数学模拟试卷
- 格式:doc
- 大小:321.13 KB
- 文档页数:5
七年级数学试卷模拟题人教版一、选择题(每题3分,共30分)1. -2的相反数是()A. 2B. -2C. 公式D. -公式解析:相反数是指绝对值相等,正负号相反的两个数。
所以 -2的相反数是2,答案为A。
2. 下列式子中,是单项式的是()A. 公式B. 公式C. 公式D. 公式解析:单项式是只有一个项的整式,即由数与字母的积组成的代数式叫做单项式,单独的一个数或一个字母也叫做单项式。
A选项公式是多项式;C选项公式是分式;D选项公式是多项式。
而公式是单项式,答案为B。
3. 计算公式的结果是()A. -2B. 2C. 8D. -8解析:异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值。
公式,所以公式,答案为B。
4. 化简公式的结果是()A. 公式B. 公式C. 公式D. 公式解析:合并同类项,公式,公式,所以结果为公式,答案为A。
5. 方程公式的解是()A. 公式B. 公式C. 公式D. 公式解析:首先将方程公式移项,得到公式,即公式,然后两边同时除以2,解得公式,答案为C。
6. 一个角的度数是公式,则它的余角的度数是()A. 公式B. 公式C. 公式D. 公式解析:如果两个角的和为公式,那么这两个角互为余角。
所以公式,答案为A。
7. 若公式是关于公式的方程公式的解,则公式的值为()A. 2B. -2C. 1D. -1解析:把公式代入方程公式,得到公式,移项可得公式,即公式,解得公式,答案为A。
8. 如图,直线公式、公式相交于点公式,公式,则公式的度数是()A. 公式B. 公式C. 公式D. 公式解析:对顶角相等,公式与公式是对顶角,所以公式,答案为B。
9. 把方程公式变形为用公式表示公式的形式,正确的是()A. 公式B. 公式C. 公式D. 公式解析:首先对原方程公式进行变形,公式,两边同时乘以公式得到公式,答案为B。
10. 下列说法正确的是()A. 近似数公式与公式的精确度一样B. 近似数公式与公式的意义完全一样C. 公式精确到十位D. 公式万精确到百分位解析:A选项,近似数公式精确到百分位,公式精确到十分位,精确度不同;B选项,近似数公式表示的是精确到百位的数,与公式的意义不同;C选项,公式,5后面的0在十位上,所以精确到十位,正确;D选项,公式万公式,精确到百位。
2024年初一数学模拟试卷一、选择题(每题2分,共10分)1.下列哪个数是质数?A.21B.29C.35D.392.若a=3,b=5,则a²+b²的值是?A.34B.58C.74D.643.一个等腰三角形的底边长为8cm,腰长为5cm,则该三角形的周长是?A.18cmB.20cmC.22cmD.24cm4.下列哪个数是偶数?A.101B.103C.1075.一个正方形的边长为6cm,则它的对角线长度是?A.4.5cmB.6cmC.8cmD.9cm6.下列哪个数是立方数?A.64B.81C.98D.1007.若a=2,b=3,则2a+3b的值是?A.12B.15C.18D.218.一个长方形的长是10cm,宽是6cm,则它的面积是?A.40cm²B.50cm²C.60cm²D.70cm²9.下列哪个数是素数?B.27C.31D.3710.若a=4,b=6,则a²b²的值是?A.-20B.-10C.10D.20二、判断题(每题2分,共10分)1.两个质数的和一定是偶数。
()2.一个等边三角形的周长是它的任意一边长的三倍。
()3.任何两个奇数的和都是偶数。
()4.一个正方形的对角线长度等于它的边长。
()5.两个负数相乘的结果一定是正数。
()6.任何数乘以0都等于0。
()7.两个偶数的和一定是偶数。
()8.任何数除以1都等于它本身。
()9.两个负数相加的结果一定是负数。
()10.任何数乘以-1都等于它的相反数。
()三、填空题(每题2分,共10分)1.一个等腰三角形的底边长为10cm,腰长为13cm,则该三角形的周长是______cm。
2.若a=7,b=8,则a²+b²的值是______。
3.一个正方形的边长为8cm,则它的面积是______cm²。
4.下列哪个数是偶数?______5.两个质数的积一定是______数。
2024年高考数学精选模拟试卷及答案学校:___________姓名:___________班级:___________考号:___________一、单选题1.现要完成下列2项抽样调查:①从10盒酸奶中抽取3盒进行食品卫生检查;①东方中学共有160名教职工,其中教师120名,行政人员16名,后勤人员24名.为了了解教职工对学校在校务公开方面的意见,拟抽取一个容量为20的样本. 较为合理的抽样方法是( )4.现将5个代表团人员安排至甲、乙、丙三家宾馆入住,要求同一个代表团人员住同一家宾馆,且每家宾馆至少有一个代表团入住.若这5个代表团中,A B 两个代表团已经入住甲宾馆且不再安排其他代表团入住甲宾馆,则不同的入住方案种数为( ) A .6B .12C .16D .185.下列命题中正确的个数是①命题“若2320x x -+=,则1x =”的逆否命题为“若1x ≠,则2320x x -+≠; ①“0a ≠”是“20a a +≠”的必要不充分条件; ①若p q ∧为假命题,则p ,q 为假命题;①若命题2000:,10p x R x x ∃∈++<,则:p x ⌝∀∈R ,210x x ++≥.二、多选题三、填空题四、解答题16.2018年茂名市举办“好心杯”少年美术书法作品比赛,某赛区收到200件参赛作品,为了解作品质量,现从这些作品中随机抽取12件作品进行试评.成绩如下:67,82,78,86,96,81,73,84,76,59,85,93. (1)求该样本的中位数和方差;(2)若把成绩不低于85分(含85分)的作品认为为优秀作品,现在从这12件作品中任意抽取3件,求抽到优秀作品的件数的分布列和期望.17.某市司法部门为了宣传《宪法》举办法律知识问答活动,随机对该市18~68岁的人群抽取一个容量为n 的样本,并将样本数据分成五组:[)1828,,[)2838,,[)3848,,[)4858,,[)5868,,再将其按从左到右的顺序分别编号为第1组,第2组,…,第5组,绘制了样本的频率分布直方图;并对回答问题情况进行统计后,结果如下表所示.(1)分别求出a,x的值;(2)从第2,3,4组回答正确的人中用分层抽样方法抽取6人,则第2,3,4组每组应各抽取多少人?(3)在(2)的前提下,决定在所抽取的6人中随机抽取2人颁发幸运奖,求:所抽取的人中第2组至少有1人获得幸运奖概率.18.某食品公司在八月十五来临之际开发了一种月饼礼盒,礼盒中共有7个两种口味的月饼,其中4个五仁月饼和3个枣泥月饼.(1)一次取出两个月饼,求两个月饼为同一种口味的概率;(2)依次不放回地从礼盒中取2个月饼,求第1次、第2次取到的都是五仁月饼的概率;(3)依次不放回地从礼盒中取2个月饼,求第2次取到枣泥月饼的概率.19.在某项娱乐活动的海选过程中评分人员需对同批次的选手进行考核并评分,并将其得分作为该选手的成绩,成绩大于等于60分的选手定为合格选手,直接参加第二轮比赛,大于等于90分的选手将直接参加竞赛选拔赛.已知成绩合格的100名参赛选手成绩的60,70,80,90,90,100的频率构成等比数列.频率分布直方图如图所示,其中[)[)[](2)若试剂A在连续进行的三轮测试中,都有2X ,则认为该试剂对药品B的酸碱值检测效果是稳定的,求出出现这种现象的概率.参考答案:a4)中位数为81.5,方差为,x=9(2)。
一、选择题(每题4分,共40分)1. 下列各数中,是负数的是()A. -2B. 0C. 2D. -0.52. 若a > b,那么下列不等式中正确的是()A. a - b > 0B. a + b > 0C. a - b < 0D. a + b < 03. 已知函数y = 2x - 1,当x = 3时,y的值为()A. 5B. 6C. 7D. 84. 下列各式中,能被3整除的是()A. 24B. 25C. 26D. 275. 在直角坐标系中,点P(-2,3)关于x轴的对称点是()A. (-2,-3)B. (2,3)C. (-2,3)D. (2,-3)6. 下列图形中,是轴对称图形的是()A. 矩形B. 正方形C. 三角形D. 梯形7. 若一个等腰三角形的底边长为6cm,腰长为8cm,则这个三角形的面积是()A. 24cm²B. 28cm²C. 32cm²D. 36cm²8. 下列各式中,表示圆的周长的式子是()A. S = πr²B. C = πdC. A = πr²D. V = πr³9. 若a² + b² = 100,a - b = 6,则ab的值为()A. 14B. 16C. 18D. 2010. 下列函数中,是反比例函数的是()A. y = x + 1B. y = 2xC. y = x²D. y = k/x(k≠0)二、填空题(每题4分,共40分)11. 若a = -3,则a² - 2a + 1的值为__________。
12. 已知x + y = 5,xy = 6,则x² + y²的值为__________。
13. 在直角坐标系中,点A(2,3)到原点O的距离是__________。
14. 一个长方体的长、宽、高分别为4cm、3cm、2cm,则它的体积是__________cm³。
