交流中渗透类比转化的思想,使学生在学知识的同时感受探索的乐趣和成功的体验。
【教学重点】分式乘除法的法则及应用.【教学难点】分子分母是多项式的分式的乘除法运算。
【教学方法】引导探究、讨论交流、验证归纳【教学过程设计】教教学环节问题情境教师活动学生活动设计意图复复习回固引入新知1、计算下列运算:2、思考:类比分数的乘除法法则,你能说出分式的乘除法法则吗?教师引导学生回顾分数的乘除法运算法则学生独立思考,回忆分数的乘除法则开始动笔猜想,与同伴交流。
复习旧知识以便本节类比猜想。
探探索新知用类比方法得到分式的乘除法则:分式的乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母。
分式的除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。
adbcdcabcdab=⨯=÷用字母表示为: 教师引导学生总结出分式的乘除法法则。
最后对学生的说明做补充。
分式的乘除【课题】分式的乘除【教学目的】熟练地进行分式乘除法的混合运算. 利用上节课分式乘法运算的基础,达到熟练地进行分式乘除法的混合运算的目的.课堂练习以学生自己讨论为主,使学生对所做的题目作自我评价,【教学重难点】重点:熟练地进行分式乘除法的混合运算难点:熟练地进行分式乘除法的混合运算. 关键是点拨运算符号问题、变号法则.【课时安排】1课时【教学方法】【教学步骤】或【课堂教学设计】第一步:课堂引入计算:(1))(x y y x x y -⋅÷ (2) )21()3(43x y x y x -⋅-÷ 第二步:讲授新课(P17)例4.计算[分析] 是分式乘除法的混合运算. 分式乘除法的混合运算先统一成为乘法运算,再把分子、分母中能因式分解的多项式分解因式,最后进行约分,注意最后的计算结果要是最简的.(补充)例.计算 (1))4(3)98(23232b x b a xy y x ab -÷-⋅ =xb b a xy y x ab 34)98(23232-⋅-⋅ (先把除法统一成乘法运算) =xb b a xy y x ab 349823232⋅⋅ (判断运算的符号) =32916ax b (约分到最简分式) (2) x x x x x x x --+⋅+÷+--3)2)(3()3(444622=x x x x x x x --+⋅+⋅+--3)2)(3(31444622 (先把除法统一成乘法运算) =x x x x x x --+⋅+⋅--3)2)(3(31)2()3(22 (分子、分母中的多项式分解因式)=)3()2)(3(31)2()3(22---+⋅+⋅--x x x x x x =22--x 第三步:随堂练习计算 (1))2(216322b a a bc a b -⋅÷ (2)103326423020)6(25ba c c ab b ac ÷-÷ (3)x y y x x y y x -÷-⋅--9)()()(3432 (4)22222)(x y x xy y xy x x xy -⋅+-÷- 答案:(1)c a 432- (2)485c- (3)3)(4y x - (4)-y 第四步:课堂小结本节课主要讲授分式乘除法的混合运算,分式乘除法的混合运算先统一成为乘法运算,再把分子、分母中能因式分解的多项式分解因式,最后进行约分,注意最后的计算结果要是最简的.第五步:课后练习计算(1))6(4382642z y x y x y x -÷⋅- (2)9323496222-⋅+-÷-+-a a b a b a a (3)229612316244y y y y y y --÷+⋅-+- (4)xyy xy y x xy x xy x -÷+÷-+222)( 答案: (1)336y xz (2) 22-b a (3)122y - (4)x1- 【作业布置】。
