【附28套精选模拟试卷】西工大附中2020高考数学文模拟题含答案(四)
- 格式:doc
- 大小:14.90 MB
- 文档页数:301
陕西省西北工业大学附属中学2020届高三数学考前模拟练习试题理(含解析)第Ⅰ卷选择题(共60分)一.选择题:(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.若(,是虚数单位),则等于()A. 3B. 2C. 0D.【答案】A【解析】,因,故,所以,选A.2.命题:“,”为真命题的一个充分不必要条件是()A. B. C. D.【答案】B【解析】由题意得 ,因为 ,因此一个充分不必要条件是,选B.点睛:充分、必要条件的三种判断方法.1.定义法:直接判断“若则”、“若则”的真假.并注意和图示相结合,例如“⇒”为真,则是的充分条件.2.等价法:利用⇒与非⇒非,⇒与非⇒非,⇔与非⇔非的等价关系,对于条件或结论是否定式的命题,一般运用等价法.3.集合法:若⊆,则是的充分条件或是的必要条件;若=,则是的充要条件.3.已知双曲线的渐近线方程为,则双曲线的离心率为()A. B. C. D. 2【答案】B【解析】【分析】由双曲线的渐近线方程得出的值,再求双曲线的离心率.【详解】已知双曲线的渐近线方程为,且,所以,得.,所以双曲线的离心率为.故选:B【点睛】本题考查了双曲线的标准方程与简单几何性质的应用问题,属于基础题.4.下列说法错误的是()A. 回归直线一定经过样本点中心B. 两个随机变量的线性相关性越强,则相关系数的绝对值就越接近1C. 对分类变量与,若越大,则“与有关的把握程度越小”D. 在回归方程中,每当随机变量每增加1个单位时,预报变量就平均增加0.2个单位【答案】C【解析】根据相关定义分析知A、B、D正确;C中对分类变量与的随机变量的观测值来说,越大,“与有关系”的招把握程度越大,故C不正确,故选C.5.执行如图所示的程序框图,则输出的的值为()A. B. 0 C. D.【答案】B【解析】【分析】模拟程序的运行,可得程序框图的功能是计算并输出的值,可得答案.【详解】由程序语句可知:该程序的功能是利用循环结构计算并输出的值,由于.故选:B.【点睛】本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,属于基础题.6.已知过球面上三点,,的截面到球心距离等于球半径的一半,且,,则球面面积为()A. B. C. D.【答案】C 【解析】 【分析】设出球的半径,小圆半径,通过已知条件求出两个半径,再求球的表面积. 【详解】如图,设球的半径为R ,O ′是△ABC 的外心,外接圆半径为r , 则OO ′⊥面ABC .在Rt△ACD 中,cos A ,则sin A .在△ABC 中,由正弦定理得2r ,r,△ABC 外接圆的半径,.故选:C .【点睛】本题考查立体几何中的球的截面问题和球的表面积问题,考查球面距离弦长问题,正弦定理的应用,考查学生分析问题解决问题能力,空间想象能力,属于难题.7.从1,2,3,4,5,6,7中取出两个不同数,记事件为“两个数之和为偶数”,事件为“两个数均为偶数”,则( )A. B.C.D.【答案】A 【解析】 【分析】用列举法求出事件A ,事件B 所包含的基本事件的个数,求P (A ),P (AB ),根据条件概率公式,即可得到结论.【详解】事件A 为“两个数之和为偶数”所包含的基本事件有:(1,3)、(1,5)、(1,7),(3,5)、(3,7),(5,7),(2,4),(2,6),(4,6),∴P(A)=,事件B为“两个数均为偶数”所包含的基本事件有(2,4),(2,6),(4,6),∴P(AB)=,∴P(B|A)=.故选:A.【点睛】本题考查条件概率的计算公式,同时考查学生对基础知识的记忆、理解和熟练程度.属于基础题.8.将多项式分解因式得,为常数.若,则()A. B. C. 1 D. 2【答案】D【解析】【分析】由可得=5m-2=-7,m=-1,.【详解】因为的通项公式为,=x+(-2)=(5m-2),=5m-2,又,5m-2=-7,m=-1,=2,故选D.【点睛】本题考查了二项式定理的应用,考查了推理能力与计算能力,属于中档题.9.一个正方体被一个平面截去一部分后,剩余部分的三视图如图所示,则截去部分体积与剩余部分体积的比值为()A. B. C. D.【答案】D【解析】试题分析:设正方体的棱长为,由三视图判断,正方体被切掉的部分为三棱锥,所以正方体切掉部分的体积为,所以剩余部分体积为,所以截去部分体积与剩余部分体积的比为,故选D.考点:几何体的三视图及体积的计算.10.将图象上各点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移个单位长度,所得函数图象关于对称,则()A. B. C. D.【答案】B【解析】【分析】函数图象经过放缩变换与平移变换后可得,由可得结果.【详解】函数图象上各点的横坐标伸长到原来的2倍后得到,再向左平移后得到,因为的图象关于于对称,,解得,当时,,故选B.【点睛】本题考查了三角函数的图象与性质,重点考查学生对三角函数图象变换规律的理解与掌握,能否正确处理先周期变换后相位变换这种情况下图象的平移问题,反映学生对所学知识理解的深度.11.如图所示,为的外心,,,为钝角,为边的中点,则的值为()A. B. 12 C. 6 D. 5【答案】D【解析】分析】取的中点,且为的外心,可知,所求,由数量积的定义可得,代值即可.【详解】如图所示,取的中点,且为的外心,可知,∵是边的中点,∴ .,由数量积的定义可得,而,故;同理可得,故.故选:D.【点睛】本题考查向量数量积的运算,数形结合并熟练应用数量积的定义是解决问题的关键,属于中档题.12.已知函数,若当时,恒成立,则实数的取值范围为()A. B. C. D.【答案】B【解析】若当时,恒成立,即m(e x+e﹣x﹣1)≤e﹣x﹣1,∵x>0,∴e x+e﹣x﹣1>0,即m≤在(0,+∞)上恒成立,设t=e x,(t>1),则m≤在(1,+∞)上恒成立,∵=﹣=﹣≥﹣,当且仅当t=2时等号成立,∴m≤﹣.故选:B.第Ⅱ卷(共90分)二、填空题:(本大题共4小题,每小题5分,共20分).13.若直线被圆截得的弦最短,则______;【答案】【解析】直线y=kx+1恒过定点A(0,1),要使截得的弦最短,需圆心(1,0)和A点的连线与直线y =kx+1垂直,所以k·=-1,即k=1.14.已知数列为等差数列,且,,则______;【答案】2【解析】【分析】由为等差数列,且,利用等差数列的性质得到的值,然后求定积分即可.【详解】因为为等差数列,由等差数列的性质,得,即. 所以,所以,所以.故答案为:2.【点睛】本题考查了等差数列的性质、定积分等知识,属于基础题.15.若实数,满足且的最小值为4,则实数的值为______;【答案】【解析】试题分析:画出可行域(如图阴影部分所示)和直线:,观察图形,知直线过直线和的交点时,取得最小值,即,解得,所以实数的值为.考点:线性规划问题.【易错点晴】线性规划问题是数学考试中常见题。
2020年陕西省西安市西工大附中高考数学模拟试卷(理科)(3月份)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合,B={(x,y)|y=3x},则A ∩B中的元素的个数是()A.1B.2C.3D.42.(5分)复数在复平面内对应的点到原点的距离是()A.B.C.D.3.(5分)虚拟现实(VR)技术被认为是经济发展的新增长点,某地区引进VR技术后,VR市场收入(包含软件收入和硬件收入)逐年翻一番,据统计该地区VR市场收入情况如图所示,则下列说法错误的是()A.该地区2019年的VR市场总收入是2017年的4倍B.该地区2019年的VR硬件收入比2017年和2018年的硬件收入总和还要多C.该地区2019年的VR软件收入是2018年的软件收入的3倍D.该地区2019年的VR软件收入是2017年的软件收入的6倍4.(5分)执行如图所示的程序框图,若输出的S的值为0,则中可填入()A.m=m+2B.m=m+1C.m=m﹣1D.m=m﹣2 5.(5分)设a=4,b=log,c=log43,则a,b,c的大小关系是()A.a<b<c B.a<c<b C.c<a<b D.c<b<a 6.(5分)如图,网格纸上小正方形的边长为1,粗实线围成的各区域上分别且只能标记数字1,2,3,4,相邻区域标记的数字不同,其中,区域A和区域B标记的数字丢失.若在图上随机取一点,则该点恰好取自标记为1的区域的概率所有可能值中,最大的是()A.B.C.D.7.(5分)1970年4月24日,我国发射了自己的第一颗人造地球卫星“东方红一号”,从此我国开启了人造卫星的新篇章,人造地球卫星绕地球运行遵循开普勒行星运动定律:卫星在以地球为焦点的椭圆轨道上绕地球运行时,其运行速度是变化的,速度的变化服从面积守恒规律,即卫星的向径(卫星与地球的连线)在相同的时间内扫过的面积相等.设椭圆的长轴长、焦距分别为2a,2c,下列结论不正确的是()A.卫星向径的最小值为a﹣cB.卫星向径的最大值为a+cC.卫星向径的最小值与最大值的比值越小,椭圆轨道越扁D.卫星运行速度在近地点时最小,在远地点时最大8.(5分)已知在斜三棱柱ABC﹣A1B1C1中,点E,F分别在侧棱AA1,BB1上(与顶点不重合),=,AA1=4,△ABC的面积为5,截面C1EF与截面CEF将三棱柱ABC﹣A1B1C1分成三部分.若中间部分的体积为4,则AA1与底面所成角的正弦值为()A.B.C.D.9.(5分)已知f(x)=sin(ωx+φ)(ω>0,0<φ≤π)是R上的奇函数,若f(x)的图象关于直线对称,且f(x)在区间内是单调函数,则=()A.B.C.D.10.(5分)已知直线l与曲线y=e x相切,切点为P,直线l与x轴、y轴分别交于点A,B,O为坐标原点.若△OAB的面积为,则点P的个数是()A.1B.2C.3D.411.(5分)已知双曲线的左、右焦点分别为F1,F2,点M在C的右支上,MF1与y轴交于点A,△MAF2的内切圆与边AF2切于点B.若|F1F2|=4|AB|,则C的渐近线方程为()A.B.C.2x±y=0D.x±2y=0 12.(5分)已知符号函数,偶函数f(x)满足f(x+2)=f(x),当x∈[0,1]时,f(x)=x,则()A.sgn(f(x))>0B.C.sgn(f(2k))=0(k∈Z)D.sgn(f(k))=|sgnk|(k∈Z)二、填空题:本题共4小题,每小题5分,共20分.13.(5分)已知向量,,若,则实数μ的值为;若,则实数μ的值为.14.(5分)若对(1+x)n=1+x+x2+x3+…+x n两边求导,可得n(1+x)n﹣1=+x+x2+…+x n﹣1.通过类比推理,有(5x﹣4)7=a0+a1x+a2x2+a3x3+a4x4+a5x5+a6x6+a7x7,可得a1+2a2+3a3+4a4+5a5+6a6+7a7的值为.15.(5分)已知数列{a n}中,a1=11,,若对任意的m∈[1,4],存在n∈N*,使得成立,则实数t的取值范围是.16.(5分)如图,正方体ABCD﹣A1B1C1D1的棱长是a,S是A1B1的中点,P是A1D1的中点,点Q在正方形DCC1D1及其内部运动,若PQ∥平面SBC1,则点Q的轨迹的长度是.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)如图所示,在△ABC中,点D在边BC上,且∠DAC =90°,,.(1)若,求BC的值;(2)若BC边上的中线AE=2,求AC的值.18.(12分)如图,在多面体ABCDEF中,AB∥CD,AD⊥CD,CD=2AB=2AD,四边形ADEF是矩形,平面BDE⊥平面ABCD,AF=λAD.(1)证明:DE⊥平面ABCD;(2)若二面角B﹣CF﹣D的正弦值为,求λ的值.19.(12分)如图,已知抛物线C:y2=2px(p>0)的焦点为F,圆E:(x﹣3)2+(y﹣2)2=16与C交于M,N两点,且M,E,F,N四点共线.(1)求抛物线C的方程;(2)设动点P在直线x=﹣1上,存在一个定点T(t,0)(t≠0),动直线l经过点T与C交于A,B两点,直线PA,PB,PT的斜率分别记为k1,k2,k3,且k1+k2﹣2k3为定值,求该定值和定点T 的坐标.20.(12分)随着智能手机的普及,手机计步软件迅速流行开来,这类软件能自动记载每日健步走的步数,从而为科学健身提供了一定帮助.某企业为了解员工每日健步走的情况,从该企业正常上班的员工中随机抽取300名,统计他们的每日健步走的步数(均不低于4千步,不超过20千步).按步数分组,得到频率分布直方图如图所示.(1)求这300名员工日行步数x(单位:千步)的样本平均数(每组数据以该组区间的中点值为代表,结果保留整数);(2)由直方图可以认为该企业员工的日行步数ξ(单位:千步)服从正态分布N(μ,σ2),其中μ为样本平均数,标准差σ的近似值为2,求该企业被抽取的300名员工中日行步数ξ∈(14,18]的人数;(3)用样本估计总体,将频率视为概率.若工会从该企业员工中随机抽取2人作为“日行万步”活动的慰问奖励对象,规定:日行步数不超过8千步者为“不健康生活方式者”,给予精神鼓励,奖励金额为每人0元;日行步数为8~14千步者为“一般生活方式者”,奖励金额为每人100元;日行步数为14千步以上者为“超健康生活方式者”,奖励金额为每人200元.