决策树方法
- 格式:ppt
- 大小:435.00 KB
- 文档页数:23
第四节决策树方法第四节决策树方法一决策树结构利用决策树形图进行决策分析的方法称为决策树分析法。
当决策涉及多方案选择时,借助由若干节点和分支构成的树状图形,可形象地将各种可供选择的方案、可能出现的状态及其概率,以及各方案在不同状态下的条件结果值简明地绘制在一张图标上,以便讨论研究。
决策树形图的优点在于系统地、连贯地考虑各方案之间的联系,整个决策分析过程直观易懂、清晰明了。
决策树形图可分为单阶段决策树和多阶段决策树。
单阶段决策树是指决策问题只需进行一次决策活动,便可以选出理想的方案。
单阶段决策树一般只有一个决策节点。
如果所需决策的问题比较复杂,通过一次决策不能解决,而是要通过一系列相互联系的决策才能选出最满意方案,这种决策就称为多阶段决策。
多阶段决策的目标是使各次决策的整体效果达到最优。
决策树分析法是进行风险型决策分析的重要方法之一。
该方法将决策分析过程以图解方式表达整个决策的层次、阶段及其相应决策依据,具有层次清晰、计算方便等特点,因而在决策活动中被广泛运用。
决策树基本模型决策树又称决策图,是以方框和圆圈及节点,并由直线连接而形成的一种像树枝形状的结构图。
单阶段决策树如图所示:决策树所用图解符号及结构:(1)决策点:它是以方框表示的节点。
一般决策点位于决策树的最左端,即决策树的起点位置,但如果所作的决策属于多阶决策,则决策树图形的中间可以有多个决策点方框,以决策树“根”部的决策点为最终决策方案。
(2)方案枝:它是由决策点起自左而右画出的若干条直线,每条直线表示一个备选方案。
方案枝表示解决问题的途径,通常是两枝或两枝以上。
(3)状态节点:在每个方案枝的末端画上一个“○”并注上代号叫做状态节点。
状态节点是决策分枝的终点,也是表示一个备选方案可能遇到的自然状态的起点。
其上方的数字表示该方案的期望损益值。
(4)概率枝:从状态节点引出的若干条直线叫概率枝,每条直线代表一种自然状态及其可能出现的概率(每条分枝上面注明自然状态及其概率)。
管理学决策树方法一、决策树方法的基本概念。
1.1 啥是决策树呢?简单来说,这就像是咱们在森林里找路一样。
决策树是一种树形结构,它有一个根节点,就像大树的根,从这个根节点开始,会分出好多枝干,这些枝干就是不同的决策选项。
比如说,一个企业要决定是否推出一款新产品,这就是根节点的决策。
1.2 然后每个枝干又会根据不同的情况继续分叉。
就好比这新产品推向市场,可能会遇到市场反应好和市场反应不好这两种大的情况,这就像是枝干又分叉了。
这每一个分叉点都代表着一个事件或者决策的不同结果。
二、决策树方法在管理学中的重要性。
2.1 在管理里啊,决策树可太有用了。
就像那句老话说的“三思而后行”,决策树就是帮咱们管理者好好思考的工具。
它能把复杂的决策过程清晰地展现出来。
比如说,一个公司要扩大业务,是选择开拓新市场呢,还是在现有市场深耕呢?这时候决策树就能列出各种可能的结果。
如果开拓新市场,可能会面临新的竞争对手,就像进入了一片未知的丛林,充满了风险;如果在现有市场深耕,可能会面临市场饱和的问题,就像在一块已经耕种很久的土地上,肥力可能不足了。
2.2 决策树还能让咱们量化风险。
咱们不能总是靠感觉来做决策啊,那可就成了“盲人摸象”了。
通过决策树,我们可以给不同的结果赋予概率,就像给每个岔路标上成功或者失败的可能性。
这样管理者就能清楚地看到每个决策背后的风险和收益。
比如说,一个项目有60%的成功概率,但是成功后的收益很大;另一个项目有80%的成功概率,但是收益比较小。
这时候决策树就能帮我们权衡利弊。
2.3 而且啊,决策树有助于团队沟通。
大家都能看着这个树形结构,一目了然。
就像大家一起看一张地图一样,都清楚要往哪里走。
团队成员可以针对决策树上的每个节点、每个分支进行讨论。
这样就不会出现“各说各话”的情况,大家都在同一个框架下思考问题。
三、如何构建决策树。
3.1 首先要确定决策的目标。
这就像确定大树的根一样重要。
比如说,我们的目标是提高公司的利润,那所有的决策分支都要围绕这个目标来展开。
常用决策分析方法(基本方法)上一节我们说了决策分析的基本概念,这一节我们谈谈决策分析常用的三种方法:决策树法、Bayes方法、Markov 方法。
决策树法决策树法(decision tree-based method):是通过确定一系列的条件(if-then)逻辑关系,形成一套分层规则,将所有可能发生的结局的概率分布用树形图来表达,生成决策树(decision tree),从而达到对研究对象进行精确预测或正确分类的目的。
