一元二次方程习题-学生用卷
- 格式:docx
- 大小:21.55 KB
- 文档页数:1
一元二次方程试卷一、选择题(每题3分,共30分)1. 一元二次方程x^2-2x = 0的根是()A. x_1=0,x_2=-2B. x_1=1,x_2=2C. x_1=1,x_2=-2D. x_1=0,x_2=22. 方程(x - 1)(x + 2)=2(x + 2)的根是()A. x_1=-2,x_2=3B. x_1=1,x_2=-2C. x_1=-1,x_2=2D. x_1=-2,x_2=-13. 一元二次方程x^2-x - 3 = 0的二次项系数、一次项系数、常数项分别是()A. 1,-1,-3B. 1,1,-3C. 1,-1,3D. 1,1,34. 关于x的一元二次方程(m - 1)x^2+5x + m^2-3m + 2 = 0的常数项为0,则m等于()A. 1B. 2C. 1或2D. 05. 若方程ax^2+bx + c = 0(a≠0)中,a,b,c满足a + b + c = 0和a - b + c = 0,则方程的根是()A. 1,0B. -1,0C. 1,-1D. 无法确定。
6. 一元二次方程x^2+3x - 1 = 0与x^2-3x - 1 = 0的所有实数根的和等于()A. -3B. 3C. 0D. -67. 用配方法解方程x^2-4x + 1 = 0时,配方后得到的方程是()A. (x - 2)^2=3B. (x - 2)^2= - 3C. (x - 2)^2=5D. (x - 2)^2=18. 已知关于x的方程x^2-kx - 6 = 0的一个根为x = 3,则实数k的值为()A. 1B. -1C. 2D. -29. 若一元二次方程2x^2-6x + 3 = 0的两根为α,β,那么(α-β)^2的值是()A. 3B. 6C. 1.5D. 4.510. 某商品经过两次连续降价,每件售价由原来的55元降到了35元。
设平均每次降价的百分率为x,则下列方程中正确的是()A. 55(1 + x)^2=35B. 55(1 - x)^2=35C. 35(1 + x)^2=55D. 35(1 - x)^2=55二、填空题(每题3分,共15分)1. 方程(x + 1)^2=9的解为______。
一元二次方程100道计算题练习1、)4(5)4(2+=+x x 2、x x 4)1(2=+ 3、22)21()3(x x -=+4、31022=-x x 5、(x+5)2=16 6、2(2x -1)-x (1-2x )=07、x 2 =64 8、5x 2 - 52=0 9、8(3 -x )2 –72=010、3x(x+2)=5(x+2) 11、(1-3y )2+2(3y -1)=0 12、x 2+ 2x + 3=013、x 2+ 6x -5=0 14、x 2-4x+ 3=0 15、x 2-2x -1 =016、2x 2+3x+1=0 17、3x 2+2x -1 =0 18、5x 2-3x+2 =019、7x 2-4x -3 =0 20、 -x 2-x+12 =0 21、x 2-6x+9 =022、22(32)(23)x x -=- 23、x 2-2x-4=0 24、x 2-3=4x25、3x 2+8 x -3=0(配方法) 26、(3x +2)(x +3)=x +14 27、(x+1)(x+8)=-1228、2(x -3) 2=x 2-9 29、-3x 2+22x -24=0 30、(2x-1)2+3(2x-1)+2=031、2x 2-9x +8=0 32、3(x-5)2=x(5-x) 33、(x +2) 2=8x34、(x -2) 2=(2x +3)2 35、2720x x += 36、24410t t -+=37、()()24330x x x -+-= 38、2631350x x -+= 39、()2231210x --=40、2223650x x -+=补充练习:一、利用因式分解法解下列方程(x -2) 2=(2x-3)2 042=-x x 3(1)33x x x +=+x 2x+3=0 ()()0165852=+---x x二、利用开平方法解下列方程51)12(212=-y 4(x-3)2=25 24)23(2=+x三、利用配方法解下列方程25220x x -+= 012632=--x x01072=+-x x四、利用公式法解下列方程-3x 2+22x -24=0 2x (x -3)=x -3. 3x 2+5(2x+1)=0五、选用适当的方法解下列方程(x +1) 2-3 (x +1)+2=0 22(21)9(3)x x +=- 2230x x --=21302x x ++= 4)2)(1(13)1(+-=-+x x x x2)2)(113(=--x x x (x +1)-5x =0. 3x (x -3) =2(x -1) (x +1).应用题:1、某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为扩大销售增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价一元,市场每天可多售2件,若商场平均每天盈利1250元,每件衬衫应降价多少元?2、两个正方形,小正方形的边长比大正方形的边长的一半多4 cm,大正方形的面积比小正方形的面积的2倍少32平方厘米,求大小两个正方形的边长.3、如图,有一块梯形铁板ABCD,AB∥CD,∠A=90°,AB=6 m,CD=4 m,AD=2 m,现在梯形中裁出一内接矩形铁板AEFG,使E在AB上,F在BC上,G在AD上,若矩形铁板的面积为5 m2,则矩形的一边EF长为多少?4、如右图,某小在长32米,区规划宽20米的矩形场地ABCD上修建三条同样宽的3条小路,使其中两条与AD平行,一条与AB平行,其余部分种草,若使草坪的面积为566米2,问小路应为多宽?5、某商店经销一种销售成本为每千克40元的水产品,据市场分析,若按每千克50元销售一个月能售出500千克;销售单价每涨1元,月销售量就减少10千克,商店想在月销售成本不超过1万元的情况下,使得月销售利润达到8000元,销售单价应定为多少?6.某工厂1998年初投资100万元生产某种新产品,1998年底将获得的利润与年初的投资的和作为1999年初的投资,到1999年底,两年共获利润56万元,已知1999年的年获利率比1998年的年获利率多10个百分点,求1998年和1999年的年获利率各是多少?思考:1、关于x 的一元二次方程()04222=-++-a x x a 的一个根为0,则a 的值为 。
一元二次方程单元测试题及答案一、选择题(每题3分,共30分)1. 下列方程中,不是一元二次方程的是()。