2024上海高考高三数学模拟试卷(本试卷共10页,满分150分,90分钟完成.答案一律写在答题纸上)命题:侯磊审核:杨逸峰一、填空题.(本题共12小题,前6题每小题4分;后6题每小题5分,共54分.请在横线上方填写最终的、最简的、完整的结果)1.已知集合{}()1,2,3,4,5,2,5A B ==,则A B =.2.已知圆柱底面圆的周长为2π,母线长为4,则该圆柱的体积为.3.101x x ⎛⎫+ ⎪⎝⎭的二项展开式中,2x 项的系数为.4.等比数列{}n a 的各项和为2,则首项1a 的取值范围为.5.已知平面向量()()1,2,,4a b m == ,若a 与b的夹角为锐角,则实数m 的取值范围为.6.已知复数z 满足22z z -==,则3z =.7.已知空间向量()()1,1,0,0,1,1a b == ,则b 在a方向上的投影为.8.已知()ln(4f x ax c x =++(a 、b 、c 为实数),且3(lg log 10)5f =,则(lglg3)f 的值是9.已知A B 、是抛物线24y x =上的两个不同的点,且10AB =,若点M 为线段10AB =的中点,则M 到y 轴的距离的最小值为.10.一个飞碟射击运动员练习射击,每次练习可以开2枪.当他发现飞碟后,开第一枪命中的概率为0.8;若第一枪没有命中,则开第二枪,且第二枪命中的概率为0.6;若2发子弹都没打中,该次练习就失败了.若已知在某次练习中,飞碟被击中的条件下,则飞碟是运动员开第二枪命中的概率为.11.已知ABC 中,,,A B C 为其三个内角,且tan ,tan ,tan A B C 都是整数,则tan tan tan A B C ++=.12.已实数m n 、满足221m n +≤,则2263m n m n +-+--的取值范围是.二、选择题(本题共4小题,前2题每小题4分;后2题每小题5分,共18分.在每小题给出的四个选项中,只有一项是符合题目要求的,请填写符合要求的选项前的代号)13.以下能够成为某个随机变量分布的是()A .0111⎛⎫ ⎪⎝⎭B .101111236-⎛⎫ ⎪⎝⎭C .123111248⎛⎫ ⎪ ⎝⎭D .11.222.40.50.50.30.7⎛⎫⎪-⎝⎭14.某高级中学高一年级、高二年级、高三年级分别有学生1400名、1200名、1000名,为了解学生的健康状况,用分层抽样的方法从该校学生中抽取一个容量为n 的样本,若从高三年级抽取25名学生,则n 为A .75B .85C .90D .10015.设等比数列{}n a 的前n 项和为n S ,设甲:123a a a <<,乙:{}n S 是严格增数列,则甲是乙的()A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分又非必要条件16.椭圆具有如下的声学性质:从一个焦点出发的声波经过椭圆反射后会经过另外一个焦点.有一个具有椭圆形光滑墙壁的建筑,某人站在一个焦点处大喊一声,声音向各个方向传播后经墙壁反射(不考虑能量损失),该人先后三次听到了回音,其中第一、二次的回音较弱,第三次的回音较强;记第一、二次听到回音的时间间隔为x ,第二、三次听到回音的时间间隔为y ,则椭圆的离心率为()A .2xx y+B .2x x y+C .2y x y +D .2y x y+三、解答题.(本大题共5小题,满分78分.请写出必要的证明过程或演算步骤)17.三棱柱111ABC A B C -中,1AA ⊥平面ABC ,且1AB BC ==,12,90,AA ABC D =∠=︒为1CC中点.(1)求四面体1A ABD -的体积:(2)求平面ABD 与1ACB 所成锐二面角的余弦值.18.(1)在用“五点法”作出函数[]1sin ,0,2πy x x =-∈的大致图象的过程中,第一步需要将五个关键点列表,请完成下表:x0sin x -01sin x-1(2)设实数0a >且1a ≠,求证:()ln x x a a a '=;(可以使用公式:()e e x x '=)(3)证明:等式()()()32123x ax bx c x x x x x x +++=---对任意实数x 恒成立的充要条件是123122331123x x x a x x x x x x bx x x c ++=-⎧⎪++=⎨⎪=-⎩19.为帮助乡村脱贫,某勘探队计划了解当地矿脉某金属的分布情况,测得了平均金属含量y (单位:克每立方米)与样本对原点的距离x (单位:米)的数据,并作了初步处理,得到了下面的一些统计量的值.(表中9111,9i i i i u u u x ===∑).xyu921()ii x x =-∑921()i i u u =-∑921()i i y y =-∑91(())i ii x y x y =--∑91()()i ii u u y y =--∑697.900.212400.1414.1226.13 1.40-(1)利用相关系数的知识,判断y a bx =+与dy c x=+哪一个更适宜作为平均金属含量y 关于样本对原点的距离x 的回归方程类型;(2)根据(1)的结果建立y 关于x 的回归方程,并估计样本对原点的距离20x =米时,平均金属含量是多少?20.已知抛物线2:2(0)C y px p =>,过点()(),00M a a ≠与x 轴不垂直的直线l 与C 交于()()1122,,A x y B x y 、两点.(1)求证:OA OB ⋅是定值(O 是坐标原点);(2)AB 的垂直平分线与x 轴交于(),0N n ,求n 的取值范围;(3)设A 关于x 轴的对称点为D ,求证:直线BD 过定点,并求出定点的坐标.21.已知2()ln(1)2x f x a x x =++-,函数()y f x =的导函数为()y f x '=.(1)当1a =时,求()y f x =在2x =处的切线方程;(2)求函数()y f x =的极值点;(3)函数()y f x =的图象上是否存在一个定点(,)(.(0,))m n m n ∈+∞,使得对于定义域内的任意实数00()x x m ≠,都有000()()()2x mf x f x m n +'=-+成立?证明你的结论.1.{3,4}【分析】根据给定条件,利用交集的定义直接求解即可.【详解】集合{}()1,2,3,4,5,2,5A B ==,则{3,4}A B = .故答案为:{3,4}2.4π【分析】根据条件,直接求出1r =,再利用圆柱的体积公式,即可求出结果.【详解】设圆柱的底面半径为r ,所以2π2πr =,得到1r =,又圆柱的母线长为4l =,所以圆柱的体积为2π4πV r l ==,故答案为:4π.3.210【分析】先求出二项式展开式的通项公式,然后令x 的次数为2,求出r ,代入通项公式中可求得结果.【详解】101x x ⎛⎫+ ⎪⎝⎭的二项展开式的通项公式为10102110101C C rr r rr r T x x x --+⎛⎫=⋅⋅=⋅ ⎪⎝⎭,令1022r -=,得4r =,所以2x 项的系数为410C 210=,故答案为:2104.(0,2)(2,4)【分析】根据给定条件,利用等比数列各项和公式,结合公比的取值范围求解即得.【详解】依题意,121a q=-,10q -<<或01q <<,则12(1)a q =-,102a <<或124a <<,所以首项1a 的取值范围为(0,2)(2,4) .故答案为:(0,2)(2,4) 5.(8,2)(2,)-+∞ 【分析】根据给定条件,利用向量夹角公式结合共线向量列出不等式组求解即得.【详解】向量()()1,2,,4a b m == 的夹角为锐角,则0a b ⋅> 且a 与b不共线,因此8024m m +>⎧⎨≠⎩,解得8m >-且2m ≠,所以实数m 的取值范围为(8,2)(2,)-+∞ .故答案为:(8,2)(2,)-+∞ 6.8-【分析】设i z a b =+,根据22z z -==得到方程组,求出1,a b ==答案,从而求出3z .【详解】设i z a b =+,则22i z a b -=-+,所以()2222424a b a b ⎧+=⎪⎨-+=⎪⎩,解得1,a b ==当1,a b =1=z ,故()222113i 22z =+=++=-+,()()322126i 8z =-++=-+=-;当1,a b ==1z =-,故()222113i 22z =-=-=--,()()322126i 8z =--=-+=-故答案为:-87.11(,,0)22【分析】根据给定条件,利用投影向量的定义求解即得.【详解】向量()()1,1,0,0,1,1a b == ,则1,||a b a ⋅==,所以b 在a 方向上的投影为2111(,,0)222||a b a a a ⋅==,故答案为:11(,,0)228.3【分析】令()ln(g x ax c x =+,则()()4f x g x =+,然后判断()g x 的奇偶性,再利用函数的奇偶性求值即可【详解】令()ln(g x ax c x =+,则()()4f x g x =+,函数的定义域为R ,因为()ln(g x ax c x -=---ln ax c ⎛⎫=--(1ln ax c x -=--+(ln ax c x =--+(ln ()ax c x g x ⎡⎤=-++=-⎢⎥⎣⎦,所以()g x 为奇函数,因为3(lg log 10)5f =,所以3(lg log 10)45g +=,所以(lg lg 3)1g -=,所以(lg lg 3)1g =-,所以(lg lg3)(lg lg3)4143f g =+=-+=,故答案为:39.4【分析】求出过抛物线焦点的弦长范围,再利用抛物线定义列式求解即得.【详解】抛物线24y x =的焦点(1,0)F ,准线方程=1x -,令过点F 与抛物线交于两点的直线方程为1x ty =+,由214x ty y x=+⎧⎨=⎩消去x 得,2440y ty --=,设两个交点为1122(,),(,)P x y Q x y ,则124y y t +=,21212()242x x t y y t +=++=+,于是212||11444PQ x x t =+++=+≥,当且仅当0=t 时取等号,令点,,A B M 的横坐标分别为0,,A B x x x ,而||104AB =≥,则0111[(1)(1)]1(||||)1||142222A B A B x x x x x FA FB AB +==+++-=+-≥-=,当且仅当,,A F B 三点共线时取等号,所以M 到y 轴的距离的最小值为4.