求工会慰问奖励金额X(单位:元)的分布列和数学期望.附:若随机变量ξ服从正态分布N(μ,σ2),则P(μ﹣σ<ξ≤μ+σ)≈0.6827,P(μ﹣2σ<ξ≤μ+2σ)≈0.9545,P(μ﹣3σ<ξ≤μ+3σ)≈0.9973.21.(12分)已知函数f(x)=.(1)讨论f(x)的单调性;(2)若x1,x2(x1<x2)是f(x)的两个零点,求证:.(二)选考题:共10分.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.(10分)在直角坐标系xOy中,曲线C1的参数方程为(θ为参数),直线C2的参数方程为(a为常数且a≠0,t为参数).(1)求C1和C2的直角坐标方程;(2)若C1和C2相交于A、B两点,以线段AB为一条边作C1的内接矩形ABCD,当矩形ABCD的面积取最大值时,求a的值.[选修4-5:不等式选讲]23.已知函数f(x)=|x+a|﹣|2x﹣2|(a∈R).(1)证明:f(x)≤|a|+1;(2)若a=2,且对任意x∈R都有k(x+3)≥f(x)成立,求实数k的取值范围.2020年陕西省西安市西工大附中高考数学模拟试卷(理科)(3月份)答案与解析一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.【分析】作出椭圆+y2=1和y=3x的图象,结合图形得A∩B中的元素的个数是2.【解答】解:集合,B={(x,y)|y=3x},作出椭圆+y2=1和y=3x的图象,如下:结合图形得A∩B中的元素的个数是2.故选:B.2.【分析】利用复数代数形式的乘除运算化简,再由复数模的计算公式求解.【解答】解:∵=,∴z在复平面内对应的点到原点的距离是|z|=.故选:C.3.【分析】设2017年VR市场总收入为1,根据统计图,逐一判断即可.【解答】解:设2017年VR市场总收入为1,A,地区2019年的VR市场总收入为4,是2017年的4倍,正确;B,2017年和2018年的硬件收入总和为1×0.9+2×0.8=2.5<4×0.7=2.8,故正确;C,2019年的VR软件收入1.2是2018年的软件收入0.4的3倍,正确;D,错误,2019年的VR软件收入是2017年的软件收入的12倍,故选:D.4.【分析】由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量S的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【解答】解:第一次,S=2×(4﹣2)=4,S≤0否;若m=m+2=6;第二次,S=4×(6﹣4)=8,S≤0否;m=m+2=8;第三次,S=8×(8﹣8)=0,S≤0,是,输出S=0;正确;若m=m+1=5;第二次,S=4×(5﹣4)=4,S≤0否;m=m+1=6;第三次,S=4×(6﹣4)=8,S≤0,否;m=m+1=7,第四次,S=8×(7﹣8)=﹣8,S≤0是;输出S=﹣8;与S=0矛盾,舍去;若m=m﹣1=3;第二次,S=4×(3﹣4)=﹣4,S≤0是;输出S=﹣4,与S=0矛盾,舍去;若m=m﹣2=2第二次,S=4×(2﹣4)=﹣8,S≤0是;输出S=﹣8,与S=0矛盾,舍去;故输入m=m+2,输出的S的值为0,故选:A.5.【分析】可以得出,,从而可得出a,b,c的大小关系.【解答】解:,,∴a<c<b.故选:B.6.【分析】要想符合要求,1出现的次数尽可能的多,当区域A标记的数字是2,区域B标记的数字是1时,恰好取在标记为1的区域的概率所有可能值最大.【解答】解:要想符合要求,1出现的次数尽可能的多;所以:当区域A标记的数字是2,区域B标记的数字是1时,恰好取在标记为1的区域的概率所有可能值最大,此时所在的小方格个数n=5×6=30,标记为1的区域中小方格的个数m=10,∴恰好取在标记为1的区域的概率所有可能值中,最大的是P==.故选:C.7.【分析】由题意可得卫星向径是椭圆上的点到焦点的距离,可得向径的最大值最小值,运行速度的意义又是服从面积守恒规律,即卫星的向径(卫星与地球的连线)在相同的时间内扫过的面积相等,可得速度的最大值及最小值时的情况,由向径的意义可得最小值与最大值的比越小时,离心率越大,椭圆越扁,进而可得所给命题的真假.【解答】解:由题意可得卫星的向径是椭圆上的点到右焦点的距离,所以最小值为a﹣c,最大值为a+c,所以A,B正确;卫星向径的最小值与最大值的比值越小,即==﹣1+越小,则e越大,椭圆越扁,故C正确.因为运行速度是变化的,速度的变化,所以卫星运行速度在近地点时向径越小,在远地点时向径越大,卫星的向径(卫星与地球的连线)在相同的时间,内扫过的面积相等,则向径越大,速度越小,所以卫星运行速度在近地点时最大,在远地点时最小,即D不正确;故选:D.8.【分析】由题意可得中间部分的体积为原三棱柱体积的三分之一,得到原三棱柱的体积,设AA1与底面所成角为α,由棱柱体积公式列式求得sinα的值.【解答】解:如图,过EF作平面EFG∥底面ABC,则,,可得中间部分的体积为V==4,∴,设AA1与底面所成角为α,则S△ABC•AA1•sinα=12,又AA1=4,△ABC的面积为5,∴20sinα=12,即sin.∴AA1与底面所成角的正弦值为.故选:B.9.【分析】首先利用函数的奇偶性求出φ的值,进一步求出函数的关系式为f(x)=﹣sinωx,进一步利用(x)的图象关于直线对称,整理得ω=4k+2,最后利用函数的单调性的应用求出ω的值,从而确定函数的关系式,最后求出函数的值.【解答】解:f(x)=sin(ωx+φ)(ω>0,0<φ≤π)是R上的奇函数,所以φ=kπ,k∈Z,当k=1时,φ=π.所以f(x)=sin(ωx+π)=﹣sinωx,由于f()=﹣sin(ω)=±1,所以ω=kπ(k∈Z),整理得ω=k+,整理得ω=4k+2.当k=0时,ω=2,函数f(x)=﹣sin2x,由于x∈,所以,故函数是单调递减函数.当k=1时ω=4+2=6,函数f(x)=﹣sin6x,由于x∈,所以,由于内单调,故函数不为单调函数.当k=2时,ω=10,函数f(x)在区间内也不是单调函数,所以f(x)=﹣sin2x,故f()==﹣.故选:A.10.【分析】设切点P(),写出函数在切点处的导数,得到切线方程,分别求出切线在两坐标轴上的截距,利用三角形面积公式列式可得.构造函数f(x)=(x﹣1)2e x,利用导数研究其单调性与极值,则答案可求.【解答】解:设切点P(),由y=e x,得y′=e x,则,∴直线l的方程为,取y=0,得x=x0﹣1,取x=0,得.∴,则.构造函数f(x)=(x﹣1)2e x,f′(x)=e x(x2﹣1).令f′(x)=0,得x=±1.∴当x<﹣1或x>1时,f′(x)>0,当﹣1<x<1时,f′(x)<0,可得f(x)先增后减再增,,f(x)极小值=f(1)=0.∵f(x)的极大值<,∴当x≤1时,不存在点P满足题意;当x>1时,f(x)单调递增,当x→+∞时,f(x)→+∞.∴f(x)=0有唯一解,则点P存在且唯一.故选:A.11.【分析】由双曲线的定义和内切圆的切线性质:圆外一点向圆引切线,则切线长相等,结合双曲线的定义,转化求解渐近线方程即可.【解答】解:双曲线的左、右焦点分别为F1,F2,点M在C的右支上,MF1与y轴交于点A,△MAF2的内切圆与边AF2切于点B.与MF1的切点为N,如图:设AB=n,MB=m,BF2=t,由双曲线的定义可知:m+2n+t﹣m﹣t=2a,可得n=a,若|F1F2|=4|AB|,所以2c=4a,c=2a,则b=.所以双曲线的渐近线方程为:±y=0.故选:A.12.【分析】本题先根据函数的周期性和奇偶性画出函数f(x)的图象,再根据符号函数的性质,以及函数的周期性,利用数形结合法可对四个选项逐个判断,可得正确选项.【解答】解:依题意,由f(x+2)=f(x),可知函数f(x)是以2为周期的周期函数.∵当x∈[0,1]时,f(x)=x,f(x)是偶函数,∴当x∈[﹣1,0]时,f(x)=﹣x.函数f(x)图象如下:根据图可得,0≤f(x)≤1,故sgn(f(x))≥0,选项A不正确;很明显,当x=2k,k∈Z时,f(x)=0,sgn(f(x))=0,选项C正确;f()=f(2×1010+)=f()=,故选项B不正确;当k=2时,sgn(f(2))=sgn(0)=0,|sgn2|=1,故选项D不正确故选:C.二、填空题:本题共4小题,每小题5分,共20分.13.【分析】利用向量数量积与向量垂直、向量坐标运算与向量共线的关系即可得出.【解答】解:+μ=(﹣3+μ,2﹣μ),2+=(﹣5,3),∵,∴(+μ)•=(﹣3+μ,2﹣μ)•(﹣3,2)=﹣3(﹣3+μ)+2(2﹣μ)=0,解得μ=.∵,∴3(﹣3+μ)+5(2﹣μ)=0,解得μ=.故答案为:,.14.【分析】对已知式两边对x求导数,再利用x=1,即可求得结果.【解答】解:∵(5x﹣4)7=a0+a1x+a2x2+a3x3+a4x4+a5x5+a6x6+a7x7,两边对x求导数,可得7×5×(5x﹣4)6=a1+2a2x+3a3x2+4a4x3+5a5x4+6a6x5+7a7x6,再令x=1,可得a1+2a2+3a3+4a4+5a5+6a6+7a7=35,故答案为:35.15.【分析】利用裂项法可求得a n=(a n﹣a n﹣1)+(a n﹣1﹣a n﹣2)+…+(a3﹣a2)+(a2﹣a1)+a1=12﹣,而a n=12﹣为递增数列,可求得a n的极限值(可作为最大值),于是所求可转化为对任意的m∈[1,4],t2+mt<12恒成立问题,通过构造函数h(m)=tm+t2﹣12,则,解之即可.【解答】解:∵,∴=﹣,∴a n=(a n﹣a n﹣1)+(a n﹣1﹣a n﹣2)+…+(a3﹣a2)+(a2﹣a1)+a1=(﹣)+(﹣)+…+(﹣)+(1﹣)+11=12﹣,∵a n=12﹣为递增数列,∴当n→+∞时,a n→12.∵对任意的m∈[1,4],存在n∈N*,使得成立,∴对任意的m∈[1,4],t2+mt<12恒成立.令h(m)=tm+t2﹣12,则,即,解得:﹣4<t<2,故答案为:(﹣4,2).16.【分析】求出Q在正方形DCC1D1的位置,然后转化求解距离即可.【解答】解:要使PQ∥平面SBC1,作PE∥C1S,交C1D1于E,正方体ABCD﹣A1B1C1D1的棱长是a,D1E=C1D1=,连接BD,取BD的中点O,连接PO,则PSBO为平行四边形,PO∥SB,取DF==,连接OF,EF,所以PEFO为平行四边形,Q 在EF上,所以EF==.点Q的轨迹的长度是:.故答案为:.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.【分析】(1)由题意利用诱导公式可求sin∠BAC的值,在△ABC 中,由正弦定理可得BC的值.(2)由(1)可得sin∠BAC=,利用同角三角函数基本关系式可求cos∠BAC,利用平面向量的运算可得=(+),两边平方后即可计算得解AC的值.【解答】解:(1)∵∠DAC=90°,,.∴sin∠BAC=sin(90°+∠DAB)=,∵,∴在△ABC中,由正弦定理,可得:=,可得:BC=4.(2)∵由(1)可得sin∠BAC=,∴cos∠BAC=﹣,∵=(+),可得2=(+)2,又∵AE=2,,∴可得4=[6+AC2+2×],可得3AC2﹣2AC﹣30=0,∴解得AC=或﹣(舍去).18.【分析】(1)推导出AD⊥DE,BD⊥DE,由此能证明DE⊥平面ABCD.(2)DE⊥平面ABCD,以D为原点,DA为x轴,DC为y轴,DE为z轴,建立空间直角坐标系,利用向量法能求出λ.【解答】解:(1)证明:∵四边形ADEF是矩形,平面BDE⊥平面ABCD,平面BDE∩平面ABCD=BD,∴AD⊥DE,BD⊥DE,∵AD∩BD=D,∴DE⊥平面ABCD.(2)解:∵在多面体ABCDEF中,AB∥CD,AD⊥CD,四边形ADEF是矩形,平面BDE⊥平面ABCD,AF=λAD.由(1)知DE⊥平面ABCD,∴以D为原点,DA为x轴,DC为y轴,DE为z轴,建立空间直角坐标系,设CD=2AB=2AD=2,则AF=λ,则B(1,1,0),C(0,2,0),D(0,0,0),F(1,0,λ),=(1,﹣1,0),=(1,﹣2,λ),=(0,﹣2,0),设平面BCF的法向量=(x,y,z),则,取x=1,得=(1,1,),设平面CDF的法向量=(a,b,c),则,取a=1,得=(1,0,﹣),∵二面角B﹣CF﹣D的正弦值为,∴|cos<>|==||=,解得λ=2或λ=.19.【分析】(1)由题意知E(3,2),设抛物线C的准线为直线l′,过M,N,E分别作直线l′的垂线,垂足分别为M′,N′,E′,则|MF|=|MM′|,|NF|=|NN′|,从而|EE′|====4,进而3+=4,由此能求出抛物线C的方程;(2)设直线l的方程为x=ky+t,与y2=4x联立,得y2﹣4ky﹣4t=0,由此利用根的判别式,韦达定理、直线与抛物线的位置关系,能求出k1+k2﹣2k3的值与k,y0无关,当且仅当t=1时,定点为T (1,0),定值为0.【解答】解:(1)由题意知E(3,2),设抛物线C的准线为直线l′,过M,N,E分别作直线l′的垂线,垂足分别为M′,N′,E′,则|MF|=|MM′|,|NF|=|NN′|,∴|EE′|====4,∴3+=4,解得p=2,∴抛物线C的方程为y2=4x.