A. x^2 - 2x + 1 = 0B. 3x - 2 = 0C. 2x^2 - 3x + 1 = 0D. x^2 - 3x + 2 = 0答案:B2. 一元二次方程ax^2 + bx + c = 0(a ≠ 0)的根的判别式是()。
A. b^2 - 4acB. b^2 + 4acC. 4ac - b^2D. 4ac + b^2答案:A3. 已知方程x^2 - 5x + 6 = 0的两个根为x1和x2,则x1 + x2的值为()。
A. 5B. -5C. 6D. -6答案:A4. 如果方程x^2 + 2x - 3 = 0的两个根是x1和x2,那么x1x2的值为()。
A. 3B. -3C. 1D. -1答案:B5. 一元二次方程x^2 - 4x + 4 = 0的解是()。
A. x = 2B. x = -2C. x = 0D. x = 4答案:A6. 已知方程2x^2 - 3x - 2 = 0的判别式为△,那么△的值为()。
A. 13B. -13C. 17D. -17答案:B7. 一元二次方程x^2 - 2x - 3 = 0的根的和为()。
A. 2B. -2C. 3D. -3答案:A8. 方程x^2 + 4x + 4 = 0的根是()。
A. x = 2B. x = -2C. x = 0D. x = -4答案:B9. 一元二次方程x^2 - 6x + 9 = 0的根是()。
A. x = 3B. x = -3C. x = 0D. x = 9答案:A10. 方程x^2 - 2x + 1 = 0的判别式△为()。
A. 1B. 0C. -1D. 3答案:B二、填空题(每题4分,共20分)1. 一元二次方程x^2 - 4x + 4 = 0的根为______。
答案:x = 22. 已知方程x^2 - 6x + 9 = 0的两个根为x1和x2,则x1x2 =______。
一元二次方程单元测试题及答案一、选择题1. 一元二次方程的一般形式是:A. ax^2 + bx + c = 0B. ax^2 + bx = 0C. ax^2 + c = 0D. ax + b = 0答案:A2. 下列哪个方程不是一元二次方程?A. x^2 - 3x + 2 = 0B. x^2 - 5 = 0C. 2x + 5 = 0D. 3x^2 - 7x = 0答案:C3. 一元二次方程 ax^2 + bx + c = 0 的判别式是:A. b^2 - 4acB. b^2 + 4acC. a^2 - 4bcD. a^2 + 4bc答案:A二、填空题4. 解一元二次方程 x^2 - 5x + 6 = 0,其判别式为 _______ 。
答案:15. 如果一元二次方程的根是 x1 = 2 和 x2 = 3,那么这个方程可以写成 _______ 。
答案:x^2 - 5x + 6 = 0三、解答题6. 解一元二次方程 2x^2 - 7x + 3 = 0。
解:首先计算判别式Δ = b^2 - 4ac = (-7)^2 - 4 * 2 * 3 = 49 - 24 = 25。
由于Δ > 0,方程有两个不相等的实数根。
根据求根公式 x = (-b ± √Δ) / (2a),我们得到:x1 = (7 + √25) / 4 = (7 + 5) / 4 = 12 / 4 = 3,x2 = (7 - √25) / 4 = (7 - 5) / 4 = 2 / 4 = 0.5。
7. 已知方程 x^2 + 4x + k = 0 的一个根是 x = -2,求 k 的值。
解:将 x = -2 代入方程,得到 (-2)^2 + 4 * (-2) + k = 0。
简化得 4 - 8 + k = 0,解得 k = 4。
四、应用题8. 一个长方形的长是宽的两倍,面积是 24 平方米,求这个长方形的长和宽。
解:设宽为 x 米,长为 2x 米。
一元二次方程参考练习题一、选择题1、若关于x 的一元二次方程0235)1(22=+-++-m m x x m 的常数项为0,则m 的值等于 ( )A .1B .2C .1或2D .02、如果x =4是一元二次方程223a x x =-的一个根,那么常数a 的值是( ). A.2 B.-2 C.±2 D.±43、如果2是一元二次方程x 2=c 的一个根,那么常数c 是( )。
A 、2B 、-2C 、4D 、-44、已知1x =是方程220x ax ++=的一个根,则方程的另一个根为( ) A .2- B .2 C .3- D .35、若关于x 的一元二次方程(m-1)x 2+5x+m 2-3m+2=0有一个根为0,则m 的值等于( ) A 、1 B 、2 C 、1或2者说 D 、0 6、一元二次方程2210x x --=的根的情况为( ) A.有两个相等的实数根 B.有两个不相等的实数根C.只有一个实数根D.没有实数根7.若关于z 的一元二次方程02.2=+-m x x 没有实数根,则实数m 的取值范围是( ) A .m<l B .m>-1 C .m>l D .m<-1 8、一元二次方程x 2+x +2=0的根的情况是( )A .有两个不相等的正根B .有两个不相等的负根C .没有实数根D .有两个相等的实数根 9、用配方法解方程2420x x -+=,下列配方正确的是( ) A .2(2)2x -=B .2(2)2x +=C .2(2)2x -=-D .2(2)6x -=10、已知关于x 的一元二次方程22x m x -= 有两个不相等的实数根,则m 的取值范围是( )A . m >-1B . m <-2C .m ≥0D .m <0 11、一元二次方程032=+x x 的解是A .3-=xB .3,021==x xC .3,021-==x xD .3=x 12、某种药品零售价经过两次降价后的价格为降价前的81%,则平均每次降价( )A.10%B.19%C.9.5%D.20%13、 已知a 、b 、c 分别是三角形的三边,则方程(a + b )x 2 + 2cx + (a + b )=0的根的情况是( ) A .没有实数根; B .可能有且只有一个实数根; C .有两个相等的实数根; D .有两个不相等的实数根 14、关于方程式49x 2-98x -1=0的解,下列叙述何者正确?( )(A) 无解 (B) 有两正根 (C)有两负根 (D) 有一正根及一负根15、若220x x --=) A.3B.3CD或316、已知代数式2346x x -+的值为9,则2463x x -+的值为( ) A .18 B .12 C .9 D .7 二、填空题1、方程220x x -=的解是 .2、已知1x =-是关于x 的方程2220x ax a +-=的一个根,则a =_______. 3、已知方程230x x k -+=有两个相等的实数根,则k =4、若关于x 的一元二次方程220x x k +-=没有实数根,则k 的取值范围是 .5、写出一个两实数根符号相反的一元二次方程:__________________。