故答案为:410.323【分析】根据给定条件,利用条件概率公式计算即得.【详解】记事件A 为“运动员开第一枪命中飞碟”,B 为“运动员开第二枪命中飞碟”,C 为“飞碟被击中”,则()0.20.60.12P B =⨯=,()()()()0.80.120.92P C P A B P A P B ==+=+= ,所以飞碟是运动员开第二枪命中的概率为()()0.123(|)()()0.9223P BC P B P B C P C P C ====.故答案为:32311.6【分析】不妨令A B C ≤≤,利用正切函数的单调性,结合已知求出tan A ,再利用和角的正切公式分析求解即得.【详解】在ABC 中,不妨令A B C ≤≤,显然A 为锐角,而tan A 是整数,若πtan 2tan3A =>=,又函数tan y x =在π(0,)2上单调递增,则π3A >,此时3πA B C A ++≥>与πA B C ++=矛盾,因此tan 1A =,π3π,44A B C =+=,tan tan tan()11tan tan B CB C B C++==--,整理得(tan 1)(tan 1)2B C --=,又tan ,tan B C 都是整数,且tan tan B C ≤,因此tan 2,tan 3B C ==,所以tan tan tan 6A B C ++=.故答案为:612.[3,13]【分析】确定动点(,)P m n 的几何意义,利用直线现圆的位置关系分段讨论,结合几何意义求解即得.【详解】显然点(,)P m n 在圆22:1O x y +=及内部,直线1:630l x y --=,直线2:220l x y +-=,1=>,得直线1l与圆O相离,且|63|63m n m n--=--,由222201x yx y+-=⎧⎨+=⎩,解得3545xy⎧=⎪⎪⎨⎪=⎪⎩或1xy=⎧⎨=⎩,即直线2l与圆O交于点34(,),(1,0)55A B,①当220m n+-≥时,即点P在直线2l与圆O所围成的小弓形及内部,|22||63|226324m n m n m n m n m n+-+--=+-+--=-+,目标函数124z x y=-+,即142z x y-=-表示斜率为12,纵截距为142z-的平行直线系,画出直线0:20p x y-=,平移直线p分别到直线12,p p,当1p过点A时,142z-取得最大值,1z最小,当2p过点B时,142z-取得最小值,1z最大,因此1min34()24355z=-⨯+=,1max()12045z=-⨯+=,从而3245m n≤-+≤;②当220m n+-<时,即点P在直线2l与圆O所围成的大弓形及内部(不含直线2l上的点),|22||63|(22)63348m n m n m n m n m n+-+--=-+-+--=--+,目标函数2348z x y=--+,即2834z x y-=+表示斜率为34-,纵截距为282z-的平行直线系,画出直线0:340q x y+=,显直线q OA⊥,平移直线q分别到直线12,q q,直线12,q q与圆O分别相切于点34,(,)55A--,当1q过点A时,282z-取得最大值,2z最小,因此2min34()834355z=-⨯-⨯=,当2q过点34(,)55--时,282z-取得最小值,2z最大,因此2max34()8341355z=+⨯+⨯=,从而383413m n<--≤,所以2263m n m n+-+--的取值范围是[3,13].故答案为:[3,13]【点睛】方法点睛:求解线性规划问题的一般方法:①准确作出不等式组表示的平面区域,作图时一定要分清虚实线、准确确定区域;②根据目标函数的类型及几何意义结合图形判断目标函数在何处取得最值.13.B【分析】分布列中各项概率大于0,且概率之和为1,从而得到正确答案.【详解】由题意得,分布列中各项概率非负,且概率之和为1,显然AC 选项不满足概率之和为1,D 选项不满足各项概率大于0,B 选项满足要求.故选:B 14.C【详解】分析:由题意结合分层抽样的性质得到关于n 的方程,解方程即可求得最终结果.详解:由题意结合分层抽样的定义可得:251000140012001000n =++,解得:90n =.本题选择C 选项.点睛:进行分层抽样的相关计算时,常利用以下关系式巧解:(1)n N =样本容量该层抽取的个体数总体的个数该层的个体数;(2)总体中某两层的个体数之比=样本中这两层抽取的个体数之比.15.D【分析】举出反例得到充分性和必要性均不成立.【详解】不妨设111,2a q =-=,则2311,24a a =-=-,满足123a a a <<,但{}n S 是严格减数列,充分性不成立,当111,2a q ==时,{}n S 是严格增数列,但123a a a >>,必要性不成立,故甲是乙的既非充分又非必要条件.故选:D 16.B【分析】根据给定条件,分析听到的三次回声情况确定几个时刻声音的路程,再列出等式求解即得.【详解】依题意,令声音传播速度为v ,1t 时刻,刚刚呐喊声音传播为0,2t 时刻听到第一次回声,声音的路程为2()-a c ,即从左焦点到左顶点再次回到左焦点,3t 时刻,声音的路程为2()a c +,即从左焦点到右顶点,又从右顶点回到左焦点,4t 时刻,声音的路程为4a ,即从左焦点反射到右焦点,再反射到左焦点,因此32,2()2()x t t a c a c vx =-+--=,43,42()y t t a a c vy =--+=,即4,22c vx a c vy =-=,则2a c y c x -=,即2a c y c x -=,整理得2a y xc x+=,所以椭圆的离心率为2c xa x y=+.故选:B【点睛】关键点点睛:利用椭圆几何性质,确定听到回声的时刻,回声的路程是解题的关键.17.(1)136【分析】(1)利用等体积法11A ABD D A AB V V --=,再根据条件,即可求出结果;(2)建立空间直角坐标系,求出平面ABD 与1ACB 的法向量,再利用面面角的向量法,即可求出结果.【详解】(1)因为1AA ⊥平面ABC ,又BC ⊂面ABC ,所以1AA BC ⊥,又AB BC ⊥,1AA AB A = ,1,AA AB ⊂面11ABB A ,所以CB ⊥面11ABB A ,因为1//CC 面11ABB A ,所以D 到面11ABB A 的距离即BC ,又111112122AA B S AB AA =⋅=⨯⨯= ,1BC =,所以1111133A ABD D A AB A AB V V S CB --=== .(2)如图,建立空间直角坐标系,因为1AB BC ==,12AA =,则1(0,0,0),(0,1,0),(1,0,0),(0,0,2),(1,0,1)B AC BD ,所以1(0,1,0),(1,0,1),(0,1,2),(1,1,0)BA BD AB AC ===-=-设平面ABD 的一个法向量为(,,)n x y z =,由1100BA n BD n ⎧⋅=⎪⎨⋅=⎪⎩ ,得到00y x z =⎧⎨+=⎩,取1x =,得到0,1y z ==-,所以(1,0,1)n =- ,设平面1ACB 的一个法向量为(,,)m a b c =,则由10AC m AB m ⎧⋅=⎪⎨⋅=⎪⎩,得到020a b b c -=⎧⎨-+=⎩,取2a =,则2,1b c ==,所以(2,2,1)m = ,设平面ABD 与1ACB 所成锐二面角为θ,则cos cos ,n mn m n m θ⋅====18.(1)表格见解析;(2)证明见解析;(3)证明见解析.【分析】(1)根据给定条件,结合“五点法”作图完善表格.(2)根据给定条件,利用复合函数求导法则计算即得.(3)根据给定条件,利用恒等式成立的充要条件推理即得.【详解】(1)“五点法”作函数[]sin ,0,2πy x x =∈的图象的5个关键点的横坐标为π3π0,,π,,2π22,所以表格如下:xπ2π3π22πsin x -01-0101sin x-1121(2)实数0a >且1a ≠,则ln ln e e xx a x a a ==,因此ln ln ()(e )e (ln )ln x x a x a x a x a a a '''==⋅=,所以()ln x x a a a '=.(3)212212133)())[()])(((x x x x x x x x x x x x x x =-----++32332121212312()()x x x x x x x x x x x x x x x x =+--+-++32123122331123()()x x x x x x x x x x x x x x x =-+++++-,依题意,3212312233112332()()x x x x x x x x x x x x ax bx x x x x c -+++-+++=++对任意实数x 恒成立,因此123123122331122331123123()a x x x x x x ab x x x x x x x x x x x x bc x x x x x x c=-++++=-⎧⎧⎪⎪=++⇔++=⎨⎨⎪⎪=-=-⎩⎩,所以等式32123()()()x ax bx c x x x x x x +++=---对任意实数x 恒成立的充要条件是123122331123x x x ax x x x x x b x x x c ++=-⎧⎪++=⎨⎪=-⎩.19.(1)dy c x=+更适宜作为回归方程类型;(2)10ˆ100yx=-,399.5g /m .【分析】(1)根据题意,分别求得相关系数的值,结合10.449r ≈和20.996r ≈-,结合12r r <,即可得到结论.