(2)由题意知,直线l的斜率存在,且不为0,设直线l的方程为x=ky+t,与y2=4x联立,得:y2﹣4ky﹣4t=0,△=16k2+16t>0,设A(x1,y1),B(x2,y2),P(﹣1,y0),y1+y2=4k,y1y2=﹣4t,∴x1+x2=k(y1+y2)+2t=4k2+2t,x1x2=,∴k1+k2﹣2k3=++=+=,∴k1+k2﹣2k3的值与k,y0无关,当且仅当t=1时,定点为T(1,0),定值为0.20.【分析】(1)以各组中点为该组的代表值加权平均即可;(2)依题意,日行步数ξ(千步)服从正态分布N(μ,σ2),由(1)知μ=12,又σ的近似值为2,所以P(14<ξ<18)=P(μ+σ<ξ<μ+3σ)代入即可;(3)由频率分布直方图知每人获得奖励为0元的概率为0.02,奖励金额为100元的概率为0.88,奖励金额为200元的概率为0.1,确定随机变量X的所有可能的取值,分别求出,每个随机变量对应的概率,列出分布列求期望即可.【解答】解:(1)这300名员工日行步数的样本平均数为2(5×0.005+7×0.005+9×0.04+11×0.29+13×0.11+15×0.03+17×0.015+19×0.005)=11.68≈12千步;(2)因为ξ~N(12,22),所以P(14<ξ<18)=P(12+2<ξ<12+3×2)=[P(6<ξ<18)﹣P(10<ξ<14)]=0.1574,所以走路步数ξ∈(14,18)的总人数为300×0.1574≈47人;(3)由频率分布直方图知每人获得奖励为0元的概率为0.02,奖励金额为100元的概率为0.88,奖励金额为200元的概率为0.1,由题意知X的可能取值为0,100,200,300,400,P(X=0)=0.022=0.0004,P(X=100)=2×0.02×0.88=0.0352,P(X=200)=0.882+2×0.02×0.1=0.7784,P(X=300)=2×0.88×0.1=0.176,P(X=400)=0.12=0.01,所以X的分布列为:X0100200300400P0.00040.03520.77840.1760.01E(X)=100×0.0352+200×0.7784+300×0.176+400×0.01=216.21.【分析】(1)f(x)的定义域为(0,+∞),求出导函数,通过①当a≤0时,②当a>0时,判断导数的符号,判断函数的单调性即可.(2)利用f(x)有两个零,得到,推出a>2e,要证原不等式成立,只需证明,利用分析法推出;另一方面,令,(x>0),通过函数的导数,转化求解函数的最值,转化求解即可.【解答】解:(1)f(x)的定义域为(0,+∞),且,①当a≤0时,f'(x)≤0,f(x)的单调递减区间为(0,+∞);②当a>0时,由f'(x)>0得,故f(x)的单调递增区间为,单调递减区间为.(2)证明:∵f(x)有两个零点,∴由(1)知a>0且,∴a>2e,要证原不等式成立,只需证明,只需证明,只需证明.一方面∵a>2e,∴,∴,∴,且f(x)在单调递增,故;另一方面,令,(x>0),则,当时,g'(x)<0;当时,g'(x)>0;故,故g(x)≥0即时x∈(0,+∞)恒成立,令,则,于是,而,故,且f(x)在单调递减,故;综合上述,,即原不等式成立.(二)选考题:共10分.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程] 22.【分析】(1)曲线C1的参数方程为(θ为参数),利用平方关系消去参数可得普通方程.直线C2的参数方程为(a为常数且a≠0,t为参数).消去参数t可得普通方程;(2)由直线x=﹣2+ay经过定点(﹣2,0),由于以线段AB为一条边作C1的内接矩形ABCD,因此矩形的对角线为圆的直径,都经过原点.可知:当矩形ABCD的面积取最大值时,四边形ABCD 为正方形.即可得出.【解答】解:(1)曲线C1的参数方程为(θ为参数),利用平方关系消去参数可得:x2+y2=4.直线C2的参数方程为(a为常数且a≠0,t为参数).消去参数t可得:x=﹣2+ay.(2)由直线x=﹣2+ay经过定点(﹣2,0),由于以线段AB为一条边作C1的内接矩形ABCD,因此矩形的对角线为圆的直径,都经过原点.可知:当矩形ABCD的面积取最大值时,四边形ABCD为正方形.∴直线经过点(0,±2),代入可得:0=﹣2±2a,解得a=±1.[选修4-5:不等式选讲]23.【分析】(1)将函数f(x)=|x+a|﹣|2x﹣2|化为f(x)=|(2x﹣2)﹣(x﹣a﹣2)|﹣|2x﹣2|,利用绝对值不等式可得f(x)≤|x﹣a﹣2|(当且仅当(x﹣1)(x﹣a﹣2)≤0时取等号),进一步分析可证得结论成立;(2)要使k(x+3)≥f(x)恒成立.则过定点(﹣3,0)的直线y=k(x+3)的图象不会在y=f(x)的图象的下方,在同一坐标系中作出y=f(x)与y=k(x+3)的图象,结合图象可求得实数k的取值范围.【解答】(1)证明:函数f(x)=|x+a|﹣|2x﹣2|=|(2x﹣2)﹣(x ﹣a﹣2)|﹣|2x﹣2|≤|2x﹣2|+|x﹣a﹣2|﹣|2x﹣2|=|x﹣a﹣2|(当且仅当(2x﹣2)(x﹣a﹣2)≤0,即(x﹣1)(x﹣a﹣2)≤0时取等号)由于(x﹣1)(x﹣a﹣2)≤0,当a﹣2≥1,即a≥3时,|x﹣a﹣2|≤|1﹣a﹣2|=|a+1|=|a|+1;当1>a﹣2,即a<3时,|x﹣a﹣2|≤|1﹣a﹣2|=|a+1|≤|a|+1;综上所述,f(x)≤|a|+1;(2)解:a=2,且对任意x∈R都有k(x+3)≥f(x)=|x+2|﹣|2x ﹣2|=,要使k(x+3)≥f(x)恒成立.则过定点(﹣3,0)的直线y=k (x+3)的图象不会在y=f(x)的图象的下方,在同一坐标系中作出y=f(x)与y=k(x+3)的图象如图,由图可知,≤k≤1.即实数k的取值范围为[,1].。
西工大附中2020高考数学理模拟题含答案(四)第Ⅰ卷 选择题(共50分)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的(本大题共10小题,每小题5分,共50分)1.设复数21z i=+(其中i 为虚数单位),则z 等于( ) A .1+2i B .12i - C .2i - D .2i2.下列有关命题的说法中错误的是....( ) A .若“p q 或”为假命题,则p 、q 均为假命题 B .“1x =”是“1x ≥”的充分不必要条件C .“12sin x =”的必要不充分条件是“6x π=”D .若命题p :“∃实数x 使20x ≥”,则命题p ⌝为“对于x R ∀∈都有20x <”3.执行右图所给的程序框图,则运行后输出的结果是( )A .3B .3-C .2-D .24.已知{}n a 是等差数列,n S 是其前n 项和,若公差0d <且27S S =,则下列结论中不正确的是.....( ) A .45S S = B .90S =C .50a =D .2745S S S S +=+5.如图是函数4sin()y x =ω+ϕ(0,||)ω>ϕ<π图像的一部分,则( ) A .135,56πω=ϕ=B .11,56πω=ϕ= C .75,56πω=ϕ= D .23,56πω=ϕ=6.将直线20x y λ-+=沿x 轴向左平移1个单位,所得直线与圆22240x y x y ++-=相切,则实数λ的值为( )A .-3或7B .-2或8C .0或10D .1或117.在平面直角坐标系中,若不等式组0(1)1y y x y k x ≥⎧⎪≤⎨⎪≤--⎩表示一个三角形区域,则实数k 的取值范围是()A .(),1-∞-B .()1,+∞C .()1,1-D .(,1)(1,)-∞-+∞8.从1,2,3,4,5中任取2个不同的数,设A 表示事件“取到的2个数之和为偶数”,B 表示事件“取到的2个数均为偶数”,则P (B|A )=( )A .110 B .14 C .25 D .129.一个几何体的三视图如图所示,其中正视图是一个正三角形,则这个几何体的体积为( )A .13BC .1D .310.在平面直角坐标系中,由x 轴的正半轴、y 轴的正半轴、曲线xy e =以及该曲线在(1)x a a =≥处的切线..所围成图形的面积是( ) A .a e B .1a e - C .12a e D .121ae -第Ⅱ卷 非选择题(共100分)二、填空题(本大题共5小题,每小题5分,满分25分,把答案填写在答题卡相应的位置)11.二项式831x x ⎛⎫- ⎪⎝⎭的展开式中常数项为 ;12.若tan 2,α=则sin cos αα= ;13.PA ⊥平面ABC ,ABC=90︒∠,且PA=AB=BC ,则异面直线PB 与AC 所成角等于 ;14.若函数()f x 对于x R ∀∈都有(1)(1)f x f x -=+和(1)(3)0f x f x -++=成立,当[0,1]x ∈时,()f x x =,则(2013)f = ;15.选做题(请考生在以下三个小题中任选一题做答,如果多做,则按所做的第一题评阅记分) A (选修4—4坐标系与参数方程)已知点A 是曲线2sin ρθ=上任意一点,则点A 到直线3sin()4πρθ+=的距离的最小值是 ;B (选修4—5不等式选讲)已知22,,33,x y R x y ∈+≤则23x y +的最大值是 .;C(选修4—1几何证明选讲)如图,ABC ∆内接于O ,AB AC =,直线MN 切O 于点C ,//BE MN 交AC 于点E .若6,4,AB BC ==则AE 的长为 .三、解答题:解答应写出文字说明,证明过程或演算步骤(本大题共6小题,共75分) 16.(本小题满分12分)已知等差数列{}n a ,满足37a =,5726a a =+.(Ⅰ)求数列{}n a 的通项n a ;(Ⅱ)令211n n b a =-(n N +∈),求数列{}n b 的前n 项和n S .17.(本小题满分12分)在ABC ∆中,角A,B,C 的对边分别为a ,b,c,且满足(2)cos cos a c B b C -=. (Ⅰ)求角B 的大小;(Ⅱ)设向量(sin ,cos 2),(4,1)m A A n k ==,当k>1时,()f A m n =⋅的最大值是5,求k 的值.18.(本小题满分12分)某企业规定,员工在一个月内有三项指标任务,若完成其中一项指标任务,可得奖金160元;若完成其中两项指标任务可得奖金400元;若完成三项指标任务可得奖金800元;若三项指标都没有完成,则不能得奖金且在基本工资中扣80元,假设员工甲完成每项指标的概率都是12. (Ⅰ)求员工甲在一个月内所得奖金为400元的概率; (Ⅱ)求员工甲在一个月内所得奖金数的分布列和数学期望.19.(本小题满分12分)直三棱柱111ABC-A B C 中,1CC CA 2,AB BC ===,D 是1BC 上一点,且CD ⊥平面1ABC .(Ⅰ)求证:AB ⊥平面11BCC B ;(Ⅱ)求二面角1C AC B --的平面角的正弦值.20.(本小题满分13分)已知函数2()(2)xf x x kx k e -=-+⋅. (Ⅰ)当k 为何值时,()f x 无极值;(Ⅱ)试确定实数k 的值,使()f x 的极小值为0.21.(本小题满分14分)已知椭圆E :22221x y a b+=(,0)a b >与双曲线G :224x y -=,若椭圆E 的顶点恰为双曲线G 的焦点,椭圆E 的焦点恰为双曲线G 的顶点.(Ⅰ)求椭圆E 的方程;(Ⅱ)是否存在一个以原点为圆心的圆,使得该圆的任意一条切线与椭圆E 恒有两个交点A 、B ,且OA OB ⊥?若存在请求出该圆的方程,若不存在请说明理由.数学(理科) 参考答案与评分标准一、选择题: 题号 1 2 3 4 5 6 7 8 9 10 答案ACCDCAABDD二、填空题 (一)必做题11.28; 12.25; 13.3π; 14.1 (二)选做题15.(1)52;;(3)103. 三、解答题16. (本小题满分12分)(1)21n a n =+(2)4(1)n nS n =+17. (本小题满分12分)解:(1)(2)cos cos ,a c B b C -=(2sin sin )cos sin cos ,A C B B C ∴-=2sin cos sin cos cos sin ,A B B C B C ∴=+ 2sin cos sin .A B A ∴=又在ABC ∆中,,(0,)A B π∈,所以12sin 0,cos A B >=,则3B π=(2)24sin cos 22sin 4sin 1m n k A A A k A =+=-++,222(sin )21m n A k k ∴=--++.又3B π=,所以23(0,)A π∈,所以sin (0,1]A ∈. 所以当2sin 1()A A π==时,m n 的最大值为41k -. 32415,k k ∴-==18. (本小题满分12分)解:设员工甲在一个月内所得奖金为ξ元,则由题意可知ξ的可能取值为80,160,400,800-∵()213113160228P C ξ⎛⎫⎛⎫=== ⎪⎪⎝⎭⎝⎭ ()223113400228P C ξ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭ ()3331180028P C ξ⎛⎫=== ⎪⎝⎭ ()303118028P C ξ⎛⎫=-== ⎪⎝⎭∴ξ的分布列为:80-160400800P18383818数学期望为1331801604008003008888E ξ=-⨯+⨯+⨯+⨯=元 19.