一元二次方程测试题考试范围:一元二次方程;考试时间:120分钟;命题人:瀚博教育题号一二三总分得分第Ⅰ卷(选择题)评卷人得分一.选择题(共12小题,每题3分,共36分)1.方程x(x﹣2)=3x的解为( )A.x=5B.x1=0,x2=5C.x1=2,x2=0D.x1=0,x2=﹣52.下列方程是一元二次方程的是( )A.ax2+bx+c=0B.3x2﹣2x=3(x2﹣2)C.x3﹣2x﹣4=0D.(x﹣1)2+1=03.关于x的一元二次方程x2+a2﹣1=0的一个根是0,则a的值为( )A.﹣1B.1C.1或﹣1D.34.某旅游景点的游客人数逐年增加,据有关部门统计,2015年约为12万人次,若2017年约为17万人次,设游客人数年平均增长率为x,则下列方程中正确的是( )A.12(1+x)=17B.17(1﹣x)=12C.12(1+x)2=17D.12+12(1+x)+12(1+x)2=175.如图,在△ABC中,∠ABC=90°,AB=8cm,BC=6cm.动点P,Q分别从点A,B同时开始移动,点P的速度为1cm/秒,点Q的速度为2cm/秒,点Q移动到点C后停止,点P也随之停止运动.下列时间瞬间中,能使△PBQ的面积为15cm2的是( )A.2秒钟B.3秒钟C.4秒钟D.5秒钟6.某幼儿园要准备修建一个面积为210平方米的矩形活动场地,它的长比宽多12米,设场地的长为x米,可列方程为( )A.x(x+12)=210 B.x(x﹣12)=210C.2x+2(x+12)=210D.2x+2(x﹣12)=2107.一元二次方程x2+bx﹣2=0中,若b<0,则这个方程根的情况是( )A.有两个正根B.有一正根一负根且正根的绝对值大C.有两个负根D.有一正根一负根且负根的绝对值大8.x1,x2是方程x2+x+k=0的两个实根,若恰x12+x1x2+x22=2k2成立,k的值为( )A.﹣1B.或﹣1C.D.﹣或19.一元二次方程ax2+bx+c=0中,若a>0,b<0,c<0,则这个方程根的情况是( )A.有两个正根B.有两个负根C.有一正根一负根且正根绝对值大D.有一正根一负根且负根绝对值大10.有两个一元二次方程:M:ax2+bx+c=0;N:cx2+bx+a=0,其中a﹣c≠0,以下列四个结论中,错误的是( )A.如果方程M有两个不相等的实数根,那么方程N也有两个不相等的实数根B.如果方程M有两根符号相同,那么方程N的两根符号也相同C.如果5是方程M的一个根,那么是方程N的一个根D.如果方程M和方程N有一个相同的根,那么这个根必是x=111.已知m,n是关于x的一元二次方程x2﹣2tx+t2﹣2t+4=0的两实数根,则(m+2)(n+2)的最小值是( )A.7B.11C.12D.1612.设关于x的方程ax2+(a+2)x+9a=0,有两个不相等的实数根x1、x2,且x1<1<x2,那么实数a的取值范围是( )A.B.C.D.第Ⅱ卷(非选择题)评卷人得分二.填空题(共8小题,每题3分,共24分)13.若x1,x2是关于x的方程x2﹣2x﹣5=0的两根,则代数式x12﹣3x1﹣x2﹣6的值是 .14.已知x1,x2是关于x的方程x2+ax﹣2b=0的两实数根,且x1+x2=﹣2,x1•x2=1,则b a的值是 .15.已知2x|m|﹣2+3=9是关于x的一元二次方程,则m= .16.已知x2+6x=﹣1可以配成(x+p)2=q的形式,则q= .17.已知关于x的一元二次方程(m﹣1)x2﹣3x+1=0有两个不相等的实数根,且关于x的不等式组的解集是x<﹣1,则所有符合条件的整数m的个数是 .18.关于x的方程(m﹣2)x2+2x+1=0有实数根,则偶数m的最大值为 .19.如图,某小区有一块长为18米,宽为6米的矩形空地,计划在其中修建两块相同的矩形绿地,它们面积之和为60米2,两块绿地之间及周边留有宽度相等的人行通道,则人行道的宽度为 米.20.如图是一次函数y=kx+b的图象的大致位置,试判断关于x的一元二次方程x2﹣2x+kb+1=0的根的判别式△ 0(填:“>”或“=”或“<”).评卷人得分三.解答题(共8小题)21.(6分)解下列方程.(1)x2﹣14x=8(配方法)(2)x2﹣7x﹣18=0(公式法)(3)(2x+3)2=4(2x+3)(因式分解法)22.(6分)关于x的一元二次方程(m﹣1)x2﹣x﹣2=0(1)若x=﹣1是方程的一个根,求m的值及另一个根.(2)当m为何值时方程有两个不同的实数根.23.(6分)关于x的一元二次方程(a﹣6)x2﹣8x+9=0有实根.(1)求a的最大整数值;(2)当a取最大整数值时,①求出该方程的根;②求2x2﹣的值.24.(6分)关于x的方程x2﹣(2k﹣3)x+k2+1=0有两个不相等的实数根x1、x2.(1)求k的取值范围;(2)若x1x2+|x1|+|x2|=7,求k的值.25.(8分)某茶叶专卖店经销一种日照绿茶,每千克成本80元,据销售人员调查发现,每月的销售量y(千克)与销售单价x(元/千克)之间存在如图所示的变化规律.(1)求每月销售量y与销售单价x之间的函数关系式.(2)若某月该茶叶点销售这种绿茶获得利润1350元,试求该月茶叶的销售单价x为多少元.26.(8分)如图,为美化环境,某小区计划在一块长方形空地上修建一个面积为1500平方米的长方形草坪,并将草坪四周余下的空地修建成同样宽的通道,已知长方形空地的长为60米,宽为40米.(1)求通道的宽度;(2)晨光园艺公司承揽了该小区草坪的种植工程,计划种植“四季青”和“黑麦草”两种绿草,该公司种植“四季青”的单价是30元/平方米,超过50平方米后,每多出5平方米,所有“四季青”的种植单价可降低1元,但单价不低于20元/平方米,已知小区种植“四季青”的面积超过了50平方米,支付晨光园艺公司种植“四季青”的费用为2000元,求种植“四季青”的面积.27.(10分)某商店经销甲、乙两种商品,现有如下信息:信息1:甲、乙两种商品的进货单价之和是3元;信息2:甲商品零售单价比进货单价多1元,乙商品零售单价比进货单价的2倍少1元;信息3:按零售单价购买甲商品3件和乙商品2件,共付了12元.请根据以上信息,解答下列问题:(1)求甲、乙两种商品的零售单价;(2)该商店平均每天卖出甲乙两种商品各500件,经调查发现,甲种商品零售单价每降0.1元,甲种商品每天可多销售100件,商店决定把甲种商品的零售单价下降m(m>0)元.在不考虑其他因素的条件下,当m为多少时,商店每天销售甲、乙两种商品获取的总利润为1000元?28.(10分)已知关于x的一元二次方程x2﹣(m+6)x+3m+9=0的两个实数根分别为x1,x2.