(2)(i )根据最小二乘法,求得回归系数,进而求得回归方程;(ii )当20x =时,结合回归方程,即可求得预报值.【详解】(1)因为y a bx =+的线性相关系数91)9()(0.44iix y r x y --==≈∑,dy c x=+的线性相关系数92(0.996iiu u y r y --≈-∑,因为12r r <,所以dy c x=+更适宜作为平均金属含量y 关于样本对原点的距离x 的回归方程类型.(2)依题意,992110ˆ()()1(.4010.14)i ii i iu u y u u yβ==----===-∑∑,则ˆˆ97.9(10)0.21100y u αβ=-=--⨯=,于是10ˆ10010100y u x=-=-,所以y 关于x 的回归方程为10ˆ100yx=-.当20x =时,金属含量的预报值为31010099.5g /m 20ˆy=-=.20.(1)证明见解析;(2))||(,p a ++∞;(3)证明见解析,(),0a -.【分析】(1)联立直线和抛物线方程,再利用韦达定理及数量积的坐标表示计算即得..(2)求出弦AB 的中点坐标及弦AB 的中垂线方程,进而求出n ,再结合判别式求解即得.(3)设出D 点的坐标,求出直线BD 的方程211121()y y y x x y x x +=---,借助(1)的信息,推理判断即得.【详解】(1)显然直线l 不垂直于坐标轴,设过点(),0M a 的直线l 的方程为x my a =+,由22y px x my a ⎧=⎨=+⎩消去x 得:2220y pmy pa --=,22Δ480p m pa =+>,则121222y y pm y y pa +=⎧⎨⋅=-⎩,所以22212121212222y y OA OB x x y y y y a pa p p⋅=+=⋅+=- 为定值.(2)设,A B 两点的中点坐标为()33,Q x y ,则21212322x x my my x a pm a ++==+=+,1232y y y pm +==,则()2,Q pm a pm +,即AB 的垂直平分线为()2y m x pm a pm =---+,令0y =,解得2n pm a p =++,显然22480p m pa ∆=+>,当0a >时,恒有220pm a +>成立,则n p a >+,当a<0时,2pm a a +>-,则n p a >-,所以n 的取值范围为)||(,p a ++∞.(3)由A 关于x 轴的对称点为D ,得()11,D x y -,则直线BD :211121()y y y x x y x x +=---,整理得:2112212121y y x y x yy x x x x x ++=---.又()()()1221211212122x y x y y my a y my a my y a y y +=+++=++422pam pam pam =-+=-.因此直线BD 为:212122pm pam y x x x x x =+--,即()212pmy x a x x =+-过定点(),0a -,所以直线BD 过定点(),0a -.【点睛】方法点睛:求解直线过定点问题常用方法如下:①“特殊探路,一般证明”:即先通过特殊情况确定定点,再转化为有方向、有目的的一般性证明;②“一般推理,特殊求解”:即设出定点坐标,根据题设条件选择参数,建立一个直线系或曲线的方程,再根据参数的任意性得到一个关于定点坐标的方程组,以这个方程组的解为坐标的点即为所求点;③求证直线过定点()00,x y ,常利用直线的点斜式方程()00y y k x x -=-或截距式y kx b =+来证明.21.(1)48ln 333y x =-+;(2)答案见解析;(3)不存在,理由见解析.【分析】(1)利用导数求切线斜率,再求出切点坐标,点斜式写出切线方程即可.(2)利用导数探讨单调性,进而确定函数的极值点.(3)假设存在,利用导数,将等式化简,减少变量,从而可构造适当新函数,研究新函数的性质,即可判断.【详解】(1)当1a =时,2()ln(1),(2)ln 32x f x x x f =++-=,求导得14()1,(2)13f x x f x ''=+-=+,切线方程为4ln 3(2)3y x -=-,所以所求切线方程为48ln 333y x =-+.(2)函数2()ln(1)2x f x a x x =++-的定义域为(1,)-+∞,求导得21()111a x af x x x x -+'=+-=++,令()0f x '=,即210x a -+=,即21x a =-,①当1a ≥时,函数()y f x =在定义域内严格增,无极值点;②当01a <<时,当1x -<<或x >时,()0f x '>,当x <()0f x '<,函数()y f x =在(1,-和)+∞严格增,在(严格减,此时极大值点为③当0a ≤时,当1x -<<时,()0f x '<,当x >时,()0f x '>,函数()y f x =在(-严格减,在)+∞严格增的,所以当1a ≥时,函数()y f x =无极值点;当01a <<时,函数()y f x =极大值点为当0a ≤时,函数()y f x =.(3)假设存在定点(,)m n 满足条件,由000()()()2x mf x f x m n +'=-+得:000)(2()f x n x m f x m -+'=-,又点(,)m n 在曲线()f x 上,则2()ln(1)2mn f m a m m ==++,于是220000001[ln(1)ln(1)])()()(2a x m x m x m f x n x mx m+-++----=--000[ln(1)ln(1)]12a x m x mx m +-++=+--,而()11a f x x x '=+-+,于是000002()1=1222212x m x m x m a af x m x m +++'=+-+-++++,因此000ln(1)ln(1)22x m x m x m +-+=-++,变形得00012(1)11ln 1111x x m x m m +-++=++++,令01(0)1x t t m +=>+,则2(1)ln 1t t t -=+,令函数22()ln ,01t g t t t t -=->+,求导得22214(1)()0(1)(1)t g t t t t t '-=-=≥++,则()g t 在(0,)+∞单调递增,又(1)0g =,于是()0g t =只有唯一解1t =,即0111x m +=+,又0m x ≠,则1t ≠,故不存在定点(,)m n 满足条件.【点睛】结论点睛:函数y =f (x )是区间D 上的可导函数,则曲线y =f (x )在点00(,())x f x 0()x D ∈处的切线方程为:000()()()y f x f x x x '-=-.。
广西2024届高三下学期4月模拟考试数学注意事项:1.答题前,考生务必将自己的姓名、考生号、考场号、座位号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.4.本试卷主要考试内容:高考全部内容.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知椭圆的长轴长等于焦距的4倍,则该椭圆的离心率为( )A.B.C.D.【答案】C 【解析】【分析】根据离心率定义与基本量关系求解即可.【详解】设椭圆长轴长,焦距,则,即.故选:C2. 的共轭复数为( )A. B. C. D. 【答案】B 【解析】【分析】利用复数的乘法化简复数,再利用共轭复数的定义可得出结果.【详解】因为,故复数的共轭复数为.故选:B.3. 把函数的图象向左平移个单位长度后,所得图象对应的函数为( )12142a 2c 242a c =⨯14c a =()i 67i -76i +76i -67i +67i--()i 67i -()2i 67i 6i 7i 76i -=-=+()i 67i -76i -()cos5f x x =15A. B. C D. 【答案】A 【解析】【分析】由图象平移变换写出解析式后判断.【详解】由题意新函数解析式为.故选:A .4. 已知是两条不同的直线,是两个不同的平面,且,下列命题为真命题的是( )A. 若,则B. 若,则C. 若,则D. 若,则【答案】B 【解析】【分析】考查线与面,面与面之间位置关系,关键是掌握线面、面面等的位置关系及其性质,再结合图形分析.【详解】如图,当时,与可相交也可平行, 故A 错;当时,由平行性质可知,必有,故B 对;如图,当时,或,故C 错;当时,可相交、平行,故D 错.故选:B..()cos 51y x =+1cos 55y x ⎛⎫=+⎪⎝⎭()cos 51y x =-1cos 55y x ⎛⎫=-⎪⎝⎭1cos5(cos(51)5y x x =+=+,l m ,αβ;l m αβ⊂⊂l m αβα βl βl m ⊥l β⊥αβ⊥l m//l m αβ//αβ//l βl m ⊥//l βl ⊆βαβ⊥,l m5. 下列函数中,在上单调递增的是( )A. B. C. D. 【答案】D 【解析】【分析】根据题意,依次分析选项中函数的单调性,综合即可得答案.【详解】对于A ,,其定义域为,不符合题意;对于B ,,在上为减函数,不符合题意;对于C ,,在上单调递减,不符合题意;对于D ,,在上单调递增,符合题意;故选:D .6. 已知轴截面为正方形的圆柱的体积与球的体积之比为,则圆柱的表面积与球的表面积之比为( )A. 1 B.C. 2D.【答案】B 【解析】【分析】根据已知,结合圆柱和球的体积公式,可得圆柱底面圆半径和球的半径相等,再利用圆柱和球的表面积公式可解.【详解】设圆柱底面圆半径为,球的半径为,则圆柱的高为,由,可得,所以圆柱的表面积与球的表面积之比为.