(本小题满分12分)解:(1)1CC ⊥平面ABC ,AB ⊂平面ABC ,∵1CC ⊥AB .又CD ⊥平面1ABC ,且AB ⊂平面1ABC ,∴CD AB,⊥又1CC CD=C,∴AB ⊥平面11BCC B . (2)BC ∥11B C ,∴11B C A ∠或其补角就是异面直线1AC 与BC 所成的角.由(1)知AB BC,⊥又AC=2,∴,∴2221111AB AA A B =+.在11AB C ∆中,由余弦定理知cos 2222111111111B C AC AB 1B C A=2B C AC 2+-∠==⋅∴11B C A ∠=3π,即异面直线1AC 与BC 所成的角的大小为3π(3)过点D 作1DE AC ⊥于E ,连接CE ,由三垂线定理知1CE AC ⊥,故∠DEC 是二面角1C-AC B -的平面角,又1AC=CC ,∴E 为1AC 的中点,∴112CE=AC =1BC ===,由111122CC CB=BC CD,⋅⋅得11CC CB CD BC ⋅==Rt ∆CDE 中,sin CD DEC CE ∠===20. (本小题满分13分)(1)4k = (2)0;8k k ==21.(本小题满分14分)22(1)184x y +=(2)2283x y +=高考模拟数学试卷第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}2|log (2)A x y x ==-,{}|33,B x x x R =-<<∈,则A B =( )A .(2,3)B .[2,3)C .(3,)+∞D .(2,)+∞2.若复数满足(1)2z i i -=,其中i 为虚数单位,则共轭复数z =( ) A .1i +B .1i -C .1i --D .1i -+3.已知命题p :13x <<,q :31x >,则p 是q 的( ) A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件 4.函数2sin ()1xf x x =+的部分图像可能是( )5.已知双曲线22221x y a b -=(0a >,0b >)与椭圆221124x y +=有共同焦点,且双曲线的一条渐近线方程为y =,则该双曲线的方程为( )A .221412x y -= B .221124x y -= C .22162x y -= D .22126x y -= 6.三国时期吴国的数学家创造了一副“勾股圆方图”,用数形结合的方法给出了勾股定理的详细证明,如图所示“勾股圆方图”中由四个全等的正三角形(直角边长之比为1:在大正方形内随机取一点,则此点取自中间的小正方形部分的概率是( )A .2 B .4C .12-D .14-7.执行如图所示的程序框图,则输出的S 值为( )A .4849B .5051C .4951D .49508.如图,格纸上小正方形的边长为1,粗实线画出的是某四面体的三视图,则该四面体的体积为( )A .83B .23C .43D .29.将函数()2sin f x x =图象上各点的横坐标缩短到原来的12,纵坐标不变,然后向左平移6π个单位长度,得到()y g x =图象,若关于x 的方程()g x a =在,44ππ⎡⎤-⎢⎥⎣⎦上有两个不相等的实根,则实数a 的取值范围是( ) A .[]2,2-B .[2,2)-C .[1,2)D .[1,2)-10.若函数()f x ,()g x 分别是定义在R 上的偶函数,奇函数,且满足()2()xf xg x e +=,则( ) A .(2)(3)(1)f f g -<-<- B .(1)(3)(2)g f f -<-<- C .(2)(1)(3)f g f -<-<-D .(1)(2)(3)g f f -<-<-11.已知1F ,2F 分别为椭圆22221(0)x y a b a b+=>>的左、右焦点,点P 是椭圆上位于第一象限内的点,延长2PF 交椭圆于点Q ,若1PF PQ ⊥,且1||||PF PQ =,则椭圆的离心率为( ) A.2BC1D12.定义在(0,)+∞上的函数()f x 满足'()ln ()0xf x x f x +>(其中'()f x 为()f x 的导函数),若10a b >>>,则下列各式成立的是( )A .()()1f a f b a b >>B .()()1f a f b a b <<C .()()1f a f b a b <<D .()()1f a f b a b >>第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上) 13.已知向量a 与b 的夹角是3π,||1a =,1||2b =,则向量2a b -与a 的夹角为 .14.设等差数列{}n a 的前n 项和为n S ,若66a =,1515S =,则公差d = .15.设变量x ,y 满足约束条件4,326,1,x y x y y +≤⎧⎪-≥⎨⎪≥-⎩则22(1)x y -+的取值范围是 .16.三棱锥P ABC -中,PA ,PB ,PC 两两成60︒,且1PA =,2PB PC ==,则该三棱锥外接球的表面积为 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.在ABC ∆中,内角A 、B 、C 的对边分别为a 、b 、c ,且cos sin a B b A c +=. (1)求角A 的大小;(2)若a =ABC ∆的面积为12,求b c +的值. 18.2022年北京冬奥会的申办成功与“3亿人上冰雪”口号的提出,将冰雪这个冷项目迅速炒“热”.北京某综合大学计划在一年级开设冰球课程,为了解学生对冰球运动的兴趣,随机从该校一年级学生中抽取了100人进行调查,其中女生中对冰球运动有兴趣的占23,而男生有10人表示对冰球运动没有兴趣额. (1)完成22⨯列联表,并回答能否有90%的把握认为“对冰球是否有兴趣与性别有关”?(25名学生中随机抽取3人,求至少有2人对冰球有兴趣的概率. 附表:20()P K k ≥0.150 0.100 0.050 0.025 0.010 0k2.0722.7063.8415.0246.63522()()()()()n ad bc K a b c d a c b d -=++++19.如图,在四棱锥P ABCD -中,底面ABCD 为矩形,平面PBC ⊥平面ABCD ,PB PD ⊥.(1)证明:平面PAB ⊥平面PCD ;(2)若PB PC =, E 为棱CD 的中点,90PEA ∠=︒,2BC =,求四面体A PED -的体积.20.已知点1(0,)2F ,直线l :12y =-,P 为平面上的动点,过点P 作直线l 的垂线,垂足为H ,且满足()0HF PH PF ⋅+=. (1)求动点P 的轨迹C 的方程;(2)过点F 作直线'l 与轨迹C 交于A ,B 两点,M 为直线l 上一点,且满足MA MB ⊥,若MAB ∆的面积为'l 的方程.21.已知函数()x x f x e=. (1)求函数()f x 的单调区间;(2)记函数()y f x =的极值点为0x x =,若12()()f x f x =,且12x x <,求证:0122xx x e +> 请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,曲线1C 的方程为224x y +=,直线l的参数方程2,x t y =--⎧⎪⎨=⎪⎩(t 为参数),若将曲线1C 上的点的横坐标不变,纵坐标变为原来的32倍,得曲线2C . (1)写出曲线2C 的参数方程;(2)设点(P -,直线l 与曲线2C 的两个交点分别为A ,B ,求11||||PA PB +的值. 23.选修4-5:不等式选讲已知函数()|31||31|f x x x =++-,M 为不等式()6f x <的解集. (1)求集合M ;(2)若a ,b M ∈,求证:|1|||ab a b +>+.一、选择题1-5ACAAD 6-10CBBCD 11、12:DD 二、填空题 13.3π 14.52- 15.9,1713⎡⎤⎢⎥⎣⎦16.112π三、解答题17.解:(1)由已知及正弦定理得:sin cos sin sin sin A B B A C +=,sin sin()sin cos cos sin C A B A B A B =+=+sin in cos sin Bs A A B ∴=, sin 0sin cos B A A≠∴=(0,)4A A ππ∈∴=(2) 11sin 2242ABCSbc A bc -===∴=-又22222cos 2()(2a b c bc A b c bc=+-∴=+-+所以,2()4, 2.b c b c +=+=.18.解:(1)根据已知数据得到如下列联表根据列联表中的数据,得到所以有90%的把握认为“对冰球是否有兴趣与性别有关”.(2)记5人中对冰球有兴趣的3人为A 、B 、C ,对冰球没有兴趣的2人为m 、n ,则从这5人中随机抽取3人,共有(A ,m ,n )(B ,m ,n )(C ,m ,n )(A 、B 、m )(A 、B 、n )(B 、C 、m )(B 、C 、n )(A 、C 、m )(A 、C 、n )(A 、B 、C )10种情况,其中3人都对冰球有兴趣的情况有(A 、B 、C )1种,2人对冰球有兴趣的情况有(A 、B 、m )(A 、B 、n )(B 、C 、m )(B 、C 、n )(A 、C 、m )(A 、C 、n )6种, 所以至少2人对冰球有兴趣的情况有7种, 因此,所求事件的概率710p =. 19.(Ⅰ)证明:∵四边形ABCD 是矩形,∴CD ⊥BC.∵平面PBC ⊥平面ABCD ,平面PBC ∩平面ABCD=BC ,CD ⊂平面ABCD , ∴CD ⊥平面PBC ,∴CD ⊥PB.∵PB ⊥PD ,CD ∩PD=D ,CD 、PD ⊂平面PCD ,∴PB ⊥平面PCD. ∵PB ⊂平面PAB ,∴平面PAB ⊥平面PCD. (Ⅱ)取BC 的中点O ,连接OP 、OE. ∵PB ⊥平面PCD ,∴PB PC ⊥,∴112OP BC ==, ∵PB PC =,∴PO BC ⊥.∵平面PBC ⊥平面ABCD ,平面PBC ∩平面ABCD=BC ,PO ⊂平面PBC , ∴PO ⊥平面ABCD ,∵AE ⊂平面ABCD,∴PO ⊥AE.∵∠PEA=90O, ∴PE ⊥AE. ∵PO ∩PE=P ,∴AE ⊥平面POE ,∴AE ⊥OE. ∵∠C=∠D=90O, ∴∠OEC=∠EAD, ∴Rt OCERt EDA ∆∆,∴OC CEED AD=.∵1OC =,2AD =,CE ED =,∴CE ED ==111332A PED P AED AED V V S OP AD ED OP --==⋅=⨯⋅⋅1121323=⨯⨯=.20.解:(1)设(,)P x y ,则1(,)2H x -,1(,1),(0,),2HF x PH y ∴=-=-- 1(,)2PF x y =--,(,2)PH PF x y +=--,()0HF PH PF +=,220x y ∴-=,即轨迹C 的方程为22x y =.(II )法一:显然直线l '的斜率存在,设l '的方程为12y kx =+, 由2122y kx x y ⎧=+⎪⎨⎪=⎩,消去y 可得:2210x kx --=, 设1122(,),(,)A x y B x y ,1(,)2M t -,121221x x kx x +=⎧∴⎨⋅=-⎩,112211(,),(,)22MA x t y MB x t y =-+=-+MA MB ⊥,0MA MB ∴=,即121211()()()()022x t x t y y --+++=2121212()(1)(1)0x x x x t t kx kx ∴-+++++=,22212210kt t k k ∴--+-++=,即2220t kt k -+=∴2()0t k -=,t k ∴=,即1(,)2M k -,∴212|||2(1)AB x x k =-==+,∴1(,)2M k -到直线l '的距离2d ==3221||(1)2MABS AB d k ∆==+=1k =±, ∴直线l '的方程为102x y +-=或102x y -+=. 法2:(Ⅱ)设1122(,),(,)A x y B x y ,AB 的中点为()00,y x E则211121212120212222()()2()2AB x y y y x x x x y y x k x x x y ⎧=-⎪⇒-+=-⇒==⎨-=⎪⎩ PCBAEDO过点A,B 分别作1111B 于,于l BB A l AA ⊥⊥,因为,⊥MA MB E 为AB 的中点, 所以在Rt AMB 中,11111||||(||||)(||||)222==+=+EM AB AF BF AA BB 故EM 是直角梯形11A B BA 的中位线,可得⊥EM l ,从而01(,)2M x - 点M 到直线'l的距离为:2d ==因为E 点在直线'l 上,所以有20012y x =+,从而21200||1212(1)AB y y y x =++=+=+由2011||2(22MABSAB d x ==⨯+=01x =± 所以直线'l 的方程为12y x =+或12y x =-+.21.