(1)求证:该一元二次方程总有两个实数根;(2)若n=4(x1+x2)﹣x1x2,判断动点P(m,n)所形成的函数图象是否经过点A(1,16),并说明理由.一元二次方程测试题参考答案与试题解析一.选择题(共12小题)1.方程x(x﹣2)=3x的解为( )A.x=5B.x1=0,x2=5C.x1=2,x2=0D.x1=0,x2=﹣5【解答】解:x(x﹣2)=3x,x(x﹣2)﹣3x=0,x(x﹣2﹣3)=0,x=0,x﹣2﹣3=0,x1=0,x2=5,故选B.2.下列方程是一元二次方程的是( )A.ax2+bx+c=0B.3x2﹣2x=3(x2﹣2)C.x3﹣2x﹣4=0D.(x﹣1)2+1=0【解答】解:A、当a=0时,该方程不是一元二次方程,故本选项错误;B、由原方程得到2x﹣6=0,未知数的最高次数是1,不是一元二次方程,故本选项错误;C、未知数最高次数是3,该方程不是一元二次方程,故本选项错误;D、符合一元二次方程的定义,故本选项正确;故选D.3.关于x的一元二次方程x2+a2﹣1=0的一个根是0,则a的值为( )A.﹣1B.1C.1或﹣1D.3【解答】解:∵关于x的一元二次方程x2+a2﹣1=0的一个根是0,∴02+a2﹣1=0,解得,a=±1,故选C.4.某旅游景点的游客人数逐年增加,据有关部门统计,2015年约为12万人次,若2017年约为17万人次,设游客人数年平均增长率为x,则下列方程中正确的是( )A.12(1+x)=17B.17(1﹣x)=12C.12(1+x)2=17D.12+12(1+x)+12(1+x)2=17【解答】解:设游客人数的年平均增长率为x,则2016的游客人数为:12×(1+x),2017的游客人数为:12×(1+x)2.那么可得方程:12(1+x)2=17.故选:C.5.如图,在△ABC中,∠ABC=90°,AB=8cm,BC=6cm.动点P,Q分别从点A,B同时开始移动,点P的速度为1cm/秒,点Q的速度为2cm/秒,点Q移动到点C后停止,点P也随之停止运动.下列时间瞬间中,能使△PBQ的面积为15cm2的是( )A.2秒钟B.3秒钟C.4秒钟D.5秒钟【解答】解:设动点P,Q运动t秒后,能使△PBQ的面积为15cm2,则BP为(8﹣t)cm,BQ为2tcm,由三角形的面积计算公式列方程得,×(8﹣t)×2t=15,解得t1=3,t2=5(当t=5时,BQ=10,不合题意,舍去).答:动点P,Q运动3秒时,能使△PBQ的面积为15cm2.6.某幼儿园要准备修建一个面积为210平方米的矩形活动场地,它的长比宽多12米,设场地的长为x米,可列方程为( )A.x(x+12)=210B.x(x﹣12)=210C.2x+2(x+12)=210D.2x+2(x﹣12)=210【解答】解:设场地的长为x米,则宽为(x﹣12)米,根据题意得:x(x﹣12)=210,故选:B.7.一元二次方程x2+bx﹣2=0中,若b<0,则这个方程根的情况是( )A.有两个正根B.有一正根一负根且正根的绝对值大C.有两个负根D.有一正根一负根且负根的绝对值大【解答】解:x2+bx﹣2=0,△=b2﹣4×1×(﹣2)=b2+8,即方程有两个不相等的实数根,设方程x2+bx﹣2=0的两个根为c、d,则c+d=﹣b,cd=﹣2,由cd=﹣2得出方程的两个根一正一负,由c+d=﹣b和b<0得出方程的两个根中,正数的绝对值大于负数的绝对值,故选B.8.x1,x2是方程x2+x+k=0的两个实根,若恰x12+x1x2+x22=2k2成立,k的值为( )A.﹣1B.或﹣1C.D.﹣或1【解答】解:根据根与系数的关系,得x1+x2=﹣1,x1x2=k.又x12+x1x2+x22=2k2,则(x1+x2)2﹣x1x2=2k2,即1﹣k=2k2,解得k=﹣1或.当k=时,△=1﹣2<0,方程没有实数根,应舍去.∴取k=﹣1.故本题选A.9.一元二次方程ax2+bx+c=0中,若a>0,b<0,c<0,则这个方程根的情况是( )A.有两个正根B.有两个负根C.有一正根一负根且正根绝对值大D.有一正根一负根且负根绝对值大【解答】解:∵a>0,b<0,c<0,∴△=b2﹣4ac>0,<0,﹣>0,∴一元二次方程ax2+bx+c=0有两个不相等的实数根,且两根异号,正根的绝对值较大.故选:C.10.有两个一元二次方程:M:ax2+bx+c=0;N:cx2+bx+a=0,其中a﹣c≠0,以下列四个结论中,错误的是( )A.如果方程M有两个不相等的实数根,那么方程N也有两个不相等的实数根B.如果方程M有两根符号相同,那么方程N的两根符号也相同C.如果5是方程M的一个根,那么是方程N的一个根D.如果方程M和方程N有一个相同的根,那么这个根必是x=1【解答】解:A、在方程ax2+bx+c=0中△=b2﹣4ac,在方程cx2+bx+a=0中△=b2﹣4ac,∴如果方程M有两个不相等的实数根,那么方程N也有两个不相等的实数根,正确;B、∵“和符号相同,和符号也相同,∴如果方程M有两根符号相同,那么方程N的两根符号也相同,正确;C、∵5是方程M的一个根,∴25a+5b+c=0,∴a+b+c=0,∴是方程N的一个根,正确;D、M﹣N得:(a﹣c)x2+c﹣a=0,即(a﹣c)x2=a﹣c,∵a﹣c≠1,∴x2=1,解得:x=±1,错误.故选D.11.已知m,n是关于x的一元二次方程x2﹣2tx+t2﹣2t+4=0的两实数根,则(m+2)(n+2)的最小值是( )A.7B.11C.12D.16【解答】解:∵m,n是关于x的一元二次方程x2﹣2tx+t2﹣2t+4=0的两实数根,∴m+n=2t,mn=t2﹣2t+4,∴(m+2)(n+2)=mn+2(m+n)+4=t2+2t+8=(t+1)2+7.∵方程有两个实数根,∴△=(﹣2t)2﹣4(t2﹣2t+4)=8t﹣16≥0,∴t≥2,∴(t+1)2+7≥(2+1)2+7=16.故选D.12.设关于x的方程ax2+(a+2)x+9a=0,有两个不相等的实数根x1、x2,且x1<1<x2,那么实数a的取值范围是( )A.B.C.D.【解答】解:方法1、∵方程有两个不相等的实数根,则a≠0且△>0,由(a+2)2﹣4a×9a=﹣35a2+4a+4>0,解得﹣<a<,∵x1+x2=﹣,x1x2=9,又∵x1<1<x2,∴x1﹣1<0,x2﹣1>0,那么(x1﹣1)(x2﹣1)<0,∴x1x2﹣(x1+x2)+1<0,即9++1<0,解得<a<0,最后a的取值范围为:<a<0.故选D.方法2、由题意知,a≠0,令y=ax2+(a+2)x+9a,由于方程的两根一个大于1,一个小于1,∴抛物线与x轴的交点分别在1两侧,当a>0时,x=1时,y<0,∴a+(a+2)+9a<0,∴a<﹣(不符合题意,舍去),当a<0时,x=1时,y>0,∴a+(a+2)+9a>0,∴a>﹣,∴﹣<a<0,故选D.