故选:B7. 已知是函数的极小值点,则的取值范围为()A. B. C. D. ()0,2()f x =()22f x x x=-()1f x x=()14f x x=()f x =[1,)+∞()22f x x x =-(01),()1f x x=()0,2()14f x x ==()0,2MM 'O 32MM 'O 3252MM 'r O R MM 'r O R MM '2r 2333π2334π223r r r R R ⋅==1r R=MM 'O 222222π4π334π22r r r R R +==0x =()()2f x x x a =-a (),0∞-3,2⎛⎫-∞ ⎪⎝⎭()0,∞+3,2⎛⎫+∞⎪⎝⎭【答案】A 【解析】【分析】根据极小值的定义,在的左侧函数递减,右侧函数递增可得.【详解】由已知,,令得或,由题意是极小值点,则,若,则时,,单调递减,时,,单调递增,则是函数的极小值点,若,则时,,单调递减,时,,单调递增,则是函数的极大值点,不合题意,综上,,即.故选:A .8. 在研究变量与之间的关系时,进行实验后得到了一组样本数据,,利用此样本数据求得的经验回归方程为,现发现数据和误差较大,剔除这两对数据后,求得的经验回归方程为,且则( )A. 8 B. 12C. 16D. 20【答案】C 【解析】【分析】由回归方程的性质求出即可.【详解】设未剔除这两对数据前的的平均数分别为,剔除这两对数据前的的平均数分别为,因为所以,则,0x =32()f x x ax =-2()32f x x ax '=-23()3a x x =-()0f x '=0x =23a x =0x =203a≠203a<203a x <<()0f x '<()f x 0x >()0f x '>()f x 0x =203a >203a x <<()0f x '<()f x 0x <()0f x '>()f x 0x =203a<a<0x y ()()1122,,,,x y x y ()()()55,,6,28,0,28x y 7ˆ101667yx =+()6,28()0,28ˆ4yx m =+51140i i y ==∑m =,x y ,x y ,x y ,x y ''51140ii y==∑140285y ¢==2844y m mx '--'==又这两对数据为,所以,所以,所以故选:C.【点睛】关键点点睛:本题关键在于找到剔除前后的平均数.二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 若集合和关系的Venn 图如图所示,则可能是( )A. B. C. D. 【答案】ACD 【解析】【分析】根据Venn 图可知 ,依次判定选项即可.【详解】根据Venn 图可知 ,对于A ,显然 ,故A 正确;对于B ,,则,故B 错误;对于C ,,则 ,故C 正确;对于D ,,或,则 ,故D 正确.()()6,28,0,28()114056287y =⨯+=()17166310x y =⨯-=760281654x mx m ---'==⇒=M N ,M N {}{}0,2,4,6,4M N =={}21,{1}M xx N x x =<=>-∣∣{}{}lg ,e 5xM xy x N y y ====+∣∣(){}(){}22,,,M x y x y N x y y x ====∣∣N M N M N M {}11,{1}M xx N x x =-<<=>-∣∣M N ⊆{}{}0,5M xx N y y =>=>∣∣N M (){,M x y y x ==∣}y x =-(){},,N x y y x ==∣N M故选:ACD10. 已知内角的对边分别为为的重心,,则( )A. B. C. 的面积的最大值为 D. 的最小值为【答案】BC 【解析】【分析】利用重心性质及向量线性运算得,即可判断A ,此式平方后结合基本不等式,向量的数量积的定义可求得,的最大值,直接判断B ,再结合三角形面积公式、余弦定理判断CD .【详解】是的重心,延长交于点,则是中点,,A 错;由得,所以,又,即所以,所以,当且仅当时等号成立,B 正确;,当且仅当时等号成立,,C 正确;由得,所以,,当且仅当时等号成立,所以的最小值是,D 错.故选:BC .ABC ,,A B C ,,,a b c O ABC 1cos ,25A AO ==1144AO AB AC=+ 3AB AC ⋅≤ABC a 1133AO AB AC =+AB AC ⋅u u u r u u u rAB AC O ABC AO BC D D BC 22111()33233AO AD AB AC AB AC ==⨯+=+1133AO AB AC =+ 3AB AC AO +=22229()222AO AB AC AB AC AB AC AB AC AB AC =+=++⋅≥+⋅1cos 5AB AC AB AC A AB AC ⋅==5AB AC AB AC=⋅ 225292AB AC AB AC ⨯⋅+⋅≤⨯ 3AB AC ⋅≤ AB AC = 15cos AB AC AB AC A ⋅⋅=≤ AB AC = sin A ==11sin 1522ABC S AB AC A =≤⨯= 22229()2AO AB AC AB AC AB AC =+=++⋅ 222362365AB AC AB AC AB AC +=-⋅=-22222442cos 2cos 3636152455a b c bc A AB AC AB AC A AB AC =+-=+-⋅==-≥-⨯= a ≥AB AC =a11. 已知定义在上的函数满足.若的图象关于点对称,且,则( )A. 的图象关于点对称B. 函数的图象关于直线对称C. 函数的周期为2D. 【答案】ABD 【解析】【分析】对A ,根据函数图象的变换性质判断即可;对B ,由题意计算即可判断;对C ,由A 可得,由B 可得,进而可判断C ;对D ,由结合与的对称性可得,进而,结合C 中的周期为4求得,进而可得.【详解】对A ,因为的图象关于点对称,则的图象关于点对称,故的图象关于点对称,故A 正确;对B ,,,又,故.即,故图象关于直线对称,故B 正确;对C ,由A ,,且,的R ()f x ()()224f x f x x +--=()23f x -()2,1()00f =()f x ()1,1()()2g x f x x =-2x =()()2g x f x x =-()()()12502499f f f +++= ()()220g x g x +--=()()g x g x =-()()4g x g x -=+()()224f x f x x +--=()00f =()f x ()()()()0,1,2,3f f f f ()()()()0,1,2,3g g g g ()g x ()()()1250g g g +++ ()()()1250f f f +++L ()23f x -()2,1()3f x -()4,1()f x ()1,1()()()()2222224g x f x x f x x -=---=-+-()()()()2222242g x f x x f x x +=+-+=+--()()224f x f x x +--=()()()()222240g x g x f x f x x +--=+---=()()22g x g x +=-()()2g x f x x =-2x =()()22f x f x +=--()()22f x f x -=-又因为,故,即,故,即.由B ,,故,故的周期为4,故C 错误;对D ,由,的图象关于点对称,且定义域为R ,则,,又,代入可得,则,又,故,,,,又的周期为4,.则.即,则,故D 正确.故选:ABD【点睛】关键点点睛:判断D 选项的关键是得出,结合周期性以及的定义即可顺利得解.三、填空题:本题共3小题,每小题5分,共15分.12. 智慧农机是指配备先进的信息技术,传感器、自动化和机器学习等技术,对农业机械进行数字化和智能化改造的农业装备,例如:自动育秧机和自动插秧机.正值春耕备耕时节,某智慧农场计划新购2台自动育秧机和3台自动插秧机,现有6台不同的自动育秧机和5台不同的自动插秧机可供选择,则共有__________种不同的选择方案.【答案】200【解析】【分析】利用乘法原理,结合组合知识求解.【详解】第一步从6台不同的自动育秧机选2台,第二步从5台不同的自动插秧机选3台,由乘法原理可得选择方案数为,故答案为:200.()()224f x f x x +--=()()224f x f x x ----=⎡⎤⎡⎤⎣⎦⎣⎦()()4fx f x x --=()()()22f x x f x x -=---()()g x g x =-()()4g x g x -=+()()()4g x g x g x =-=+()()2g x f x x =-()00f =()f x ()1,1()11f =()22f =()()224f x f x x +--=1x =()()134-=f f ()35f =()()2g x f x x =-()()000g f ==()()1112g f ==--()()2224g f ==--()()3361g f =-=-()g x ()()400g f ==()()()()()()()()()125012123412g g g g g g g g g ⎡⎤+++=⨯+++++⎣⎦ ()1241251=⨯---=-()()()12245010051f f f -+-++-=- ()()()()502100125024..100515124992f f f ⨯++++=+++-=-= ()()()()1,2,3,4g g g g ()g x 2356C C 200=13. 已知,则__________.【答案】1或-3【解析】【分析】由已知可得或,从而可求出的值.