解:(1)'21()()x x x x e xe xf x e e--==,令'()0f x =,则1x =, 当(,1)x ∈-∞时,'()0f x >,当(1,)x ∈+∞时,'()0f x <, 则函数()f x 的增区间为(,1)-∞,减区间为(1,)+∞.(2)由可得()()10x f x x -'=-=e ,所以()y f x =的极值点为01x =. 于是,0122x x x +>e 等价于122x x +>e ,由()()12f x f x =得1212x x x x --=e e 且1201x x <<<.由1212x x x x --=e e 整理得,1122ln ln x x x x -=-,即1212ln ln x x x x -=-. 等价于()()()1212122ln ln x x x x x x +-<-e ,① 令12x t x =,则01t <<. 式①整理得()()21ln 1t t t +<-e ,其中01t <<. 设()()()21ln 1g t t t t =+--e ,01t <<. 只需证明当01t <<时,()max 0g t <.又()12ln 2g t t t'=++-e ,设()h t =()12ln 2g t t t'=++-e , 则()222121t h t t t t-'=-= 当10,2t 骣÷çÎ÷ç÷ç桫时,()0h t '<,()h t 在10,2骣÷ç÷ç÷ç桫上单调递减; 当1,12t 骣÷çÎ÷ç÷ç桫时,()0h t '>,()h t 在1,12骣÷ç÷çç÷桫上单调递增. 所以,()min 142ln 202g t g ⎛⎫''==--< ⎪⎝⎭e ;()130g '=->e ,所以,存在12110,,,122t t ⎛⎫⎛⎫∈∈ ⎪ ⎪⎝⎭⎝⎭,使得()()120g t g t ⅱ==, 注意到,10g ⎛⎫'= ⎪⎝⎭e ,而110,e 2骣÷çÎ÷ç÷ç桫,所以11t e=. 于是,由()0g t ¢>可得10e t <<或21t t <<;由()0g t ¢<可得21et t <<. ()g t 在()210,,,1t ⎛⎫ ⎪⎝⎭e 上单调递增,在21,t ⎛⎫ ⎪⎝⎭e 上单调递减. 于是,()(){}max 1max ,1g t g g ⎛⎫= ⎪⎝⎭e ,注意到,()10g =,1220g ⎛⎫=--< ⎪⎝⎭e e e ,所以,()max 0g t <,也即()()21ln 1t t t +<-e ,其中01t <<. 于是,0122x x x +>e .22解:(1)若将曲线1C 上的点的纵坐标变为原来的23,则曲线2C 的直角坐标方程为222()43x y +=, 整理得22149x y+=,∴曲线2C 的参数方程2cos ,3sin x y θθ=⎧⎨=⎩(θ为参数). (2)将直线l的参数方程化为标准形式为''122x t y ⎧=--⎪⎪⎨⎪=⎪⎩(t '为参数),将参数方程带入22149x y +=得221(2))22149t ''--+= 整理得27()183604t t ''++=. 12727PA PB t t ''+=+=,121447PA PB t t ''==,72111714427PA PB PA PB PA PB++===.23.解(1)()31316f x x x =++-<当13x <-时,()31316f x x x x =---+=-,由66x -<解得1x >-,113x ∴-<<-; 当1133x -≤≤时,()31312f x x x =+-+=,26<恒成立,1133x ∴-≤≤; 当13x >时,()31316f x x x x =++-=由66x <解得1x <,113x ∴<<(2)()()222222121(2)ab a b a b ab a b ab +-+=++-++22221a b a b =--+22(1)(1)a b =--由,a b M ∈得1,1a b <<2210,10a b ∴-<-<22(1)(1)0a b ∴-->1ab a b ∴+>+.高考模拟数学试卷注意事项:1. 答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置。
绝密★启用前西北工业大学附属中学2020届高三毕业班下学期高考适应性测试(全国Ⅱ卷)数学(文)试题2020年4月第I 卷(选择题共60分)一、选择题(本大题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的.)1.设全集为R,集合A={x|0<x<2}, B={x|x≥1}, 则()R A B ⋂=ð()A. {x|0<x≤1}B. {x|0<x<1}C. {x|1≤x<2}D. {x|0<x<2}2.设复数z 满足1,1z i i i +=+-则z=()A.2-i.B i .C D.2+i 3.已知5tan(),12απ-=且3(,),22ππα∈则sin 2πα⎛⎫+ ⎪⎝⎭=() 5.13A 5.13B - 12.13C 12.13D - 4.将函数y=sin2x 的图像向右平移(0)2πϕϕ<<个单位长度得到f(x)的图像,若函数f(x)在区间上[0,]3π单调递增,则φ的取值范围是() .[,]64A ππ .(,)64B ππ .[,]124C ππ .(,)124D ππ5.已知在等比数列{}n a 中,222415530,9002,9n a a a a a a a >+=-=,则2020a 等于()1010.3A 1009.3B 2019.3C 2020.3D6.下列四个命题中,正确命题的个数有()0003,sin cos 2x R x x ∃∈+=① ②命题“2,20x R x x ∀∈--<”的否定是“2,20x R x x ∃∈--≥”③“若a+b≥4,则a, b 中至少有一个不小于2”的逆命题是真命题④复数123,,z z z C ∈,则221223()()0z z z z -+-=的充分不必要条件是13z z =A.1B.2C.3D.47.明朝数学家程大位著的《算法统宗》里有一道著名的题目:“一百馒头一百僧,大僧三个更无争,小僧三人分一个,大、小和尚各几丁?”如右图所示的程序框图反映了此题的一个算法。执行如图的程序框图,则输出的n=()A.25B.45C.60D.758.2020年,一场突如其来的“新型冠状肺炎”使得全国学生无法在春季正常开学,不得不在家“停课不停学”.为了解高三学生居家学习时长,从某校的调查问卷中,随机抽取n 个学生的调查问卷进行分析,得到学生可接受的学习时长频率分布直方图(如下图所示),已知学习时长在[9,11)的学生人数为25,则n 的值为()A.40B.50C.80D.1009.设x, y 满足2011,3x y x y y -≥⎧⎪⎪+≤⎨⎪≥⎪⎩若z=-ax+y 取得最大值的最优解不唯一,则a 的值为()A.2或-3B.3或-2 1.3C -或12 1.3D -或2 10.已知两个夹角为3π的单位向量,a b r r ,若向量m 满足||1m a b --=r r r ,则||m r 的最大值是() .31 .31B C.2 .621D 11.设抛物线C:22(0)y px p =>的焦点为F,点M 在C 上,|MF|=5, 若以MF 为直径的圆过点3(0,),2则C的标准方程为() 2.A y x =或29y x =2.4B y x =或218y x = 2.2C y x =或218y x =D.24y x =或29y x =。
2020届陕西省西安工业大学附属补习学校高考数学模拟试卷一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.一个几何体的三视图如图所示,在该几何体的各个面中,最大面积是( )A .2B .2C .23.42.已知等比数列{}n a 的前n 项和为n S ,且1352a a +=,2454a a +=,则(n n S a = ) A .14n - B .41n-C .12n - D .21n-3.已知向量3,1)=-a ,||5=b ,且()⊥-a a b ,则()(3)+⋅-=a b a b ( ) A .15 B .19 C .15- D .19-4.已知函数()22103104x x f x x x +=⎨+≥⎪⎩,<,,点,A B 是函数()f x 图象上不同的两点,则(AOB O ∠为坐标原点)的取值范围是( ) A .50,12π⎛⎫ ⎪⎝⎭B .50,12π⎛⎤⎥⎝⎦C .70,12π⎛⎫ ⎪⎝⎭ D .70,12π⎛⎤ ⎥⎝⎦5.已知函数()ln 2f x x x x a =-+,若函数()y f x =与()()y f f x =有相同的值域,则a 的取值范围是( )A .1,12⎛⎤ ⎥⎝⎦B .(],1-∞C .31,2⎡⎫⎪⎢⎣⎭D .[)1,+∞6.已知双曲线()222210,0x y a b a b-=>>的两个顶点分别为,A B ,点P 为双曲线上除,A B 外任意一点,且点P 与点,A B 连线的斜率分别为1k 、2k ,若123k k =,则双曲线的渐近线方程为 ( )A .y x =±B .2y x =±C .3y x =±D .2y x =±7.已知函数sin ,4()cos ,4x x f x x x ππ⎧≤⎪⎪=⎨⎪>⎪⎩,则下列结论正确的是( )A .()f x是周期函数B .()f x 奇函数C .()f x 的图象关于直线4x π=对称D .()f x 在52x π=处取得最大值8.设a b c ,,均为正数,且122log aa =,121log 2bb ⎛⎫= ⎪⎝⎭,21log 2cc ⎛⎫= ⎪⎝⎭.则( ) A .a b c <<B .c b a <<C .c a b <<D .b a c <<9.如图,在正方体中,,分别是为,的中点,则下列判断错误的是( )A .与垂直B .与垂直C .与平行D .与平行10.七巧板是我国古代劳动人民的发明之一,被誉为“东方模板”,它是由五块等腰直角三角形、一块正方形和一块平行四边形共七块板组成的.如图所示的是一个用七巧板拼成的正方形,若在此正方形中任取一点,则此点取自黑色部分的概率为( )A .316B .38 C .516 D .71611.记6260126(1)(1)(1)...(1)x a a x a x a x -=+++++++,则0246a a a a +++=( )A .81B .365C .481D .72812.在等差数列{}n a 中,12012a =-,其前n 项和为n S ,若2012102002201210S S -=,则的值等于( )A .2011B .-2012C .2014D .-2013二、填空题:本题共4小题,每小题5分,共20分。
高考数学模拟试卷(文科)(3月份)一、选择题(本大题共12小题,共60.0分)1.已知集合A={1,2,3,6,9},B={3x|x∈A},C={x∈N|3x∈A},则B∩C=()A. {1,2,3}B. {1,6,9}C. {1,6}D. {3}2.右图是甲乙两位同学某次考试各科成绩(转化为了标准分,满分900分)的条形统计图,设甲乙两位同学成绩的平均值分别为,标准差分别为σ甲,σ乙,则()A. B.C. D.3.1748年,瑞士著名数学家欧拉发现了复指数函数和三角函数的关系,并写出以下公式e ix=cos x+i sin x,这个公式在复变论中占有非常重要的地位,被誉为“数学中的天桥”,根据此公式可知,e2i表示的复数所对应的点在复平面中位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限4.设D为△ABC所在平面内一点,=3,则()A. =-+B. =-C. =+D. =+5.《张丘建筑经》卷上第22题为:“今有女善织,日益功疾,且从第二天起,每天比前一天多织相同量的布.若第一天织5尺布,现有一月(按30天计),共织390尺布”,则该女最后一天织布的尺数为()A. 18B. 20C. 21D. 256.设两个变量x和y之间具有线性相关关系,它们的相关系数为r,y关于x的回归直线方程为=kx+b,则()A. k与r的符号相同B. b与r的符号相同C. k与r的符号相反D. b与r的符号相反7.如果对定义在R上的奇函数y=f(x),对任意两个不相邻的实数x1,x2,所有x1f(x1)+x2f(x2)>x1f(x2)+x2f(x1),则称函数y=f(x)为“H函数”,下列函数为H函数的是()A. f(x)=sin xB. f(x)=e xC. f(x)=x3-3xD. f(x)=x|x|8.已知正三棱柱ABC-A1B1C1的三视图如图所示,一只蚂蚁从顶点A出发沿该正三棱柱的表面绕行两周到达顶点A1,则该蚂蚁走过的最短路径为()A. B. 25 C. D. 319.将函数的图象向右平移个单位,在向上平移一个单位,得到g(x)的图象.若g(x1)g(x2)=4,且x1,x2∈[-2π,2π],则x1-2x2的最大值为()A. B. C. D.10.已知圆C:x2+y2-2x-4y+3=0,若等边△PAB的一边AB为圆C的一条弦,则|PC|的最大值为()A. B. C. 2 D. 211.