二.填空题(共8小题)13.若x1,x2是关于x的方程x2﹣2x﹣5=0的两根,则代数式x12﹣3x1﹣x2﹣6的值是 ﹣3 .【解答】解:∵x1,x2是关于x的方程x2﹣2x﹣5=0的两根,∴x12﹣2x1=5,x1+x2=2,∴x12﹣3x1﹣x2﹣6=(x12﹣2x1)﹣(x1+x2)﹣6=5﹣2﹣6=﹣3.故答案为:﹣3.14.已知x1,x2是关于x的方程x2+ax﹣2b=0的两实数根,且x1+x2=﹣2,x1•x2=1,则b a的值是 .【解答】解:∵x1,x2是关于x的方程x2+ax﹣2b=0的两实数根,∴x1+x2=﹣a=﹣2,x1•x2=﹣2b=1,解得a=2,b=﹣,∴b a=(﹣)2=.故答案为:.15.已知2x|m|﹣2+3=9是关于x的一元二次方程,则m= ±4 .【解答】解:由题意可得|m|﹣2=2,解得,m=±4.故答案为:±4.16.已知x2+6x=﹣1可以配成(x+p)2=q的形式,则q= 8 .【解答】解:x2+6x+9=8,(x+3)2=8.所以q=8.故答案为8.17.已知关于x的一元二次方程(m﹣1)x2﹣3x+1=0有两个不相等的实数根,且关于x的不等式组的解集是x<﹣1,则所有符合条件的整数m的个数是 4 .【解答】解:∵关于x的一元二次方程(m﹣1)x2﹣3x+1=0有两个不相等的实数根,∴m﹣1≠0且△=(﹣3)2﹣4(m﹣1)>0,解得m<且m≠1,,∵解不等式组得,而此不等式组的解集是x<﹣1,∴m≥﹣1,∴﹣1≤m<且m≠1,∴符合条件的整数m为﹣1、0、2、3.故答案为4.18.关于x的方程(m﹣2)x2+2x+1=0有实数根,则偶数m的最大值为 2 .【解答】解:由已知得:△=b2﹣4ac=22﹣4(m﹣2)≥0,即12﹣4m≥0,解得:m≤3,∴偶数m的最大值为2.故答案为:2.19.如图,某小区有一块长为18米,宽为6米的矩形空地,计划在其中修建两块相同的矩形绿地,它们面积之和为60米2,两块绿地之间及周边留有宽度相等的人行通道,则人行道的宽度为 1 米.【解答】解:设人行道的宽度为x米(0<x<3),根据题意得:(18﹣3x)(6﹣2x)=60,整理得,(x﹣1)(x﹣8)=0.解得:x1=1,x2=8(不合题意,舍去).即:人行通道的宽度是1米.故答案是:1.20.如图是一次函数y=kx+b的图象的大致位置,试判断关于x的一元二次方程x2﹣2x+kb+1=0的根的判别式△ > 0(填:“>”或“=”或“<”).【解答】解:∵次函数y=kx+b的图象经过第一、三、四象限,∴k>0,b<0,∴△=(﹣2)2﹣4(kb+1)=﹣4kb>0.故答案为>.三.解答题(共8小题)21.解下列方程.(1)x2﹣14x=8(配方法)(2)x2﹣7x﹣18=0(公式法)(3)(2x+3)2=4(2x+3)(因式分解法)(4)2(x﹣3)2=x2﹣9.【解答】解:(1)x2﹣14x+49=57,(x﹣7)2=57,x﹣7=±,所以x1=7+,x2=7﹣;(2)△=(﹣7)2﹣4×1×(﹣18)=121,x=,所以x1=9,x2=﹣2;(3)(2x+3)2﹣4(2x+3)=0,(2x+3)(2x+3﹣4)=0,2x+3=0或2x+3﹣4=0,所以x1=﹣,x2=;(4)2(x﹣3)2﹣(x+3)(x﹣3)=0,(x﹣3)(2x﹣6﹣x﹣3)=0,x﹣3=0或2x﹣6﹣x﹣3=0,所以x1=3,x2=9.22.关于x的一元二次方程(m﹣1)x2﹣x﹣2=0(1)若x=﹣1是方程的一个根,求m的值及另一个根.(2)当m为何值时方程有两个不同的实数根.【解答】解:(1)将x=﹣1代入原方程得m﹣1+1﹣2=0,解得:m=2.当m=2时,原方程为x2﹣x﹣2=0,即(x+1)(x﹣2)=0,∴x1=﹣1,x2=2,∴方程的另一个根为2.(2)∵方程(m﹣1)x2﹣x﹣2=0有两个不同的实数根,∴,解得:m>且m≠1,∴当m>且m≠1时,方程有两个不同的实数根.23.关于x的一元二次方程(a﹣6)x2﹣8x+9=0有实根.(1)求a的最大整数值;(2)当a取最大整数值时,①求出该方程的根;②求2x2﹣的值.【解答】解:(1)根据题意△=64﹣4×(a﹣6)×9≥0且a﹣6≠0,解得a≤且a≠6,所以a的最大整数值为7;(2)①当a=7时,原方程变形为x2﹣8x+9=0,△=64﹣4×9=28,∴x=,∴x1=4+,x2=4﹣;②∵x2﹣8x+9=0,∴x2﹣8x=﹣9,所以原式=2x2﹣=2x2﹣16x+=2(x2﹣8x)+=2×(﹣9)+=﹣.24.关于x的方程x2﹣(2k﹣3)x+k2+1=0有两个不相等的实数根x1、x2.(1)求k的取值范围;(2)若x1x2+|x1|+|x2|=7,求k的值.【解答】解:(1)∵原方程有两个不相等的实数根,∴△=[﹣(2k﹣3)]2﹣4(k2+1)=4k2﹣12k+9﹣4k2﹣4=﹣12k+5>0,解得:k<;(2)∵k<,∴x1+x2=2k﹣3<0,又∵x1•x2=k2+1>0,∴x1<0,x2<0,∴|x1|+|x2|=﹣x1﹣x2=﹣(x1+x2)=﹣2k+3,∵x1x2+|x1|+|x2|=7,∴k2+1﹣2k+3=7,即k2﹣2k﹣3=0,∴k1=﹣1,k2=2,又∵k<,∴k=﹣1.25.某茶叶专卖店经销一种日照绿茶,每千克成本80元,据销售人员调查发现,每月的销售量y(千克)与销售单价x(元/千克)之间存在如图所示的变化规律.(1)求每月销售量y与销售单价x之间的函数关系式.(2)若某月该茶叶点销售这种绿茶获得利润1350元,试求该月茶叶的销售单价x为多少元.【解答】解:(1)设一次函数解析式为y=kx+b,把(90,100),(100,80)代入y=kx+b得,,解得,,y与销售单价x之间的函数关系式为y=﹣2x+280.(2)根据题意得:w=(x﹣80)(﹣2x+280)=﹣2x2+440x﹣22400=1350;解得(x﹣110)2=225,解得x1=95,x2=125.答:销售单价为95元或125元.26.如图,为美化环境,某小区计划在一块长方形空地上修建一个面积为1500平方米的长方形草坪,并将草坪四周余下的空地修建成同样宽的通道,已知长方形空地的长为60米,宽为40米.(1)求通道的宽度;(2)晨光园艺公司承揽了该小区草坪的种植工程,计划种植“四季青”和“黑麦草”两种绿草,该公司种植“四季青”的单价是30元/平方米,超过50平方米后,每多出5平方米,所有“四季青”的种植单价可降低1元,但单价不低于20元/平方米,已知小区种植“四季青”的面积超过了50平方米,支付晨光园艺公司种植“四季青”的费用为2000元,求种植“四季青”的面积.【解答】解:(1)设通道的宽度为x米.