【详解】由 可得,所以 或,即 或,当时,当 时,,故答案为:1或-3.14. 已知分别是双曲线的左、右焦点,是的左支上一点,过作角平分线的垂线,垂足为为坐标原点,则______.【答案】2【解析】【分析】根据双曲线的定义求解.【详解】双曲线的实半轴长为,延长交直线于点,由题意有,,又是中点,所以,故答案为:2.2sin sin2αα=πtan 4α⎛⎫+= ⎪⎝⎭sin 0α=sin 2cos αα=πtan 4α⎛⎫+⎪⎝⎭2sin sin2αα=2sin 2sin cos ααα=sin 0α=sin 2cos αα=tan 0α=tan 2α=tan 0α=πtan 1tan 141tan ααα+⎛⎫+== ⎪-⎝⎭tan 2α=πtan 1tan 341tan ααα+⎛⎫+==- ⎪-⎝⎭12,F F 22:1412x y E -=M E 2F 12F MF ∠,N O ON =221412x y -=2a =2F N 1MF H 2MH MF =2NH NF =O 12F F 1121111()()2222ON F H MH MF MF MF a ==-=-==四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15. 在等差数列中,,且等差数列的公差为4.(1)求;(2)若,数列的前项和为,证明:.【答案】(1); (2)证明见解析.【解析】【分析】(1)利用等差数列的求出公差,再求得首项后可得通项公式;(2)由裂项相消法及等差数列的前项和公式求得和后可证结论.【小问1详解】设的公差为,则,,又,所以,所以,.小问2详解】由(1)得,所以.16. 为提升基层综合文化服务中心服务效能,广泛开展群众性文化活动,某村干部在本村的村民中进行问卷调查,将他们的成绩(满分:100分)分成7组:.整理得到如下频率分布直方图.【{}n a 26a ={}1n n a a ++10a 2111n n n n b a a a -+=+{}n b n n S 21228n S n n <++1022a =d 1a n n S {}n a d 1212()()24n n n n n n a a a a a a d +++++-+=-==2d =26a =1624a =-=42(1)22n a n n =+-=+1022a =11114(44(1)(2)412n b n n n n n n =+=-+++++2212111(1)111()42222422284(2)8n n n n S b b b n n n n n n +=+++=-+⨯=++-<++++ [30,40),[40,50),[50,60),[60,70),[70,80),[80,90),[90,100](1)求的值并估计该村村民成绩的平均数(同一组中的数据用该组区间的中点值代表);(2)从成绩在内的村民中用分层抽样的方法选取6人,再从这6人中任选3人,记这3人中成绩在内的村民人数为,求的分布列与期望.【答案】(1); (2)分布列见详解;【解析】【分析】(1)由频率和为1,可求的值,再由平均数计算公式求解;(2)根据分层抽样可确定的取值,再分别求出概率,最后利用期望公式求解.【小问1详解】由图可知,,解得,该村村民成绩的平均数约为;【小问2详解】从成绩在内的村民中用分层抽样的方法选取6人,其中成绩在的村民有人,成绩在的村民有4人,从中任选3人,的取值可能为1,2,3,,,,则的分布列为123故17. 如图,在四棱锥中,平面平面,底面为菱形,,是的中点.a [)[)30,40,80,90[)80,90X X 0.00564.5()2E X =a X 10(30.010.0150.032)1a +⨯++=0.005a =(354595)0.05(5565)0.3750.15850.164.5⨯+++++=⨯⨯⨯+[)[)30,40,80,90[)30,400.05620.050.1⨯=+[)80,90X ()212436C C 11C 5P X ===()122436C C 32C 5P X ===()632436C C 13C 5P X ===X XP 153515()131123 2.555E X =⨯+⨯+⨯=P ABCD -PAB ⊥ABCD ABCD 60ABC ∠= 2,AB E ===CD(1)证明:平面平面.(2)求二面角的余弦值.【答案】(1)证明见解析. (2【解析】【分析】(1)取中点,连接,证明平面,分别以为轴建立空间直角坐标系,用空间向量法证明面面垂直;(2)用空间向量法求二面角.【小问1详解】取中点,连接,如图,因为四边形是菱形且,所以和都是正三角形,又是中点,所以,,从而有,又,所以是矩形.又,所以,所以,即是等腰直角三角形,所以,,又因平面平面,平面平面,平面,所以平面,分别以为轴建立空间直角坐标系,如图,则,,,,,,,设平面的一个法向量是,则为PBC ⊥PAE D AP E --AB O ,OP OC PO ⊥ABCD ,,OA OC OP ,,x y z AB O ,OP OC ABCD 60ABC ∠=︒ABC ADC △E CD ,OC AB AE CD ⊥⊥OC AB ==//OC AE //CE AOAOCE AB ==222PA PB AB+=PA PB ⊥PAB112PO AB ==PO AB ⊥PAB ⊥ABCD PAB ⋂ABCD AB =PO ⊂PAB PO ⊥ABCD ,,OA OC OP ,,x y z (1,0,0)B (0,0,1)P C (1,0,0)A -(E -(D -(1,0,1),1),(1,0,1),(1),(1)PB PC PA PE PD =-=-=--=--=--PBC (,,)m x y z =,取得,设平面的一个法向量是,则,取得,,所以,所以平面平面;【小问2详解】设平面的一个法向量是,则,取得,设二面角的大小为,由图知为锐角,所以18. 设抛物线的焦点为,已知点到圆上一点的距离的最大值为6.(1)求抛物线的方程.(2)设是坐标原点,点是抛物线上异于点的两点,直线与轴分别相交于两点(异于点),且是线段的中点,试判断直线是否经过定点.若是,求出该定点坐标;若不是,说明理由.【答案】(1) (2)过定点,定点坐标为【解析】PB m x z PC m z ⎧⋅=-=⎪⎨⋅=-=⎪⎩1y =m = PAE 000(,,)n x y z =r0000000PA n x z PE n x z ⎧⋅=--=⎪⎨⋅=-+-=⎪⎩ 0=x n = 3030m n ⋅=+-= m n ⊥ PBC⊥PAE PAD (,,c)t a b =200PD t a c PA t a c ⎧⋅=--=⎪⎨⋅=--=⎪⎩ 1b =t = D AP E --θθcos cos t θ= 2:2(0)C y px p =>F F 22:(3)1E x y ++=C O ()2,4,,P A B C P ,PA PB y ,M N O O MN AB 28y x =(0,2)-【分析】(1)点到圆上点的最大距离为,即,计算即可;(2)由已知设,求得则,方程,联立与抛物线的方程求得点坐标,同理可得点坐标,进而求得直线的方程得出结果.【小问1详解】点到圆上点的最大距离为,即,得,故抛物线的方程为.【小问2详解】设,则方程为,方程为,联立与抛物线的方程可得,即,因此点纵坐标为,代入抛物线方程可得点横坐标为,则点坐标为,同理可得点坐标为,因此直线的斜率为,代入点坐标可以得到方程为,整理可以得到,因此经过定点.19. 定义:若函数图象上恰好存在相异的两点满足曲线在和处的切线重合,则称为曲线的“双重切点”,直线为曲线的“双重切线”.F E 1EF +3162p ⎛⎫++=⎪⎝⎭(0,),(0,)M m N m -PA PB PA C A B AB F E 1EF +3162p ⎛⎫++= ⎪⎝⎭4p =C 28y x =(0,),(0,)M m N m -PA 42m y x m -=+PB 42my x m +=-PA C 21616044m y y m m -+=--()4404m y y m ⎛⎫--= ⎪-⎝⎭A 44A m y m =-A ()222284A A y m x m ==-A ()2224,44m m m m ⎛⎫⎪ ⎪--⎝⎭B ()2224,44m m m m ⎛⎫⎪- ⎪++⎝⎭AB 2216A B A B y y m k x x m --==-B AB ()2222416244m m m y x m m m ⎛⎫- ⎪+=- ⎪++⎝⎭22162m y x m-=-AB (0,2)-()f x ,P Q ()y f x =P Q ,P Q ()y f x =PQ ()y f x =(1)直线是否为曲线的“双重切线”,请说明理由;(2)已知函数求曲线的“双重切线”的方程;(3)已知函数,直线为曲线的“双重切线”,记直线的斜率所有可能的取值为,若,证明:.【答案】(1)不是,理由见解析; (2); (3)证明见解析.【解析】【分析】(1)求出导数为1的切点坐标,写出过两切点的切线方程,比较可得;(2)求出导数,利用其单调性可设切点为,且,写出两切线方程后由斜率相等,纵截距相等联立,求得切点坐标后可得切线方程;(3)设对应切点为,,对应的切点为,,由导数几何意义得,,由周期性,只需研究的情形,由余弦函数的性质,只需考虑,情形,在此条件下求得,满足,即,构造函数(),则,由导数确定单调性,从而得出缩小的范围,所以,证明则,再由不等式的性质可证结论.