树的扩展是基于多维的指标函数,在医学领域主要用于辅助临床诊断及卫生资源配置等方面。
决策树分类:按功能分:分类树和和回归树按决策变量个数:单变量树和多变量树按划分后得到分类项树:二项分类树和多项分类树决策树的3类基本节点:决策节点(用□表示)机会节点(用○表示)结局节点(用?表示)从决策节点引出一些射线,表示不同的备选方案,射线上方标出决策方案名称。
射线引导到下一步的决策节点、机会节点或结局节点。
从机会节点引出的线表示该节点可能出现的随机事件,事件名称标在射线上方,先验概率在下方。
每个结局节点代表一种可能的结局状态。
在结局节点的右侧标出各种状态的效用(utility),即决策者对于可能发生的各种结局的(利益或损失)感觉和反应,用量化值表示。
绘制决策树基本规则:各支路不能有交点每一种方案各种状态发生概率之和为1 决策树分析法步骤:1 提出决策问题,明确决策目标2 建立决策树模型--决策树生长2.1决策指标的选择的两个步骤:2.1.1 提出所有分值规则2.1.2 选择最佳规则2.2 估计每个指标的先验概率3 确定各终点及计算综合指标3.1 各终点分配类别3.2 各终点期望效用值得确定3.3 综合指标的计算3.4 计算值排序选优树生长停止情况:子节点内只有一个个体子节点内所有观察对象决策变量的分布完全一致,不能再分达到规定标准一棵树按可能长到最大,通常是过度拟合(overfit)的。
训练集:用于决策树模型建立的数据集测试集:决策树进行测评的数据集。
(三)决策树方法决策树是机器学习中最常用的方法之一。
它是一种基于树形结构的分类模型,可以对数据进行预测和分类。
决策树方法的基本思想是将数据集分成一些小的、可处理的数据集,每个数据集都对应着一个子节点,然后根据不同的特征和属性对数据集进行划分,在每个子节点上再次进行判断,直到所有数据都被分到某个子节点中。
在这个过程中,我们选择特征和属性可以使得节点之间的“混乱程度”尽量小,以达到最好的分类效果。
决策树方法的一大优点是易于理解和解释,它可以给出决策过程的逻辑和推理过程。
同时,决策树也具有可监督学习的特点,可以使用已有的数据进行训练和模型的建立。
决策树方法在实际应用中有很广泛的应用,比如我们可以使用决策树对疾病进行诊断,对金融数据进行风险评估等等。
决策树的构建方法主要有三种:ID3(Iterative Dichotomiser 3),C4.5和CART(Classification and Regression Tree)。
其中,ID3是最早的决策树构建方法,它通过计算信息增益来选择最优的特征和属性进行划分,但是ID3对于缺失值的处理不好。
而C4.5是ID3的改进版,它引入了信息增益比的概念,可以更好地处理缺失值问题,并且可以进行连续性特征的划分。
CART是一种具有更广泛适用性的决策树构建方法,它可以用于分类和回归问题。
CART 采用基尼指数来选择最优的特征和属性进行划分,实现简单,并且可以进行剪枝处理,避免过拟合现象。
总之,决策树方法是机器学习中非常重要和实用的一种方法,其构建简单、易于理解和解释,可以帮助我们从海量的数据中得到有意义的信息,对决策和分类提供重要的支持和指导。
决策树分类方法
决策树分类方法是一种基于树形结构进行分类的方法。
其思想是将数据按照特定的属性进行分割,使得每个子集的纯度增加,即同一子集中的类别相同。
该方法主要包括以下步骤:
1. 选择最佳属性作为根节点,将数据集按照该属性进行分割。
2. 对于每个子集,重复步骤1,选择最佳属性作为子节点,继续分割子集,直到满足终止条件。
3. 终止条件可以是所有实例属于同一类别,或者所有属性均已使用。
4. 对新数据进行分类时,按照决策树逐级分类,直至到达叶子节点。
优点:
1. 简单易懂,易于解释。
2. 可以处理非线性关系,不需要数据标准化。
3. 可以处理多分类问题。
4. 可以处理缺失值问题。
缺点:
1. 决策树容易过拟合,需要进行剪枝操作。
2. 对于多变量关系和缺失值处理能力不如其他模型。
3. 样本不平衡时,容易偏向于多数类别。
4. 对噪声和数据集中的错误敏感。
决策树的构建方法
以下是 7 条关于决策树的构建方法:
1. 先确定你的目标呀,这就像你要去一个地方,得知道目的地是哪儿!比如说,你想决定今晚吃啥,你的目标就是找到一顿让自己开心满足的晚餐。
然后列出所有可能的选择,中餐、西餐、快餐等等。
这不就开始有决策树的样子了么!