抛物线x2=y在第一象限内图象上的一点(a i,2a i2)处的切线与x轴交点的横坐标记为a i+1,其中i∈N+,若a2=32,则a2+a4+a6等于()A. 64B. 42C. 32D. 2112.已知双曲线的右焦点为F2,若C的左支上存在点M,使得直线bx-ay=0是线段MF2的垂直平分线,则C的离心率为()A. B. 2 C. D. 5二、填空题(本大题共4小题,共20.0分)13.已知F是抛物线C:y=2x2的焦点,点P(x,y)在抛物线C上,且x=1,则|PF|=______.14.已知实数x,y满足约束条件,则z=-5x+y的最大值为______.15.设函数,则函数f(log210)=______.16.如图,已知正四棱柱和半径为的半球O,底面ABCD在半球O底面所在平面上,,,,四点均在球面上,则该正四棱柱的体积的最大值为______.三、解答题(本大题共7小题,共82.0分)17.△ABC的内角A,B,C的对边分别为,且.(1)求角A的大小;(2)求△ABC的面积的最大值.18.如图,在四棱锥P-ABCD中,侧面PCD⊥底面ABCD,PD⊥CD,E,F分别为PC,PA的中点,底面是直角梯形,AB∥CD,∠ADC=90°,AB=AD=PD=2,CD=4.(1)求证:平面PBC⊥平面PBD;(2)求三棱锥P-EFB的体积.19.从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值.由测量表得到如下频率分布直方图(1)补全上面的频率分布直方图(用阴影表示);(2)统计方法中,同一组数据常用该组区间的中间值作为代表,据此估计这种产品质量指标值的平均值及方差s2;(3)当质量指标值位于(80,122.5)时,认为该产品为合格品,求该产品为合格品的概率.20.已知椭圆C过点,两个焦点.(1)求椭圆C的标准方程;(2)设直线l交椭圆C于A,B两点,坐标原点O到直线l的距离为3,求△AOB 面积的最大值.21.已知函数f(x)=e x-ax(a∈R)有两个零点.(1)求实数a的取值范围;(2)若函数f(x)的两个零点分别为x1,x2,求证:x1+x2>2.22.已知曲线C的极坐标方程为ρ=,直线l的参数方程为(t为参数,0≤α<π).(Ⅰ)把曲线C的极坐标方程化为直角坐标方程,并说明曲线C的形状;(Ⅱ)若直线l经过点(1,0),求直线l被曲线C截得的线段AB的长.23.已知函数f(x)=的定义域为R.(1)求实数m的取值范围.(2)若m的最大值为n,当正数a、b满足+=n时,求7a+4b的最小值.答案和解析1.【答案】D【解析】解:∵集合A={1,2,3,6,9},B={3x|x∈A}={3,6,9,18,27},C={x∈N|3x∈A}={1,2,3},∴B∩C={3}.故选:D.先分别求出集合A,B,C,由此能求出B∩C.本题考查交集的求法,考查交集定义、不等式性质等基础知识,考查运算求解能力,是基础题.2.【答案】A【解析】解:由条形统计图得到:在这次考试各科成绩(转化为了标准分,满分900分)中,甲比乙的各科成绩整体偏高,且相对稳定,设甲乙两位同学成绩的平均值分别为,标准差分别为σ甲,σ乙,则>,σ甲<σ乙.故选:A.甲比乙的各科成绩整体偏高,且相对稳定,设甲乙两位同学成绩的平均值分别为,标准差分别为σ甲,σ乙,从而得到>,σ甲<σ乙.本题考查命题真假的判断,考查条形图、平均值、标准差等基础知识,考查运算求解能力,是基础题.3.【答案】B【解析】【分析】本题考查复数的代数表示法及其几何意义,由已知可得e2i=cos2+i sin2,再由三角函数的象限符号得答案,是基础题.【解答】解:由题意可得,e2i=cos2+i sin2,∵<2<π,∴cos2<0,sin2>0,则e2i表示的复数所对应的点在复平面中位于第二象限.故选B.4.【答案】A【解析】解:;∴;∴.故选:A.根据向量减法的几何意义便有,,而根据向量的数乘运算便可求出向量,从而找出正确选项.考查向量减法的几何意义,以及向量的数乘运算.5.【答案】C【解析】解:设公差为d,由题意可得:前30项和S30=390=30×5+d,解得d=.∴最后一天织的布的尺数等于5+29d=5+29×=21.故选:C.设出等差数列的公差,由题意列式求得公差,再由等差数列的通项公式求解.本题考查了等差数列的前n项和公式,考查了推理能力与计算能力,属于基础题.6.【答案】A【解析】解:∵相关系数r为正,表示正相关,回归直线方程上升,r为负,表示负相关,回归直线方程下降,∴k与r的符号相同.故选:A.根据相关系数知相关系数的性质:|r|≤1,且|r|越接近1,相关程度越大;且|r|越接近0,相关程度越小.r为正,表示正相关,回归直线方程上升,选出正确结果.本题考查用相关系数来衡量两个变量之间相关关系的方法,当相关系数为正时,表示两个变量正相关,当相关系数大于0.75时,表示两个变量有很强的线性相关关系.7.【答案】D【解析】【分析】本题考查函数的奇偶性与单调性的判断,关键是分析“H函数”的含义,属于基础题.根据题意,不等式x1f(x1)+x2f(x2)>x1f(x2)+x2f(x1)等价为(x1-x2)[f(x1)-f(x2)]>0,即满足条件的函数为单调递增函数,即可得“H函数”为奇函数且在R上为增函数,据此依次分析选项:综合可得答案.【解答】解:根据题意,对于所有的不相等实数x1,x2,则x1f(x1)+x2f(x2)>x1f(x2)+x2f(x1)恒成立,则有(x1-x2)[f(x1)-f(x2)]>0恒成立,即函数f(x)是定义在R上的增函数,则“H函数”为奇函数且在R上为增函数,据此依次分析选项:对于A,f(x)=sin x,为正弦函数,为奇函数但不是增函数,不符合题意;对于B,f(x)=e x,为指数函数,不是奇函数,不符合题意;对于C,f(x)=x3-3x,为奇函数,但在R上不是增函数,不符合题意;对于D,f(x)=x|x|=,为奇函数且在R上为增函数,符合题意;故选:D.8.【答案】B【解析】解:将正三棱柱ABC-A1B1C1沿侧棱展开,如图所示;在展开图中,最短距离是6个矩形对角线的连线的长度,也即为三棱柱的侧面上所求距离的最小值.由已知求得正三棱锥底面三角形的边长为=4,所以矩形的长等于4×6=24,宽等于7,由勾股定理求得d==25.故选:B.将三棱柱展开,得出最短距离是6个矩形对角线的连线,相当于绕三棱柱转2次的最短路径,由勾股定理求出对应的最小值.本题考查了棱柱的结构特征与应用问题,也考查了几何体的展开与折叠,以及转化(空间问题转化为平面问题,化曲为直)的思想方法.9.【答案】A【解析】【分析】本题主要考查函数y=A sin(ωx+φ)的图象变换规律,正弦函数的图象的值域,属于中档题.由题意利用函数y=A sin(ωx+φ)的图象变换规律,得到g(x)的解析式,再利用正弦函数的图象的值域,求出x1,x2的值,可得x1-2x2的最大值.【解答】解:将函数的图象向右平移个单位,再向上平移一个单位,得到g(x)=sin(2x-+)+1=-cos2x+1 的图象,故g(x)的最大值为2,最小值为0,若g(x1)g(x2)=4,则g(x1)=g(x2)=2,或g(x1)=g(x2)=-2(舍去).故有g(x1)=g(x2)=2,即cos2x1=cos2x2=-1,又x1,x2∈[-2π,2π],∴2x1,2x2∈[-4π,4π],要使x1-2x2取得最大值,则应有2x1=3π,2x2=-3π,故x1-2x2取得最大值为+3π=.故选:A.10.【答案】C【解析】解:由圆C:x2+y2-2x-4y+3=0,得:(x-1)2+(y-2)2=2,∴圆心坐标C(1,2),半径r=.∵等边△PAB的一边AB为圆C的一条弦,圆中最长弦即为直径,∴|AB|的最大值为直径2,又∵△PAB为等边三角形,∴|PC|的最大值为故选:C化圆的一般方程为标准方程,从而得到圆心坐标和半径.等边△PAB的一边AB为圆C 的一条弦,可得|PC|的最大值为直径,即可得出结论.本题考查圆的方程,考查学生的计算能力,确定|PC|的最大值为直径是关键.11.【答案】B【解析】解:∵y=2x2(x>0),∴y′=4x,∴x2=y在第一象限内图象上一点(a i,2a i2)处的切线方程是:y-2a i2=4a i(x-a i),整理,得4a i x-y-2a i2=0,∵切线与x轴交点的横坐标为a i+1,∴a i+1=a i,∴{a2k}是首项为a2=32,公比q=的等比数列,∴a2+a4+a6=32+8+2=42.故选:B.由y=2x2(x>0),求出x2=y在第一象限内图象上一点(a i,2a i2)处的切线方程是:y-2a i2=4a i(x-a i),再由切线与x轴交点的横坐标为a i+1,知a i+1=a i,所以{a2k}是首项为a2=32,公比q=的等比数列,由此能求出a2+a4+a6.本题考查数列与函数的综合,综合性强,难度大,容易出错.解题时要认真审题,注意导数、切线方程和等比数列性质的灵活运用.12.【答案】C【解析】【分析】本题考查双曲线的定义和性质,考查三角形的中位线定理,属于中档题.求得F2到渐近线的距离为b,OP为△MF1F2的中位线,运用中位线定理和双曲线的定义,以及离心率的公式,计算可得所求值.【解答】解:设F2(c,0),椭圆左焦点记为F1(-c,0),直线bx-ay=0是线段MF2的垂直平分线,可得F2到渐近线的距离为|F2P|==b,即有|OP|==a,因为O为F1F2中点,OP是MF2的中垂线,点P在MF2上,OP为△MF1F2的中位线,可得|MF1|=2|OP|=2a,|MF2|=2b,由|MF2|-|MF1|=2a,即为2b-2a=2a,即b=2a,可得e====.故选:C.13.【答案】【解析】解:由y=2x2,得x2=,则p=;由x=1得y=2,由抛物线的性质可得|PF|=2+=2+=,故答案为:.利用抛物线方程求出p,利用抛物线的性质列出方程求解即可.本题考查抛物线的定义的应用,属于基础题.14.【答案】10【解析】解:作出实数x,y满足约束条件的可行域如图所示:作直线l0:-5x+y=0,再作一组平行于l0的直线l:-5x+y=z,当直线l经过点A时,z=-5x+y取得最大值,由,得点A的坐标为(-2,0),所以z max=-5×(-2)+0=10.z=-5x+y的最大值为:10.故答案为:10.作出约束条件表示的可行域,判断目标函数经过的点,然后求解目标函数的最值即可.本题考查线性规划的简单应用,考查转化思想以及数形结合的综合应用,考查计算能力.15.【答案】【解析】解:∵函数,∴函数f(log210)=f(log210-1)=f(log210-2)=f(log210-3)=-1==.故答案为:.推导出函数f(log210)=f(log210-1)=f(log210-2)=f(log210-3)=-1,由此能求出结果.本题考查函数值的求法,考查函数性质等基础知识,考查运算求解能力,是基础题.16.【答案】4【解析】解:设正四棱柱ABCD-A1B1C1D1的高为h,底面棱长为a,则正四棱柱的底面外接圆直径为,所以,.由勾股定理得,即,得a2=6-2h2,其中,所以,正四棱柱ABCD-A1B1C1D1的体积为V=a2h=(6-2h2)h=-2h3+6h,其中,构造函数f(h)=-2h3+6h,其中,则f′(h)=-6h2+6,令f′(h)=0,得h=1.当0<h<1时,f′(h)>0;当时,f′(h)<0.所以,函数V=f(h)在h=1处取得极大值,亦即最大值,则V max=f(1)=4.因此,该正四棱柱的体积的最大值为4.设该正四棱柱的高为h,底面边长为a,计算出底面外接圆的半径,利用勾股定理h2+r2=3,得出a2=6-2h2,利用柱体体积公式得出柱体体积V关于h的函数关系式,然后利用导数可求出V的最大值.本题考查球体内接几何体的相关计算,解决本题的关键在于找出相应几何量所满足的关系式,考查计算能力,属于中等题.17.【答案】解:(1)在△ABC的内角A,B,C的对边分别为,且.整理得:(a+b)(sin A-sin B)=(c-b)sin C,利用正弦定理得:a2-b2=c2-bc,即:,由于:0<A<π,解得:A=.(2)由于,所以:a2=b2+c2-2bc cos A,整理得:12=b2+c2-bc≥2bc-bc=bc,所以:=3.【解析】(1)直接利用三角函数关系式的恒等变变换和余弦定理和正弦定理的应用求出结果.(2)利用(1)的结论和余弦定理及基本不等式的应用求出结果.本题考查的知识要点:三角函数关系式的恒等变变换,正弦定理和余弦定理及三角形面积公式,基本不等式的应用,主要考查学生的运算能力和转化能力,属于基础题型.18.【答案】(1)证明:在直角梯形ABCD中,过点B作BH⊥CD于H,在△BCH中,有BH=CH=2,∴∠BCH=45°.又在△DAB中,有AD=AB=2,∴∠ADB=45°.∴∠BDC=45°,∴∠DBC=90°.∴BC⊥BD.∵PD⊥CD,平面PCD⊥平面ABCD,平面PCD∩平面ABCD=CD,PD⊂平面PCD,∴PD⊥平面ABCD,∴PD⊥BC,又∵BD∩PD=D,BD⊂平面PBD,PD⊂平面PBD,∴BC⊥平面PBD,又BC⊂平面PBC,∴平面PBC⊥平面PBD;(2)解:∵AB∥CD,且AB⊂平面PAB,CD⊄平面PAB,则CD∥平面PAB,在Rt△PDA中,由AD=PD=2,可得D到PA的距离为,即D到平面PAB的距离为.又E为PC的中点,可得E到平面PAB的距离为.