【小问1详解】不是,理由如下:的52y x =-()2122ln 2f x x x x =-+()1e ,0,46,0,x x g x x x +⎧≤⎪=⎨->⎪⎩()y g x =()cos h x x =PQ ()y h x =PQ 12,,,n k k k ()123,4,5,,i k k k i n >>= 12158k k <2y x =+()g x '1122(,),(,)P x y Q x y 120x x ≤<1k 1111(,cos ),(,cos )x x x x ''11x x '<2k 2222(,cos ),(.cos )x x x x ''22x x '<111sin sin k x x '=-=-22sin sin k x x '=-=-21ππ2x x -<<<-11πx x '+=223πx x '+=2112213πcos 2πcos 2x k x k x x-=⋅-1x 11112cos sin π2x k x x -==--111πcos ()sin 2x x x =-cos π()sin 2x F x x x =+-ππ2x -<<-1()0F x =1x 15ππ6x -<<-215ππ6x x -<<<-12cos 01cos x x <<由已知,由解得,,又,,不妨设切点为,,在点处的切线的方程为,即,在点的切线方程为,即与直线不重合,所以直线不是曲线的“双重切线”.【小问2详解】由题意,函数和都是单调函数,则可设切点为,且,所以在点处的切线的方程为,在点的切线方程为,所以,消去得,设(),则,所以是减函数,又,所以在时只有一解,所以方程的解是,从而,在点处切线方程为,即,在点处的切线方程为,即,所以“双重切线”方程为;【小问3详解】证明:设对应的切点为,,对应的切点为,2()2f x x x '=-+2()21f x x x'=-+=11x =22x =3(1)2f =-(2)2ln 22f =-3(1,2P -(2,2ln 22)Q -P 312y x +=-52y x =-Q 2ln 222y x -+=-42ln 2y x =-+52y x =-52y x =-()2122ln 2f x x x x =-+12e ,0()4,0x x g x x x+⎧≤>'⎪=⎨⎪⎩1e (0)x y x +=≤24(0)y x x =>1122(,),(,)P x y Q x y 120x x ≤<P 11111e e ()x x y x x ++-=-Q 222244(6)()y x x x x --=-1112211224e 44e (1)6x x x x x x ++⎧=⎪⎪⎨⎪-=--⎪⎩2x 111(1)121e (1)4e 60x x x ++--+=1(1)12()e(1)4e6x x t x x ++=--+0x ≤111(1(1)1)1222()e 2e e [e 2]0x x x x t x x x ++++'=-=-<)()t x (1)0t -=()0t x =0x ≤=1x -111(1)121e(1)4e60x x x ++--+=11x =-22x =(1,1)P -11y x -=+2y x =+(2,4)Q 42y x -=-2y x =+2y x =+1k 1111(,cos ),(,cos )x x x x ''11x x '<2k 2222(,cos ),(.cos )x x x x '',由于,所以,,由余弦函数的周期性,只要考虑的情形,又由余弦函数的图象,只需考虑,情形,则,,其中,所以,又,,即,,时,,,令(),则,,在上单调递减,又,所以,所以,此时,则,所以.【点睛】方法点睛:本题考查新定义,考查导数的几何意义.解题关键是正确理解新定义,并利用新定义进行问题的转化,转化为求函数图象的导数.新定义实际上函数图象在两个不同点处的切线重合,这种问题常常设出切点为,由导数几何意义,应用求出切点坐标或者分别写出过两点的切线方程,由斜率相等和纵截距相等求切点坐标.从而合问题获得解决.22x x '<(cos )sin x x '=-111sin sin k x x '=-=-22sin sin k x x '=-=-21ππ2x x -<<<-11πx x '+=223πx x '+=11111111111cos cos cos(π)cos 2cos (π)π2x x x x x k x x x x x '----===---'-22222222222cos cos cos(3π)cos 2cos (3π)3π2x x x x x k x x x x x '----===---'-21ππ2x x -<<<-2112213πcos 2πcos 2x k x k x x-=⋅-11112cos sin π2x k x x -==--22222cos sin 3π2x k x x -==--111πcos ()sin 2x x x =-2223πcos ()sin 2x x x =-ππ2x -<<-sin 0x <cos 0x <cos π()sin 2x F x x x =+-ππ2x -<<-1()0F x =222222sin cos 1cos ()110sin sin sin x x xF x x x x--'=+=-+=-<()F x π(π,)2--5π5ππ(0662F -=--<15ππ6x -<<-215ππ6x x -<<<-211cos cos 0x x -<<<12cos 01cos x x <<221122113π3π3π(π)cos 15222πππ5πcos 8()2226x x k x k x x x ----=⋅<<=----1122(,),(,)x y x y 121212()()y y f x f x x x -''==-。
一、选择题(每题3分,共30分)1. 下列各数中,有理数是()。
A. √-1B. πC. √4D. 无理数2. 如果 |a| = 5,那么 a 的值是()。
A. ±5B. 5C. -5D. 03. 下列各式中,正确的是()。
A. (a + b)² = a² + b²B. (a - b)² = a² - b²C. (a + b)² = a² + 2ab + b²D. (a - b)² = a² - 2ab + b²4. 下列各图中,相似图形是()。
A.B.C.D.5. 一个等腰三角形的底边长为10cm,腰长为12cm,那么这个三角形的面积是()。
A. 60cm²B. 120cm²C. 100cm²D. 80cm²6. 如果x² - 5x + 6 = 0,那么 x 的值是()。
A. 2 或 3B. 1 或 4C. 2 或 -3D. 1 或 -47. 在直角坐标系中,点 A(-2,3)关于 x 轴的对称点是()。
A. (-2,-3)B. (2,3)C. (2,-3)D. (-2,-3)8. 下列函数中,是反比例函数的是()。
A. y = 2x + 3B. y = 3/xC. y = x²D. y = 3x9. 下列各式中,正确的是()。
A. a² = aB. (a + b)² = a² + b² + 2abC. (a - b)² = a² - b²D. (a + b)² = a² + b² - 2ab10. 下列各数中,绝对值最大的是()。
A. -3B. -2C. 1D. 0二、填空题(每题5分,共25分)11. 3 + (-5) 的值是 _______。
一、选择题(每题5分,共50分)1. 已知函数f(x) = x^3 - 3x,若f(x)在区间[1,2]上的最大值为f(1),则f(x)在区间[1,2]上的单调性为()A. 单调递增B. 单调递减C. 先增后减D. 先减后增2. 若等差数列{an}的前n项和为Sn,且S3 = 12,S6 = 36,则该数列的公差d为()A. 2B. 3C. 4D. 63. 下列各式中,正确的是()A. sin(α + β) = sinαcosβ + cosαsinβB. cos(α + β) = cosαcosβ - sinαsinβC. tan(α + β) = tanαtanβD. cot(α + β) = cotαcotβ4. 已知函数g(x) = 2x^3 - 3x^2 + 4,若g'(x) > 0,则g(x)的增区间为()A. (-∞, 1)和(1, +∞)B. (-∞, 1)和(1, 2)C. (-∞, 2)和(2, +∞)D. (-∞, 2)和(2, 1)5. 已知直线l的方程为2x + 3y - 6 = 0,若直线l与圆x^2 + y^2 = 9相切,则圆心到直线l的距离d为()A. 3B. 2C. √5D. √26. 已知数列{an}满足an = 2an-1 + 1,且a1 = 1,则数列{an + 1}的通项公式为()A. an + 1 = 2nB. an + 1 = 2n - 1C. an + 1 = 2n + 1D. an + 1 = 2n - 27. 若复数z = a + bi(a,b∈R),且|z| = 1,则z的共轭复数z的实部为()A. aB. -aC. bD. -b8. 已知函数f(x) = log2(x + 1),则f(x)的值域为()A. (0, +∞)B. (1, +∞)C. (-∞, +∞)D. (-∞, 0)9. 若函数y = ax^2 + bx + c(a≠0)的图像开口向上,且顶点坐标为(1, 3),则a,b,c的值分别为()A. a = 1,b = -2,c = 3B. a = 1,b = 2,c = 3C. a = -1,b = -2,c = 3D. a = -1,b = 2,c = 310. 已知数列{an}的前n项和为Sn,且S4 = 24,S5 = 36,则数列{an}的通项公式an为()A. an = 6B. an = 6nC. an = 6n - 1D. an = 6n + 1二、填空题(每题5分,共50分)11. 若函数f(x) = x^2 - 4x + 4在区间[1,3]上的最大值为3,则f(x)在区间[1,3]上的最小值为______。