由题意(60﹣2x)(40﹣2x)=1500,解得x=5或45(舍弃),答:通道的宽度为5米.(2)设种植“四季青”的面积为y平方米.由题意:y(30﹣)=2000,解得y=100,答:种植“四季青”的面积为100平方米.27.某商店经销甲、乙两种商品,现有如下信息:信息1:甲、乙两种商品的进货单价之和是3元;信息2:甲商品零售单价比进货单价多1元,乙商品零售单价比进货单价的2倍少1元;信息3:按零售单价购买甲商品3件和乙商品2件,共付了12元.请根据以上信息,解答下列问题:(1)求甲、乙两种商品的零售单价;(2)该商店平均每天卖出甲乙两种商品各500件,经调查发现,甲种商品零售单价每降0.1元,甲种商品每天可多销售100件,商店决定把甲种商品的零售单价下降m(m>0)元.在不考虑其他因素的条件下,当m为多少时,商店每天销售甲、乙两种商品获取的总利润为1000元?【解答】22.(1)假设甲种商品的进货单价为x元、乙种商品的进货单价为y元,根据题意可得:,解得:.答:甲、乙零售单价分别为2元和3元.(2)根据题意得出:(1﹣m)(500+×100)+500=1000即2m2﹣m=0,解得m=0.5或m=0(舍去),答:当m定为0.5元才能使商店每天销售甲、乙两种商品获取的利润共1000元.28.已知关于x的一元二次方程x2﹣(m+6)x+3m+9=0的两个实数根分别为x1,x2.(1)求证:该一元二次方程总有两个实数根;(2)若n=4(x1+x2)﹣x1x2,判断动点P(m,n)所形成的函数图象是否经过点A(1,16),并说明理由.【解答】解(1)∵△=(m+6)2﹣4(3m+9)=m2≥0∴该一元二次方程总有两个实数根(2)动点P(m,n)所形成的函数图象经过点A(1,16),∵n=4(x1+x2)﹣x1x2=4(m+6)﹣(3m+9)=m+15∴P(m,n)为P(m,m+15).∴A(1,16)在动点P(m,n)所形成的函数图象上.。
九年级上册数学一元二次方程测试题一、选择题(每题3分,共15分)1. 一元二次方程x^2-2x = 0的根是()- A. x = 0- B. x = 2- C. x = 0或x=-2- D. x = 0或x = 2解析:对于方程x^2-2x = 0,提取公因式x得x(x - 2)=0,则x = 0或者x-2 = 0,解得x = 0或x = 2,所以答案是D。
2. 方程(x + 1)^2=4的解是()- A. x_1=1,x_2=-3- B. x = 1- C. x=-3- D. x_1=2,x_2=-2解析:对于方程(x + 1)^2=4,开平方得x + 1=±2。
当x + 1 = 2时,x=1;当x + 1=-2时,x=-3。
所以x_1=1,x_2=-3,答案是A。
3. 一元二次方程x^2-3x - 1 = 0与x^2-x + 3 = 0的所有实数根的和等于()- A. 2.- B. -4.- C. 4.- D. 3.解析:对于一元二次方程ax^2+bx + c = 0(a≠0),其根的判别式Δ=b^2-4ac。
在方程x^2-3x - 1 = 0中,Δ=(-3)^2-4×1×(-1)=9 + 4 = 13>0,方程有两个实数根,根据韦达定理,两根之和为x_1+x_2=-(b)/(a)=3。
在方程x^2-x + 3 = 0中,Δ=(-1)^2-4×1×3=1 - 12=- 11<0,方程没有实数根。
所以这两个方程的所有实数根的和等于3,答案是D。
4. 若关于x的一元二次方程kx^2-2x - 1 = 0有两个不相等的实数根,则k的取值范围是()- A. k>-1- B. k>-1且k≠0- C. k<1- D. k<1且k≠0解析:因为方程kx^2-2x - 1 = 0是一元二次方程,所以k≠0。
又因为方程有两个不相等的实数根,所以Δ =(-2)^2-4k×(-1)>0,即4 + 4k>0,4k>-4,解得k>-1。
一元二次方程测试卷一、选择题1.下列方程中,一元二次方程共有( )①2320x x += ②22340x xy -+= ③214x x -= ④21x = ⑤2303x x -+= A . 2个 B .3个 C .4个 D . 5个2.下列方程中不一定是一元二次方程的是( )A.(a-3)x 2=8 (a ≠3)B.ax 2232057x +-= 3.关于x 的方程ax 2﹣3x+2=x 2是一元二次方程,则a 的取值范围为( )A .a ≠0B .a >0C .a ≠1D .a >14. 关于x 的方程()22120a x x -+-=是一元二次方程,则a 满足( )A. 1a ≠B. 1a ≠-C. 1a ≠±D.为任意实数5.一元二次方程3x 2=5x 的二次项系数和一次项系数分别是( )A. 3,5B. 3,-5C. 3,0D. 5,06.下列方程中,常数项为零的是( )A.x 2+x=1B.2x 2-x-12=12;C.2(x 2-1)=3(x-1)D.2(x 2+1)=x+27.若方程(a -b )x 2+(b -c )x+(c -a )=0是关于x 的一元二次方程,则必有( )A .a=b=cB .一根为1C .一根为-1D .以上都不对8.方程x=﹣x (x+1)的解是( )A .x=﹣2 B.x=0 C .x 1=﹣1,x 2=0 D .x 1=﹣2,x 2=09.方程2(3)5(3)x x x -=-的根为( ).A .52x =B .3x =C .125,32x x ==D . 125,32x x =-=- 10.方程x 2-2x=0的根是( )A .x 1=0,x 2=2B .x 1=0,x 2=-2C .x=0D .x=211.已知一元二次方程已知一元二次方程02=++c bx ax ,若0=++c b a ,则该方程一定有一个根为( )A. 0B. 1C. -1D. 212.一元二次方程22(1)230m x x m m -+++-=的一个根为0,则m 的值为( )A.-3B.1C.1或-3D.-4或213. 关于x 一元二次方程225250x x p p -+-+=的一个根为1,P=( )A .4B .0或2C .1D .1-14.方程x 2+4x=2的正根为( )A .2-6B .2+6C .-2-6D .-2+615.若方程()a x =-24有解,则a 的取值范围是( )A .0≤aB .0≥aC .0>aD .无法确定16.解方程2(5x-1)2=3(5x-1)的最适当方法应是( )A 、直接开平方法B 、配方法C 、公式法D 、因式分解法17.若分式2926x x --的值为零,则x 的值为( )A .3B .3或-3C .0D .-318.使分式2561x x x --+ 的值等于零的x 是( )A.6B.-1或6C.-1D.-619.方程231x x -+=2的根是( )A .