15.2.1 分式的乘除第1课时 分式的乘除【教学目的】熟练地进行分式乘除法的混合运算. 利用上节课分式乘法运算的基础,达到熟练地进行分式乘除法的混合运算的目的.课堂练习以学生自己讨论为主,使学生对所做的题目作自我评价,【教学重难点】重点:熟练地进行分式乘除法的混合运算 难点:熟练地进行分式乘除法的混合运算. 关键是点拨运算符号问题、变号法则.【课时安排】1课时 【教学方法】【教学步骤】或【课堂教学设计】 第一步:课堂引入计算:(1))(x y y x x y -⋅÷ (2) )21()3(43x y x y x -⋅-÷ 第二步:讲授新课(P17)例4.计算[分析] 是分式乘除法的混合运算. 分式乘除法的混合运算先统一成为乘法运算,再把分子、分母中能因式分解的多项式分解因式,最后进行约分,注意最后的计算结果要是最简的.(补充)例.计算(1))4(3)98(23232b x b a xy y x ab -÷-⋅ =xb b a xy y x ab 34)98(23232-⋅-⋅ (先把除法统一成乘法运算) =xb b a xy y x ab 349823232⋅⋅ (判断运算的符号) =32916axb (约分到最简分式) (2) x x x x xx x --+⋅+÷+--3)2)(3()3(444622 =x x x x x x x --+⋅+⋅+--3)2)(3(31444622 (先把除法统一成乘法运算)=x x x x x x --+⋅+⋅--3)2)(3(31)2()3(22 (分子、分母中的多项式分解因式)=)3()2)(3(31)2()3(22---+⋅+⋅--x x x x x x =22--x 第三步:随堂练习计算 (1))2(216322b a a bc a b -⋅÷ (2)103326423020)6(25b a c c ab b a c ÷-÷ (3)x y y x x y y x -÷-⋅--9)()()(3432 (4)22222)(x y x xy y xy x x xy -⋅+-÷- 答案:(1)c a 432- (2)485c- (3)3)(4y x - (4)-y 第四步:课堂小结本节课主要讲授分式乘除法的混合运算,分式乘除法的混合运算先统一成为乘法运算,再把分子、分母中能因式分解的多项式分解因式,最后进行约分,注意最后的计算结果要是最简的.第五步:课后练习计算(1))6(4382642z y x y x y x -÷⋅- (2)9323496222-⋅+-÷-+-a a b a ba a(3)229612316244y y y y y y --÷+⋅-+- (4)xyy xy y x xy x xy x -÷+÷-+222)( 答案: (1)336y xz (2) 22-b a (3)122y - (4)x1- 【作业布置】。
分式的乘除教学目标:1、知识技能:理解并掌握分式的乘除法法则,并会运用它们进行分式的乘除运算。
2、过程方法:通过类比的方法,经历探索分式乘除运算法则的过程,理解其算理,丰富学生从事数学活动的经验,发展学生的实践能力及创新能力。
3、解决问题:会进行简单分式的乘除运算,具有一定的代数化归能力,培养学生有条理地表达的能力。
4、情感态度与价值观:在活动中培养学生乐于探索,合作学习的习惯,培养学生把数学知识运用到生活,生产中的意识与能力。
教学重点:分式的乘除法法则教学难点:对分子或分母是多项式的分式进行乘除运算及符号变化。
教学过程安排:活动1、提出问题,引入课题(从实际问题出发,让学生感知学习新知识的必要性) 活动2、类比联想,探索新知(由分数乘除运算,类比得分式乘除法法则) 活动3、例题分析,应用新知(例题剖析,应用分式乘除法法则)活动4、练习巩固,培养能力(独立练习,培养和提高学生的运算能力)活动5、课堂小结,布置作业(归纳小结本节的知识和方法)教学过程设计:活动1、问题(1)一个长方体容器为V ,底面的长为a ,宽为b ,当容器内的水占容积的nm 时,水高为多少?(2)大拖拉机m 天耕地a 公顷,小拖拉机n 天耕地b 公顷,大拖拉机的工作效率是小拖拉机的工作效率的多少倍?(1、教师提出问题,学生思考、交流,回答问题。