2. 给每个选择评估一下好处和坏处呢。
打个比方,吃中餐可能量大美味,但等待时间长;吃快餐方便快捷,但可能不太健康。
这就像给每个分支都加上了具体的描述,让决策树更丰富啦!
3. 考虑各种因素的权重呀!是美味更重要,还是快更重要呢?这可不能马虎,就像给决策树的各个分支按重要性排个序似的。
比如说,你很饿,那可能快就占很大权重啦!
4. 听听别人的意见呗!朋友说某家西餐特别棒,那你就得好好考虑是不是要把西餐这个分支在决策树里加重哟!就像给决策树添上了别人的智慧经验。
5. 不要局限于眼前呀,想想以后的后果呀!如果现在选了快餐,之后会不会很快又饿了呢?这就像给决策树加上了对未来的预判,是不是很厉害!
6. 随时准备调整你的决策树呀!可能突然发现一家新餐厅开业,那原来的决策树就得改动啦,多灵活呀!这和我们的生活一样,充满变化呢!
7. 大胆地做决定吧!决策树都建好了,还等什么,按照它来走呀!就像你已经知道怎么走能到达目的地,那就勇敢地迈步吧!
我的观点结论就是:决策树的构建方法真的超有用,能让我们的决策更清晰,更准确,大家一定要试试呀!。
(三)决策树方法
决策树是一种基于对对象属性进行划分,以构建由多个属性组成的有向无环图的分类算法。
它能够被应用于特征较多的数据集,来预测数据实体的类别,比如判断是否为良性肿瘤或者判断产品的满意度属于高、中、低的哪个类型。
决策树的基本思想是根据实体的对象特征来判断实体的类别,可以把建立决策树的过程想象为一个问答过程,具体步骤如下:
1、生成决策树。
首先根据样本集,计算得出测试属性中信息增益高的属性作为根节点,根据根节点属性值针对所有样本逐一划分,构建二叉子树。
2、根据数据集合进行分类。
对每一个节点都进行分类判断,如果所有样本属于同一类,将节点分配给该类,否则重复第一步。
3、在决策树上添加分支。
每一个分支节点都重复上述过程,只不过是从当前根节点获取一个测试属性来进行划分,直到所有样本均被划分完毕。
4、创建新树结构。
最后,对所有节点总结归纳,建立结构,创建新树结构来替代原来的树,形成一棵完整的决策树。
决策树的优点是它易于实现,易于理解。
且它可以被用于多种应用场景,比如机器学习中的分类问题、关联规则的挖掘以及建模预测等等。
缺点在于它的性能受算法本身的决策过程影响,当测试属性的划分无法明显区分样本时,结果可能会出现错误。
此外,在构建决策树时,需要一定的时间消耗,若样本量较大,处理时间也较长。
事件树法和决策树法事件树法和决策树法是两种常用于分析和决策的方法。
它们在不同的领域和场景中具有广泛的应用,能够帮助人们更好地理解和解决问题。
一、事件树法事件树法是一种用于分析和评估事件发生概率的方法。
它通过构建一棵树状结构,描述事件发展的不同路径和可能性,从而帮助人们评估事件发生的概率和可能的后果。
事件树法的基本思想是将事件分解为一系列可能的分支,每个分支代表一个可能发生的情况或决策。
通过对每个分支的概率和后果进行评估,可以得到事件发生的概率以及可能的结果。
事件树法能够清晰地展示事件发展的逻辑关系和可能性,帮助人们做出合理的决策。
事件树法的应用非常广泛。
在风险评估和安全管理中,可以使用事件树法评估事故发生的概率和可能的后果,从而制定相应的预防和控制措施。
在项目管理中,可以使用事件树法分析项目进展的可能情况和风险,帮助制定合理的计划和决策。
在金融风险管理中,可以使用事件树法评估不同投资决策的风险和回报,从而优化投资组合和风险控制策略。
二、决策树法决策树法是一种用于辅助决策的方法。
它通过构建一棵树状结构,描述决策的各个分支和可能的结果,从而帮助人们做出合理的决策。
决策树法的基本思想是将决策问题分解为一系列可能的选择和结果,通过评估每个选择的概率和结果,从而选择最佳的决策路径。
决策树法能够清晰地展示不同选择和结果之间的关系,帮助人们理解决策问题的复杂性和不确定性,从而做出明智的决策。
决策树法的应用非常广泛。
在企业管理中,可以使用决策树法分析市场环境和竞争对手的情况,从而制定合理的营销策略和产品定位。
在医疗诊断中,可以使用决策树法根据患者的症状和检查结果,帮助医生做出正确的诊断和治疗决策。
在金融投资中,可以使用决策树法评估不同投资选择的风险和回报,从而优化投资组合和风险控制策略。