-2B .12 C .-2,12 D .-2,120.方程2111x x x =--的增根是( )A .x=0B .x=-1C .x=1D .x=±121.已知(x 2+y 2+1)(x 2+y 2+3)=8,则x 2+y 2的值为( )A .-5或1B .1C .5D .5或-122.已知方程x 2+px+q=0的两个根分别是2和-3,则x 2-px+q 可分解为 () A .(x+2)(x+3) B .(x -2)(x -3) C .(x -2)(x+3) D .(x+2)(x -3)23.一元二次方程2x 2-3x+1=0化为(x+a)2=b 的形式,正确的是 ( )A.23162x ⎛⎫-= ⎪⎝⎭; B.2312416x ⎛⎫-= ⎪⎝⎭; C.231416x ⎛⎫-= ⎪⎝⎭; D.以上都不对24.用配方法解下列方程时,配方有错误的是( )A.x 2-2x-99=0化为(x-1)2=100B.x 2+8x+9=0化为(x+4)2=25C.2t 2-7t-4=0化为(t-74 )2= 8116D.3y 2-4y-2=0化为(y-23 )2=10925.用配方法将二次三项式a 2+ 4a +5变形,结果是( )A.(a –2)2+1B.(a +2)2+1C.(a –2)2-1D.(a +2)2-126.若关于x 的一元二次方程的两个根为11x =,22x =,则这个方程是( )A.2320x x +-=B.2320x x -+=C.2230x x -+=D.2320x x ++=27.关于x 的方程2(6)860a x x --+=有实数根,则整数a 的最大值是( )A .6B .7C .8D .928.下面是某同学在一次数学测验中解答的填空题,其中答对的是( )A .若x 2=4,则x=2 B.若3x 2=6x ,则x=2C .02=-+k x x 的一个根是1,则k=2D .若分式()x x x 2- 的值为零,则x=229.一元二次方程x 2-x+2=0的根的情况是( )A .有两个相等的实数根B .有两个不相等的实数根C .无实数根D .只有一个实数根30.方程()()1132=-+x x 的解的情况是( )A .有两个不相等的实数根B .没有实数根C .有两个相等的实数根D .有一个实数根31.若关于x 的一元二次方程2210kx x --=有两个不相等的实数根,则k 的取值范围是() A .1k >- B. 1k >-且0k ≠ C. 1k < D. 1k <且0k ≠32.已知关于x 的方程x 2-(2k-1)x+k 2=0有两个不相等的实根,那么k 的最大整数值是()A.-2B.-1C.0D.133.关于x 的一元二次方程x 2+4x+k=0有两个相等的实根,则k 的值为( )A .k=﹣4B .k=4C .k ≥﹣4D .k ≥434.若3k+7<0,则关于x 的一元二次方程x 2+3x-2k=0的根的情况是( )A .没有实数根B .有两个相等的实数根C .有两个不相等的实数根D .无法判断35.若关于y 的一元二次方程ky 2-4y-3=3y+4有实根,则k 的取值范围是( )A.k>-7/4B.k ≥-7/4 且k ≠0C.k ≥-7/4D.k>7/4 且k ≠036.已知方程22=+x x ,则下列说中,正确的是( )A.方程两根和是1B.方程两根积是2C.方程两根和是1-D.方程两根积比两根和大237.关于x 的一元二次方程的两个根为x 1=1,x 2=2,则这个方程是( )A.x 2+3x-2=0B.x 2-3x+2=0C.x 2-2x+3=0D.x 2+3x+2=038.关于x 的方程x 2+mx-1=0的两根互为相反数,则m 的值为( )A.0B.2C.1D.-239.若方程(x+1)(x+a)=x 2+bx-4,则( )A.a=4, b=3B.a=-4, b=3C.a=4, b=-3D.a=-4, b=-340.已知一直角三角形的三边长为a 、b 、c ,∠B=90°,那么关于x 的方程a (x 2-1)-2x+b (x 2+1)=0的根的情况为( )A .有两个相等的实数根B .有两个不相等的实数根C .没有实数根D .无法确定41.设a b ,是方程220090x x +-=的两个实数根,则22a a b ++的值为( )A .2006B .2007C .2008D .200942.若x 1,x 2是一元二次方程3x 2+x -1=0的两个根,则1211x x +的值是( )A .-1B .0C .1D .243.一元二次方程x 2-3x -1=0与x 2-x+3=0的所有实数根的和等于( )A .2B .-4C .4D .344.已知一个三角形的两边长是方程x 2-8x+15=0的两根,则第三边y 的取值范围是( )A .y<8B .3<y<5C .2<y<8D .无法确定45.有一个两位数,它们的十位数字与个位数字之和为8,如果把十位数字与个位数字调换后,所得的两位数乘以原来的两位数就得1855,则原来的两位数中较大的数为( )A .62B .44C .53D .3546.等腰三角形一条边的边长为3,它的另两条边的边长是关于x 的一元二次方程x 2-12x+k=0的两个根,则k 的值是( )A .27B .36C .27或36D .1847.已知三角形两边长分别为2和9,第三边的长为二次方程x 2-14x+48=0的一根, 则这个三角形的周长为( )A.11B.17C.17或19D.1948.已知一个直角三角形的两条直角边的长恰好是方程22870x x -+=的两个根,则这个直角三角形的斜边长是( )B.3C.6D.949.方程29180x x -+=的两个根是等腰三角形的底和腰,则这个三角形的周长为( )A .12B .12或15C .15D .不能确定50.一个三角形两边的长分别是6和8,第三边的长正好是一元二次方程216600x x -+=的一个实数根,则该三角形的面积是( )A.24B.24或C.48D.51. 直角三角形两条直角边的和为7,面积为6,则斜边为( )A B .5 C .752.从正方形铁片,截去2cm 宽的一条长方形,余下的面积是48cm 2,则原来的正方形铁片的面积是( )A .8cmB .64cmC .8cm 2D .64cm 254.在创建“国家园林县城”工作中,荣昌县通过切实加强园林绿化的组织管理、规划设计、景观保护、绿化建设、公园建设、生态建设、市政建设等工作,城区的园林绿化得到了长足的发展。
一元二次方程 试 卷 (全)1、一元二次方程(1-3x)(x+3)=2x 2+1的一般形式是它的二次项系数是;一次项系数是;常数项是。
2、已知方程2(m+1)x 2+4mx+3m -2=0是关于x 的一元二次方程,那么m 的取值X 围是。