2、在活动中教师要关注:①学生能否读懂具有实际背景的问题并分析出其中的数量关系;②基础较差的学生对于列式是否有困难,如何适当加以个别引导;③学生是否感受到解决实际问题时,经常遇到需要进行分式的乘除运算。
)(设计意图:提出现实生活中的问题,使学生自然地体会到学习分式乘除运算的必要性,了解数学于现实生活的联系,从而调动学生的学习积极性。
)活动2、问题(1)观察下列运算,你能写出分数乘除法法则吗? 2910452515321553==⨯⨯=⨯ 252756155231525321553==⨯⨯⨯=÷ (2)类比分数乘除法,你能猜想出分式的乘除法法则吗?怎样用语言和式子表示分式的乘除法法则?师板书分式的乘法法则:分式乘分式,用分式的积作为积的分子,分母的积作为积的分母.用符号语言表达为:db c a d c b a ⨯⨯=⨯ 师板书分式的除法法则:分式除以分式,把除式的分子和分母颠倒位置后再与被除式相乘.用符号语言表达为:=⨯=÷c d b a d c b a cb d a ⨯⨯ (1、教师提出问题,学生观察运算回答问题,并类比分数的乘除运算法则猜想出分式的乘除法法则;2、在活动中教师要关注:①学生对已学知识的掌握情况;②学生能否通过类比得出新知识;③学生能否用数学语言表述分式的乘除法法则。
15.2.1 分式的乘除
学习目标:
1、理解分式的乘除法法则
2、会进行分式乘除运算
学习重点:会用分式乘除法则进行运算 学习难点:灵活运用分式乘除法则进行运算
一、 学前准备
1、两个分式相乘,分子的积作为积的 ,分母的积作为积的 ,用式子表示为
ac
bd c d a b =⋅
2、分式除以分式,把除式的分子、分母颠倒位置后,与被除式 ,用式子表示为
ad
bc d c a b c d a b =⋅=÷
二、独立探究、解决问题
1、计算(1)
3
254x
y y x ⋅ (2)cd b a c
b a 6532
42
3-÷
(3)x x x +÷-2
1)1( (4)4
4246322+++÷--x x x x x
2、已知m 米布料能做n 件上衣,2米布料能做3n 条裤子,则一件上衣的用料是一条裤子用料的 倍。
三、同类演练:
1、下列分式中,最简分式是( )
A 、1.
B 、2
2
42y x y
x -- C 、2
421
2
+++x x x D 、22
3x x x +
2、下列约分正确的是( )
A 、3
26
x x
x = B 、
0=++y x y x C 、x xy x y x 12
=++ D 、214222
=y x xy
3、计算:(1))8(4322
2y z z xy -⋅ (2)b
b a a b -+⋅-223
9
(3)y x xy y x xy x -÷-+2 (4)m m m 61
3612
2
-÷-
四、拓展延伸:
已知:2+32=22
×32,3+8
3=32
×
83, 4+154=42
×154
……, 若:8+
b a
=82
×b
a (a 、
b 为正整数),求分式b
a b
a b a b ab a -+÷-++222的值。
五、自我测试
1、cd
ax
cd ab 4322-÷等于( ) A 、x
b 322
B 、x b 232
C 、-x b 322
D 、222
283d c x b a - 2、-6x 2
y ÷
x
y 342
的值等于( )
A 、y x 293
- B 、-2xy 3
C 、3
92x y - D 、-2y
3、下列各式中,计算结果正确的有( )
(1)x x x x 332=(2)1
1
12
22-=+÷-a a a a a a (3)a b b a =⨯÷1
(4)b a b
a b a 32
2
2
6)43(8-=-÷(5)ab b a a b b a 1))((2
222=÷-- A 、1 B 、2 C 、3 D 、4
4、计算:
(1))24(61522
2ac b
bc a -÷- (2))4(2442
222y x y x y xy x -÷++-
5、先化简,再求值。
)1,4()
)(4(2==+-+y x y x y x xy
x 其中
板书设计与教学反思:。