在Rt△PAB中,由AB=2,PA=,且F为PA的中点,可得=.∴V P-EFB=V E-PBF=.【解析】(1)过点B作BH⊥CD于H,证明BC⊥BD.PD⊥BC,通过直线与平面垂直的判定定理证明BC⊥平面PBD;(2)求出E到平面PAB的距离及三角形PBF的面积,利用等积法求三棱锥P-EFB的体积.本题考查面面垂直的判定,考查空间想象能力与思维能力,训练了利用等积法求多面体的体积,是中档题.19.【答案】解:(1)由频率分布直方图得:[95,105)内的频率为:1-(0.006+0.026+0.022+0.008)×10=0.38,由此能补全频率分布直方图如下:(2)质量指标值的样本平均数为:=80×0.06+90×0.26+100×0.38+110×0.22+120×0.08=100.质量指标值的样本方差为S2=(-20)2×0.06+(-10)2×0.26+0×0.38+102×0.22+202×0.08=104.(3)当质量指标值位于(80,122.5)时,认为该产品为合格品,质量指标值位于(80,122.5)的频率为:+=0.95.∴该产品为合格品的概率为0.95.【解析】(1)由频率分布直方图求出[95,105)内的频率为0.38,由此能补全频率分布直方图.(2)由频率分布直方图求出质量指标值的样本平均数和质量指标值的样本方差.(3)求出质量指标值位于(80,122.5)的频率,由此能求出该产品为合格品的概率.本题考查频率分布直方图的作法,考查平均数、方差、概率的求法,考查频率分布直方图的性质等基础知识,考查运算求解能力,是基础题.20.【答案】解:(1)由题意可设椭圆方程为:+=1(a>b>0),半焦距c.则c=2,+=1,a2=b2+c2.联立解得:c=2,a=6,b2=12.∴椭圆C的标准方程为:=1.(2)直线l与x轴平行时,把y=±3代入椭圆方程可得:+=1,解得x=±3,可得△AOB 面积S==9.直线l的斜率不为0时,设直线l的方程为:x=ty+m,设A(x1,y1),B(x2,y2).原点到直线AB的距离d==3,化为:m2=9(1+t2).联立,化为:(t2+3)y2+2tmy+m2-36=0,△=4t2m2-4(t2+3)(m2-36)>0,y1+y2=-,y1y2=.则|AB|===6•,令t2+3=n≥3,则△AOB面积S=d•|AB|=×3×6•=9=9≤9×=6,当且仅当n=6,t=时,△AOB面积取得最大值6.(1)由题意可设椭圆方程为:+=1(a>b>0),半焦距c.可得c=2,+=1,【解析】a2=b2+c2.联立解出即可得出.(2)直线l与x轴平行时,把y=±3代入椭圆方程可得:+=1,解得x,可得△AOB 面积S=9.直线l的斜率不为0时,设直线l的方程为:x=ty+m,设A(x1,y1),B(x2,y2).原点到直线AB的距离d==3,化为:m2=9(1+t2).直线方程与椭圆方程联立化为:(t2+3)y2+2tmy+m2-36=0,利用根与系数的关系可得|AB|=,令t2+3=n≥3,可得△AOB面积S=d•|AB|.本题考查了椭圆的标准方程及其性质、一元二次方程的根与系数的关系、弦长公式、二次函数的性质,考查了推理能力与计算能力,属于难题.21.【答案】解:(1)由f(x)=e x-ax,得f'(x)=e x-a,当a<0时,f(x)在R上为增函数,函数f(x)最多有一个零点,不符合题意,所以a>0.当a>0时,f'(x)=e x-a=e x-e ln af'(x)<0⇔x<ln a;f'(x)>0⇔x>ln a;所以f(x)在(-∞,ln a)上为减函数,在(ln a,+∞)上为增函数;所以f(x)min=f(ln a)=a-a lna;若函数f(x)有两个零点,则f(ln a)<0⇒a>e;当a>e时,f(0)=1>0,f(1)=e-a<0;f(3a)=(e a)3-3a2>0;由零点存在定理,函数f(x)在(0,1)和(1,3a)上各有一个零点.结合函数f(x)的单调性,当a>e时,函数f(x)有且仅有两个零点,所以,a的取值范围为(e,+∞).(2)证明:由(1)得a>e,0<x1<x2;由ex1=ax1,ex2=ax2得x1=ln a+ln x1,x2=ln a+ln x2;所以x2-x1=ln x2-ln x1=ln;设=t(t>1),则,解得x1=,x2=;所以x1+x2=,当t>1时,x1+x2>2⇔>2⇔ln t->0;设h(t)=ln t-,则h'(t)=,当t>1时,h'(t)>0;于是h(t)在(1,+∞)上为增函数;所以,当t>1时,h(t)>h(1)=0,即ln t->0;所以x1+x2>2.【解析】(1)利用导数判断函数的单调性,以及结合零点定理即可求出a的范围;(2)由e x1=ax1,e x2=ax2得x1=ln a+ln x1,x2=ln a+ln x2;得到所以x1+x2=;构造函数h(t)=ln t-,求证即可.本题主要考查了利用导函数判断函数的单调性,以及零点定理应用与构造函数等知识点,属较难题.22.【答案】解:(1)曲线C的极坐标方程ρ=化为ρ2sin2θ=4ρcosθ,得到曲线C的直角坐标方程为y2=4x,故曲线C是顶点为O(0,0),焦点为F(1,0)的抛物线;(2)直线l的参数方程为(t为参数,0≤α<π).故l经过点(0,1);若直线l经过点(1,0),则,∴直线l的参数方程为(t为参数).代入y2=4x,得t+2=0设A、B对应的参数分别为t1,t2,则t1+t2=-6,t1t2=2.|AB|=|t1-t2|===8.【解析】(1)利用即可得出直角坐标方程;(2)直线l的参数方程(t为参数,0≤α<π).可得l经过点(0,1);若直线l经过点(1,0),得到,得到直线l新的参数方程为(t为参数).代入抛物线方程可得t+2=0,设A、B对应的参数分别为t1,t2,利用|AB|=即可得出.本题考查了极坐标方程和直角坐标方程的转换、直线的参数方程及其应用,考查了计算能力,属于中档题..23.【答案】解:(1)∵函数定义域为R,∴|x+1|+|x-3|-m≥0恒成立,设函数g(x)=|x+1|+|x-3|,则m不大于函数g(x)的最小值,又|x+1|+|x-3|≥|(x+1)-(x-3)|=4,即g(x)的最小值为4,∴m≤4.(2)由(1)知n=4,∴7a+4b===,当且仅当a+2b=3a+b,即b=2a=时取等号.∴7a+4b的最小值为.【解析】(1)由函数定义域为R,可得|x+1|+|x-3|-m≥0恒成立,设函数g(x)=|x+1|+|x-3|,利用绝对值不等式的性质求出其最小值即可;(2)由(1)知n=4,变形7a+4b=,利用基本不等式的性质即可得出.本题考查了函数的定义域、绝对值不等式的性质、基本不等式的性质、“乘1法”,考查了推理能力与计算能力,属于中档题.。
陕西省西北工业大学附属中学2020届高考仿真卷数学试卷一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.在等差数列{}n a 中,若351024a a a ++=,则13S =( ) A .13B .14C .15D .162.已知平面向量PA u u u r ,PB u u u r 满足1PA PB u u u v u u u v ==,12PA PB ⋅=-u u u v u u u v ,若||1BC =u u u r ,则||AC uuu r 的最大值为( )A1 B1C1 D13.若x ,y 满足约束条件102240x x y x y -≥⎧⎪-≤⎨⎪+-≤⎩,则1y z x -=( )A .有最小值32-,有最大值110-B .有最小值32-,有最大值2 C .有最小值110-,有最大值2 D .无最大值,也无最小值4.设()f x 为定义在R 上的偶函数,且()f x 在[0,)+∞上为增函数,则(2)f -,(π)f -,(3)f 的大小顺序是( ).A .(π)(2)(3)f f f -<-<B .(π)(3)(2)f f f ->>-C .(π)(3)(2)f f f -<<-D .(π)(2)(3)f f f ->->5.函数()sin 6f x x πω⎛⎫=+⎪⎝⎭的最小正周期为π,则()f x 的图象的一条对称轴方程是( ) A .12x π=-B .6x π=C .3x π=D .2x π=6.已知函数()sin()f x x ωϕ=+,其中0>ω,0ϕπ<<,()4f x f π⎛⎫ ⎪⎝⎭…恒成立,且()f x 在区间0,4π⎛⎫⎪⎝⎭上恰有两个零点,则ω的取值范围是( ) A .(6,10) B .(6,8)C .(8,10)D .(6,12)7.设关于x ,y 的不等式组21000x y x m y m -+>⎧⎪+<⎨⎪->⎩,表示的平面区域内存在点00(,)P x y ,满足0022x y -=,则m 的取值集合是( )A .4,3⎛⎫-∞- ⎪⎝⎭B .4,3⎛⎫-+∞ ⎪⎝⎭C .2,3⎛⎫-∞- ⎪⎝⎭ D .2,3⎛⎫-+∞ ⎪⎝⎭ 8.过抛物线的焦点且与轴垂直的直线与抛物线交于,两点,若三角形的面积为,则( ) A .B .C .D .9.已知直线与双曲线:的一条渐近线交于点,双曲线的左、右焦点分别为、,且,则双曲线的离心率为( )A .B .或3C .D .或410.已知函数()f x 的导函数()'f x 满足()()()ln 'x x x f x f x +<对1,x e ⎛⎫∈+∞ ⎪⎝⎭恒成立,则下列不等式中一定成立的是( ) A .()()21e f f > B .()()2e 1ef f >C .()()21e f f < D .()()e 1ef f <11.在边长为2的菱形ABCD 中,60,BAD E ∠=o 为CD 的中点,则AE BD ⋅u u u r u u u r的值为( ) A .1B 3C 5D 712.幂函数2()(1)m f x m m x =--在()0,∞+上是增函数,则m = ( ) A .2 B .1 C .4 D .2或-1二、填空题:本题共4小题,每小题5分,共20分。
西工大附中2020高考数学文模拟题含答案(四)第Ⅰ卷 选择题(共50分)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的(本大题共10小题,每小题5分,共50分)1.设全集{}1,2,3,4,5,6,U =集合{}1,2,3,4P =,集合{}3,45=Q ,,则()U P C I Q =( )A.{}1,2,3,4,6B.{}1,2,3,4,5C.{}1,2,5D.{}1,22.设复数21z i=+(其中i 为虚数单位),则z 的共轭复数z 等于( ) A .1+2i B .12i - C .2i - D .2i3.已知条件p :1>x ,条件q :11<x,则p 是q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既非充分也非必要条件4.如右图的程序框图所示,若输入3,2a b ==,则输出的值是( )A.12B.1C.13D. 25.若抛物线x y 42=上一点P 到y 轴的距离为3,则点P 到抛物线的焦点F 的距离为( )A .3B .4C .5D .76.公差不为零的等差数列第2,3,6项构成等比数列,则这三项的公比为( )A .1B .2C .3D .47.已知||2,a b =r r 是单位向量,且a b r r 与夹角为60°,则()a a b ⋅-r r r等于( )A .1B .23-C .3D .43-8.已知函数()f x 对任意x R ∈,有()()0f x f x +-=,且当0x >时,()()ln 1f x x =+,则函数()f x 的大致图象为( )9.设函数246,0()6,0x x x f x x x ⎧-+≥=⎨+<⎩,则不等式()(1)f x f >的解集是( )A .(3,1)(3,)-+∞UB .(3,1)(2,)-+∞UC .(1,1)(3,)-+∞UD .(,3)(1,3)-∞-U10.一个三棱锥的三视图如图所示,其中正视图是一个正三角形,则这个几何体的体积为( )A .13B .3 C .1 D .33第Ⅱ卷 非选择题(共100分)二、填空题(本大题共5小题,每小题5分,满分25分,把答案填写在答题卡相应的位置) 11.若函数()y f x =的图象在4x =处的切线方程是29y x =-+,则(4)(4)f f '-= .12.若椭圆的短轴为AB ,它的一个焦点为F ,则满足ABF ∆为等边三角形的椭圆的离心率是 .13.已知变量,x y 满足约束条件211y x y x y ≤⎧⎪+≥⎨⎪-≤⎩,则3z x y =+的最大值为 ;14.若tan 2,α=则sin cos αα= ;15.选做题(请考生在以下三个小题中任选一题做答,如果多做,则按所做的第一题评阅记分) A (选修4—4坐标系与参数方程)已知点A 是曲线2sin ρθ=上任意一点,则点A 到直线3sin()4πρθ+=的距离的最小值是 ;B (选修4—5不等式选讲)已知22,,33,x y R x y ∈+≤则23x y +的最大值是 .;直线MN 切C(选修4—1几何证明选讲)如图,ABC ∆内接于O e ,AB AC =,O e 于点C ,//BE MN 交AC 于点E .若6,4,AB BC ==则AE的长为 .三、解答题:解答应写出文字说明,证明过程或演算步骤(本大题共6小题,共75分)16.