3、已知关于x 的一元二次方程(2m -1)x2+3mx+5=0有一根是x=-1,则m=。
4、已知关于x 的一元二次方程(k -1)x2+2x -k 2-2k+3=0的一个根为零,则k=。
5、已知关于x 的方程(m+3)x 2-mx+1=0,当m 时,原方程为一元二次方程,若原方程是一元一次方程,则m 的取值X 围是。
6、已知关于x 的方程(m 2-1)x 2+(m+1)x+m -2=0是一元二次方程,则m 的取值X 围是;当m=时,方程是一元二次方程。
7、把方程a(x 2+x)+b(x 2-x)=1-c 写成关于x 的一元二次方程的一般形式,再写出它的二次项系数、一次项系数和常数项,并求出是一元二次方程的条件。
9、0.01y 412=10、053x 0.22=-11、(x+3)(x -3)=912、(3x+1)2-2=0 13、(x+2)2=(1+2)2 14、0.04x2+0.4x+1=0 15、(2x -2)2=616、(x -5)(x+3)+(x -2)(x+4)=4917、一元二次方程(1-3x)(x+3)=2x 2+1的一般形式是它的二次项系数是;一次项系数是;常数项是。
18、已知方程:①2x 2-3=0;②1112=-x ;③0131212=+-y y ;④ay 2+2y+c=0;⑤(x+1)(x-3)=x 2+5;⑥x -x 2=0 。
其中,是整式方程的有,是一元二次方程的有。
(只需填写序号) 19、填表:20、分别根据下列条件,写出一元二次方程ax 2+bx+c=0(a ≠0)的一般形式:(1)a=2,b=3,c=1; (2)52,43,21==-=c b a ; (3)二次项系数为5,一次项系数为-3,常数项为-1;(4)二次项系数为mn ,一次项系数为3m-,常数项为-n 。
一元二次方程测试题一、填空题:(每题2分共50分)1.一元二次方程(1-3x )(x +3)=2x2+1 化为一般形式为: ,二次项系数为: ,一次项系数为: ,常数项为: 。
2.若m 是方程x 2+x -1=0的一个根,试求代数式m 3+2m 2+2013的值为 。
3.方程()0132=+++mx x m m是关于x 的一元二次方程,则m 的值为 。
4.关于x 的一元二次方程()04222=-++-a x x a 的一个根为0,则a 的值为 。
5.若代数式5242--x x 与122+x 的值互为相反数,则x 的值是 。
6.已知322-+y y 的值为2,则1242++y y的值为 。
7.若方程()112=∙+-x m x m 是关于x 的一元二次方程,则m 的取值范围是 。
8.已知关于x 的一元二次方程()002≠=++a c bx ax 的系数满足b c a =+,则此方程必有一根为 。
9.已知关于x 的一元二次方程x 2+bx+b ﹣1=0有两个相等的实数根,则b 的值是。
10.设x 1,x 2是方程x2﹣x ﹣2013=0的两实数根,则= 。
11.已知x=﹣2是方程x 2+mx ﹣6=0的一个根,则方程的另一个根是。
12.若,且一元二次方程kx 2+ax+b=0有两个实数根,则k 的取值范围是 。
13.设m 、n 是一元二次方程x 2+3x -7=0的两个根,则m 2+4m +n = 。
15.若关于x 的方程x2+(a ﹣1)x+a 2=0的两根互为倒数,则a =。
16.关于x 的两个方程x 2﹣x ﹣2=0与有一个解相同,则a = 。
17.已知关于x 的方程x2﹣(a+b )x+ab ﹣1=0,x 1、x 2是此方程的两个实数根,现给出三个结论:①x 1≠x 2;②x 1x 2<ab ;③.则正确结论的序号是 .(填上你认为正确结论的所有序号)18.a 是二次项系数,b 是一次项系数,c 是常数项,且满足1-a +(b -2)2+|a+b+c|=0,满足条件的一元二次方程是 。
一元二次方程习题
一、选择题(本大题共10小题,共30.0分)
1.下列方程中,关于x的一元二次方程是( )
A. x2+2x=y−2
B. 1
x +1
x
−2=0
C. ax2+bx+c=0
D. 3(x+1)2=2(x+1)
2.下列方程中,是一元二次方程的是( )
A. 2x−y=3
B. x2+1
x
=2 C. x2+1=x2−1 D. x(x−1)=0
3.下列方程是一元二次方程的是( )
A. x2+2y=1
B. x3−2x=3
C. x2+1
x
=5 D. x2=0
4.若关于x的一元二次方程ax2+bx+6=0的一个根为x=−2,则代数式
6a−3b+6的值为( )
A. 9
B. 3
C. 0
D. −3
5.若一元二次方程(2m+6)x2+m2−9=0的常数项是0,则m等于( )
A. −3
B. 3
C. ±3
D. 9
6.若关于x的一元二次方程(k+2)x2+3x+k2−k−6=0必有一根为0,则k的值
是( )
A. 3 或−2
B. −3或2
C. 3
D. −2
7.方程(m+2)x|m|+3mx+4=0是关于x的一元二次方程,则( )
A. m≠±2
B. m=±2
C. m=2
D. m=−2
8.方程2x2−6x=9的二次项系数、一次项系数、常数项分别为( )
A. 6,2,9
B. 2,−6,9
C. −2,6,9
D. 2,−6,−9
9.若方程(m−1)x m2+1−2x−m是关于x的一元二次方程,则m的值为( )
A. −1
B. 1
C. 5
D. −1或1
10.一元二次方程3x2−6x+1=0中,二次项系数、一次项系数及常数项分别是( )
A. 3,−6,1
B. 3,6,1
C. 3x2,6x,1
D. 3x2,−6x,1
11.已知实数m满足m2−3m+1=0,则代数式m2+19
m+2
的值等于______.
12.若n(n≠0)是关于x的方程x2+mx+3n=0的一个根,则m+n的值是______.
13.如果a−b+c=0,则关于x的一元二次方程ax2+bx+c=0的根有一个为
______ .
14.关于x的一元二次方程(m−1)x2+3x+m2−1=0的一根为0,则m的值是
______ .
15.已知a是方程x2−2017x+1=0的一个根,则a3−2017a2−2017
a+1
=______ .
16.关于x的方程(a−2)x a2−2+3ax+1=0是一元二次方程,则a=______ .
17.已知x k2−2−1−kx+1
2
=0是关于x的一元二次方程,则k为______ .
18.已知a是方程2x2+x−2=0的根,则代数式2a4+a3+2a2+2a+1=______ .
19.已知x=1是方程x2−5ax+a2=0的一个根,求代数式3a2−15a−7的值.
20.已知关于x的方程(m−3)x m2−7−x+3=0是一元二次方程,求m的值.。