PD CBA中考模拟数学试卷本试卷分卷Ⅰ和卷Ⅱ两部分;卷Ⅰ为选择题,卷Ⅱ为非选择题. 本试卷满分为120分,考试时间为120分钟.卷Ⅰ(选择题,共24分)注意事项:1.答卷Ⅰ前,考生务必将自己的姓名、准考证号、科目填涂在答题卡上,考试结束,监考人员将试卷和答题卡一并收回. 2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.答在试卷上无效. 一、选择题(本大题共12个小题;每小题2分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. -6的倒数是( ) A .-6 B. 6 C. 61-D.612.随着微电子制造技术的不断进步, 电子元件的尺寸大幅度缩小,在芯片上某种电子元件大约只占0.000 000 7 (平方毫米),这个数用科学记数法表示为 ( )A .7×10-6 B .0.7×10-6C .7×10-7 D .70×10-83.下面左图所示的几何体的俯视图是 ( )4. 下列运算正确的是( )A .4222a a a =+ B .832)(a a -=- C .(-ab )2=2ab 2 D .a a a 4)2(2=÷ 5.函数y =中自变量x 的取值范围是( ). A .x >1 B .x ≠0 C .x ≥1 D .x ≥1且x ≠06.如图,将三角尺的直角顶点放在直尺的一边上∠1=30o,∠2=58o ,则3∠的度数等( ) A .30o B .58o C .38o D .28o7.下列说法正确的是 ( )A .⊙1o 的半径为2,⊙2o 的半径为5,当221=o o 时两圆内切B .为了解全国中学生的心理健康情况,应该采用普查的方式C .一组数据6,8,7,8,8,9,10的众数和中位数都是8D .若甲组数据的方差20.01S =甲,乙组数据的方差20.1S =乙,则乙组数据比甲组数据稳定8.不等式组12x ≤1,的解集在数轴上表示为 ( ) 2x -<39.将直径为60cm 的圆形铁皮,做成三个相同的圆锥容器的侧面(不浪费材料,不计接缝处的材料损耗),那么每个圆锥容器的底面半径为( )(A )10cm (B )20cm (C )30cm (D )40cm 10. 如图,在Rt ABC △中,90BAC ∠=,3AB =,4AC =,将ABC△沿直线BC向右平移2.5个单位得到DEF △,连结AD AE ,,则下列结论中不成立...的是( ) A .AD BE∥ B .ABE DEF ∠=∠ C .ED AC ⊥ D .ADE △为等边三角形 11.如图,在矩形ABCD 中,AB =2,BC =1,动点P 从点B 出发,沿路线B →C →D 作匀速运动,那么△ABP 的面积S 与点P 运动的路程x 之间的函数图象大致是( )A .B .C .D .12.如下图是用火柴棍摆成的边长分别是1,2,3 根火柴棍时的正方形.当边长为20根火柴棍时,摆出的正方形所用的火柴棍的根数为( ) A 400 B 800 C 840 D 960班级_____________——————————————————————————————密——————————封——————————线————————————————————姓名_____________考场_____________考号_____________……n =1n =2n =3A .B .C .D .ABCDEF(第10题图)DCBA中考模拟数学试卷注意事项:1.答卷Ⅱ前,将密封线左侧的项目填写清楚.2.答卷Ⅱ时,将答案用蓝色、黑色钢笔或圆珠笔直接写在试卷上.二、填空题(本大题共6个小题;每小题3分,共18分.把答案写在题中横线上) 13.分解因式:x xy -2=___________。
14.如图,AB 是⊙O 的直径,∠COB =70°,则∠A = __度.15.若点)8,2(--M 在双曲线xm y 2=上,则m= .16.把722,5,π和9四个实数写在相同的卡片上,洗匀后任意抽出一张来,上面写有的实数是无理数的概率是 .17.如图,在水平桌面上有甲、乙两个内部呈圆柱形的容器,内部底面积分别为60 cm 2、80 cm 2,且甲容器装满水,乙容器是空的。
若将甲中的水全部倒入乙中,则乙中的水位高度比原先甲的水位高度低了8 cm ,则甲的容积为 cm 318.“石门福地”小区有一块直角梯形花园,测量AB=20米,∠DEC=90°,∠ECD=45°,则该花园面积为 平方米。
三、解答题(本大题共8个小题;共78分.解答应写出文字说明、证明过程或演算步骤) 19.(本小题8分)先化简, 1)111(2-÷-+x xx ,再从 1,2--,0,1中选一个合适的数代入求值。
20.(本小题8分)如图(1),∠ABC=90°,点O 为射线BC 上一点,OB = 4,以点O 为圆心,22长为半径作⊙O 交BC 于点D 、E .(1)当射线BA 绕点B 按顺时针方向旋转α(0°<α<180°)度时与⊙O 相切,求α?(2)若射线BA 绕点B 按顺时针方向旋转600时,射线BA 与⊙0相交于M 、N 两点,如图(2),求线段MN 的长度;班级_____________——————————————————————————————密——————————封——————————线————————————————————姓名_____________考场_____________考号_____________17题图(1)21.(本小题9分)为迎接上海世博会,某校举行了会标设计大赛,赛后整理参赛同学的成绩,并制作成图表如下:请根据以上图表提供的信息,解答下列问题:(1)表中m n 和所表示的数分别为:__________m n ==,__________; (2)请补全频数分布直方图;(3)比赛成绩的中位数落在哪个分数段?(4)如果比赛成绩80分以上(含80分)可以获得奖励,那么获奖的概率是多少?22.(本小题9分)如图,直线1l 的解析式为331+-=x y ,且1l 与x 轴交于点D ,直线2l 的解析式为b kx y +=2,经过A 、B 两点,且交直线1l 于点C . (1) 写出点D 的坐标是; (2) 求直线2l 的解析式;(3) 写出使得21y y <的x 的范围; (4) 在直线2l 上找点P ,使得ADP △的面积等于ADC △的面积的二倍,请直接写出点P 的坐标.频数 分数段(分)90 10080 60 7023.(本小题10分)阅读下面的题目及分析过程,再回答问题。
设x,y 为正实数,且x+y=6,求4122+++yx的最小值。
分析:(1)如图(1),作长为6的线段AB ,过A 、B 两点 在同侧各做AC ⊥AB,BD ⊥AB,使AC=1,BD=2. (2)设P 是AB 上的一个动点。
设PA=x ,PB=y , 则x+y=6,连接PC 、PD,则PC=12+x,PD=42+y(3)只要在AB 上找到使PC+PD 为最小的点P的位置,就可以 计算出4122+++yx的最小值。
问题:①在图(2)中作出符合上述要求的点。
②求AP 的长?③通过上述作图,计算当x+y=6时,4122+++yx的最小值为 .解决问题:为了丰富学生的课余生活,石家庄外国语学校决定举办一次机器人投篮大赛。
规则是:操纵者站在距线段AB 2米的C 处,如图(3)使机器人从A 点出发,到C 处取到篮球,然后行驶到B 处,将篮球投入设在B 处的篮筐内,用时少的即为胜利者,为了获得胜利, 请你画出C 的最佳位置;并求当AB=3米时机器人行驶的最短路程?24.(本小题10分)如图甲,在等边△ABC 中,AD 是∠BAC 的平分线,一个含有120°角的△MPN 纸板的顶点P (∠MPN=120°)与点D 重合,一边与AB 垂直于点E ,另一边与AC 相交于点F 。
(1) 请你猜想并写出AE+AF 与AD 之间满足的数量关系,不用证明。
(2) 在图甲的基础上,若三角形纸板绕着它的顶点P 旋转,当三角形纸板的边不与AB垂直,此时E 、F 仍然是120°纸板的两边与AB 、AC 的交点,如图乙,(1)中猜想是否仍然成立?说明理由;(3) 如图丙,若三角板绕着它的顶点P 旋转,当三角形纸板的一边与AB 的延长线相交,另一边与AC 的反向延长线相交时,AE ,AF 与AD 之间又满足怎样的数量关系?直接写出你的猜想,不必证明。
班级_____________——————————————————————————————密——————————封——————————线————————————————————姓名_____________考场_____________考号_____________25.(本小题12分)石家庄国际汽车城销售广汽丰田的凯美瑞汽车,每辆进价为25万元,市场调研表明:当销售价为29万元时,平均每周能售出8辆,而当销售价每降低0.5万元时,平均每周能多售出4辆.如果设每辆..汽车降价x万元,每辆汽车的销售利润....为y万元.(销售利润=销售价-进货价)(1)求y与x的函数关系式;在保证商家不亏本的前提下,写出x的取值范围;(2)假设这种汽车平均每周..的销售利润为z万元,试写出z与x之间的函数关系式;(3)当每辆汽车的定价为多少万元时,平均每周的销售利润最大?最大利润是多少?(4)丰田公司受“召回门”的影响,每辆车实际最高仅能售到26万元,求平均每周销售的最大利润是多少?26.(本小题12分)如图,在Rt△ABC中,090=∠A,AB=6,AC=8,D,E分别是AC,BC 的中点,点P从点A出发沿折线段AD—DE—EB以每秒3个单位长的速度向B匀速运动;点Q也从点A出发沿射线AB以每秒2个单位长的速度运动,当P与B重合时停止运动,点Q也随之停止运动.设点P,Q运动时间是t秒(t>0).(1)当点P到达终点B时,求t的值.(2)设△BPQ的面积为S,求出Q在线段AB上运动时,S与t的函数关系式(3)是否存在t值,使PQ∥DB?若存在,求出t值,不存在说明理由.。