(本小题满分12分)某电视台在一次对收看文艺节目和新闻节目观众的抽样调查中,随机抽取了100名电视观众,相关的数据如下表所示:w_w*w.k_s_5 u.c*o*m. k#s5_u.c(Ⅰ)用分层抽样方法在收看新闻节目的观众中随机抽取5名,大于40岁的观众应该抽取几名? (Ⅱ)在上述抽取的5名观众中任取2名,求恰有1名观众的年龄为20至40岁的概率.w_w*w17.(本小题满分12分)在ABC ∆中,角A,B,C 的对边分别为a ,b,c,且满足sin 3cos a C c A =,2AB AC ⋅=u u u r u u u r.(Ⅰ)求ABC ∆的面积; (Ⅱ)若1b =,求边c 与a 的值.18.(本小题满分12分)各项均为正数的等比数列{}n a 中,1231,6a a a =+=.(Ⅰ)求数列{}n a 通项公式;(Ⅱ)若等差数列{}n b 满足1244,b a b a ==,求数列{}n n a b 的前n 项和n S .19.(本小题满分12分)已知ABCD 是矩形,2AD AB =,,E F 分别是线段,AB BC 的中点,PA ⊥平面ABCD .(Ⅰ)求证:DF ⊥平面PAF ;(Ⅱ)在棱PA 上找一点G ,使EG ∥平面PFD ,并说明理由.20.(本小题满分13分)已知函数x x g xmmx x f ln 2)(,)(=-=. (Ⅰ)当2=m 时,求曲线)(x f y =在点))1(,1(f 处的切线方程; (Ⅱ)当1=m 时,判断方程)()(x g x f =在区间()1,+∞上有无实根. (Ⅲ)若(]e x ,1∈时,不等式2)()(<-x g x f 恒成立,求实数m 的取值范围.21.(本题满分14分)已知椭圆C 的中心在坐标原点,焦点在x 轴上,离心率2e =,且点(2,0)P -在椭圆C 上.(Ⅰ)求椭圆C 的方程;(Ⅱ)已知A 、B 为椭圆C 上的动点,当PA PB ⊥时,求证直线AB 恒过一个定点.并求出该定点的坐标.数学(文科) 参考答案与评分标准一、选择题:B二、填空题11.3 12.2 13.11 14.2515.A52; B C .103三、解答题16.(本小题满分12分)【解】:在100名电视观众中,收看新闻的观众共有45人,其中20至40岁的观众有18人,大于40岁的观众共有27人。
故按分层抽样方法,在应在大于40岁的观众中中抽取327455=⨯人. ……4分 (2)抽取的5人中,年龄大于40岁的有3人,分别记作1,2,3;20岁至40岁的观众有2人,分别高为b a ,,若从5人中任取2名观众记作),(y x ,……6分则包含的总的基本事件有:),(),,3(),,3(),,2(),,2(),3,2(),,1(),,1(),3,1(),2,1(b a b a b a b a 共10个。
…8分 其中恰有1名观众的年龄为20岁至40岁包含的基本事件有:),3(),,3(),,2(),,2(),,1(),,1(b a b a b a 共6个. ……10分故P (“恰有1名观众的年龄为20至40岁”)=53106=; ……12分17. (本小题满分12分)【解】:(Ⅰ)由正弦定理得sin sin cos A C C A =,……2分sin A A =,tan A =60A =o ,……6分由2AB AC ⋅=u u u r u u u r得4b c ⋅=,ABC ∆……8分(Ⅱ)因1b =,故4c =,……10分由余弦定理得a =……12分18.(本小题满分12分)由条件知20,62q q q q >+=∴=……………………2分12n n a -∴= ………… 4分(2)设数列{}n b 公差为d ,则112,38,2b b d d =+=∴=,2n b n ∴=…………6分2n n n a b n =⋅12312341122232(1)222122232(1)22n n n nn n S n n S n n -+=⨯+⨯+⨯++-⨯+⨯=⨯+⨯+⨯++-⨯+⨯L L2341222222n n n S n +∴-=+++++-⨯L ……………………8分12(21)2n n n +=--⨯ ……………………10分 1(1)22n n S n +∴=-+ ……………………12分19.(本小题满分12分)【解】:证明:在矩形ABCD 中,因为AD=2AB,点F 是BC 的中点,所以∠AFB=∠DFC=45°.所以∠AFD=90°,即AF ⊥FD . ……………………4分又PA ⊥平面ABCD,所以PA ⊥FD .所以FD ⊥平面PAF . ……………………6分 (Ⅱ)过E 作EH//FD 交AD 于H,则EH//平面PFD,且 AH =14AD .再过H 作HG//PD 交PA 于G , ……………………9分 所以GH//平面PFD,且 AG=14PA . 所以平面EHG//平面PFD . ……………………11分 所以EG//平面PFD . 从而点G 满足AG=14PA . ……………………12分20.(本小题满分13分) 【解】:(1)2=m 时,()x x x f 22-=,()()41',22'2=+=f xx f ,切点坐标为()0,1, ∴切线方程为44-=x y …………………… 3分(2)1=m 时,令()()()x xx x g x f x h ln 21--=-=, ()01211)('222≥-=-+=xx x x x h ,()x h ∴在()+∞,0上为增函数…………………… 5分 又0)1(=h ,所以)()(x g x f =在()1,+∞内无实数根 ……………………7分D(3)2ln 2<--x xmmx 恒成立, 即()x x x x m ln 2212+<-恒成立, 又012>-x ,则当(]e x ,1∈时,1ln 222-+<x xx x m 恒成立,……………………9分 令()1ln 222-+=x xx x x G ,只需m 小于()x G 的最小值,()()2221)2ln ln (2'-++-=xx x x x G ,…………………… 11分e x ≤<1Θ,0ln >∴x ,∴ 当(]e x ,1∈时()0'<x G , ()x G ∴在(]e ,1上单调递减,()x G ∴在(]e ,1的最小值为()142-=e ee G , 则m 的取值范围是⎪⎭⎫⎝⎛-∞-14,2e e ……………………13分21.(本小题满分14分)【解】:(1)椭圆C 的方程是2214x y +=…………………………4分 (2) 当直线l 不垂直于x 轴时,设AB :y kx m =+ 11(,)A x y 22(,)B x y2244x y y kx m ⎧+=⎨=+⎩得222(14)84(1)0k x kmx m +++-= ………………………6分 1222121212(2)(2)(1)(2)()4PA PB x x y y k x x km x x m =+++=++++++u u u r u u u rg =222224(1)8(1)(2)401414m km k km m k k--+++++=++ …………………… 8分 22125160k m km ∴+-= 即 (65)(2)0k m k m --=625m k m k ∴==或……………10分 当65m k =时,6:5AB y kx k =+恒过定点6(,0)5- 当2m k =时,:2AB y kx k =+恒过定点(2,0)-,不符合题意舍去… 12分 当直线l 垂直于x 轴时,若直线AB :65x =-则AB 与椭圆C相交于64(,)55A --,64(,)55B -24444444(,)(,)()()()05555555PA PB ∴=-=+-=u u u r u u u r g g ,PA PB ⊥Q ,满足题意综上可知,直线AB 恒过定点,且定点坐标为6(,0)5-……………… 14分高考模拟数学试卷本试题卷分选择题和非选择题两部分.全卷共4页,选择题部分1至2页,非选择题部分2至4页.满分150分,考试时间120分钟.请考生按规定用笔将所有试题的答案涂、写在答题纸上.(命题老师:周浙柳 审题老师:徐芳芳 命题时间:)选择题部分(共50分)参考公式:柱体的体积公式:V Sh = 其中S 表示柱体的底面积,h 表示柱体的高锥体的体积公式:13V Sh =其中S 表示锥体的底面积,h 表示锥体的高台体的体积公式:)(312211S S S S h V ++= 其中S 1、S 2分别表示台体的上、下底面积,h 表示台体的高球的表面积公式:24S R π=球的体积公式:334R V π= 其中R 表示球的半径一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若“01x <<”是“()[(2)]0x a x a --+≤”的充分不必要条件,则实数a 的取值范围是( )A .(,0][1,)-∞+∞UB .(1,0)-C .[1,0]-D .(,1)(0,)-∞-+∞U2.若整数x ,y 满足不等式组0,2100,0,x y x y y ⎧->⎪--<⎨+- 则2x +y 的最大值是( )A .11B .23C .26D .30 3.下列命题中错误..的是( ) A. 如果平面⊥α平面γ,平面⊥β平面γ,l =βαI ,那么γ⊥l B. 如果平面⊥α平面β,那么平面α内一定存在直线平行于平面βC. 如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面βD. 如果平面⊥α平面β,过α内任意一点作交线的垂线,那么此垂线必垂直于β 4.已知函数()sin (0)f x x x ωωω=>的图象与x 轴的两个相邻交点的距离等于2π,若将函数()y f x =的图象向左平移6π个单位得到函数()y g x =的图象,则()y g x =是减函数的区间为( ) A .(,)43ππB . (,)44ππ-C . (0,)3πD .(,0)3π-5.在平面斜坐标系xoy 中045=∠xoy ,点P 的斜坐标定义为:“若2010e y e x +=(其中21,e e 分别为与斜坐标系的x 轴,y 轴同方向的单位向量),则点P 的坐标为),(00y x ”.若),0,1(),0,1(21F F -且俯视图侧(左)视图正(主)视图动点),(y x M 满足12MF MF =u u u r u u u r,则点M 在斜坐标系中的轨迹方程为( )A.0x =B.0x += C0y -= D0y +=6.身高从矮到高的甲、乙、丙、丁、戊5人排成高矮相间的一个队形,则甲丁不相邻的不同的排法共有( )A .12B .14C .16D .187.数列{}n a 满足143a =,2*11(N )n n n a a a n +=-+∈,则122013111m a a a =+++L 的整数部分是( ) A .1B .2C .3D .48.在△ABC 中,已知9,sin cos sin ,6ABC AB AC B A C S ∆⋅==⋅=u u u r u u u r,P 为线段AB 上的点,且,||||CA CBCP x y xy CA CB =⋅+⋅u u u r u u u ru u u r u u u r u u u r 则的最大值为( )A .1B .2C .3D .4非选择题部分(共100分)二、填空题:本大题共7小题,9-12每小题6分,13-15每小题4分,共36分. 9.某三棱锥的三视图如图所示,则该三棱锥体积是▲ ,四个面的面积中最大的是 ▲ . 10.已知实数a b c ,,满足2a b c +=,则直线: 0l ax by c +=-恒过定点 ▲ ,该直线被圆229x y +=所截得弦长的取值范围为 ▲11.已知向量1(sin cos 1),(1,2cos ),,(0,).52a b a b παααα=+=-⋅=∈r r r r ,,sin α= ▲ 、αcos =▲ ,设函数∈+-=x x x x f (2cos )2cos(5)(αR ),)(x f 取得最大值时的x 的值是 ▲ .12.复数1i2ia +-(,i a R ∈为虚数单位)为纯虚数,则复数i z a =+的模为 ▲ .已知231(1)()()n x x x n N x*+++∈的展开式中没有常数项,且28n ≤≤,则n = ▲ .13.将函数1112122y x x =-+-+的图像绕原点顺时针方向旋转角02πθθ≤≤()得到曲线C .若对于每一个旋转角θ,曲线C 都是一个函数的图像,则θ的取值范围是 ▲ . 14.已知数列{}n a 满足:n n n a a a a +==+211,21,用[x]表示不超过x 的最大整数,则122012111111a a a ⎡⎤+++⎢⎥+++⎣⎦L 的值等于 ▲ .15.三棱锥O ABC -中,,OA OB OC ,两两垂直且相等,点P ,Q 分别是BC 和OA 上的动点,且满足1233BC BP BC ≤≤,1233OA OQ OA ≤≤,则PQ 和OB 所成角余弦值的取值范围是 ▲ . 三、解答题:本大题共5小题,共72分,解答应写出文字说明、证明过程或演算步骤. 16.(本题满分14分)已知函数.3cos 33cos 3sin)(2xx x x f += (Ⅰ)求函数)(x f 图象对称中心的坐标;(Ⅱ)如果ABC Δ的三边c b a ,,满足ac b =2,且边b 所对的角为B ,求)(B f 的取值范围。