总结:事件树法和决策树法是两种常用的分析和决策方法。
事件树法主要用于评估事件发生的概率和可能的后果,帮助人们制定相应的预防和控制措施;决策树法主要用于辅助决策,帮助人们理解决策问题的复杂性和不确定性,从而做出明智的决策。
决策树算法公式决策树算法是一种基于树状结构的分类和回归方法,其中树的每个节点代表一个特征属性,每个分支代表该特征属性的一个取值,而每个叶子节点则代表最终的分类或回归结果。
在决策树算法中,通常采用信息增益或基尼指数等方法来选择最优的特征属性进行分割,从而构建出一棵高效的决策树。
具体的决策树算法公式如下:1. 计算信息熵信息熵是反映数据的不确定性的度量,其公式为:$H(D)=-sum_{i=1}^{n} p_i log_2 p_i$其中 $D$ 为数据集,$p_i$ 为第 $i$ 个分类的概率。
信息熵越大,数据的不确定性越高,反之亦然。
2. 计算信息增益信息增益是使用信息熵来选择最优特征属性的方法,其公式为: $Gain(A)=H(D)-sum_{i=1}^{k}frac{|D_i|}{|D|}H(D_i)$ 其中 $A$ 表示特征属性,$k$ 表示属性 $A$ 的可能取值个数,$D_i$ 表示第 $i$ 个取值所对应的数据集,$|D_i|$ 表示 $D_i$ 中样本的个数,$|D|$ 表示数据集 $D$ 中样本的总个数。
信息增益越大,表明选取该特征属性进行分割能够带来更好的分类效果。
3. 计算基尼指数基尼指数是通过选择最小基尼指数来构建决策树的方法,其公式为:$Gini(p)=sum_{k=1}^{K}p_k(1-p_k)=1-sum_{k=1}^{K}p_k^2$ 其中 $p_k$ 表示第 $k$ 个分类的概率。
基尼指数越小,表明数据的纯度越高,反之亦然。
4. 计算基尼指数增益基尼指数增益是使用基尼指数来选择最优特征属性的方法,其公式为:$Gain_Gini(A)=Gini(D)-sum_{i=1}^{k}frac{|D_i|}{|D|}Gini(D_i )$其中 $A$ 表示特征属性,$k$ 表示属性 $A$ 的可能取值个数,$D_i$ 表示第 $i$ 个取值所对应的数据集,$|D_i|$ 表示 $D_i$ 中样本的个数,$|D|$ 表示数据集 $D$ 中样本的总个数。
决策树法(Decision Tree)决策树(decision tree)一般都是自上而下的来生成的。
每个决策或事件(即自然状态)都可能引出两个或多个事件,导致不同的结果,把这种决策分支画成图形很像一棵树的枝干,故称决策树。
决策树就是将决策过程各个阶段之间的结构绘制成一张箭线图,我们可以用下图来表示。
选择分割的方法有好几种,但是目的都是一致的:对目标类尝试进行最佳的分割。
从根到叶子节点都有一条路径,这条路径就是一条“规则”。
决策树可以是二叉的,也可以是多叉的。
对每个节点的衡量:1) 通过该节点的记录数2) 如果是叶子节点的话,分类的路径3) 对叶子节点正确分类的比例有些规则的效果可以比其他的一些规则要好。
决策树的构成要素[1]决策树的构成有四个要素:(1)决策结点;(2)方案枝;(3)状态结点;(4)概率枝。
如图所示:总之,决策树一般由方块结点、圆形结点、方案枝、概率枝等组成,方块结点称为决策结点,由结点引出若干条细支,每条细支代表一个方案,称为方案枝;圆形结点称为状态结点,由状态结点引出若干条细支,表示不同的自然状态,称为概率枝。
每条概率枝代表一种自然状态。
在每条细枝上标明客观状态的内容和其出现概率。
在概率枝的最末稍标明该方案在该自然状态下所达到的结果(收益值或损失值)。
这样树形图由左向右,由简到繁展开,组成一个树状网络图。
决策树对于常规统计方法的优缺点优点:1)可以生成可以理解的规则;2)计算量相对来说不是很大;3) 可以处理连续和种类字段;4) 决策树可以清晰的显示哪些字段比较重要。
缺点:1) 对连续性的字段比较难预测;2) 对有时间顺序的数据,需要很多预处理的工作;3) 当类别太多时,错误可能就会增加的比较快;4) 一般的算法分类的时候,只是根据一个字段来分类。
决策树的适用范围[1]科学的决策是现代管理者的一项重要职责。
我们在企业管理实践中,常遇到的情景是:若干个可行性方案制订出来了,分析一下企业内、外部环境,大部分条件是己知的,但还存在一定的不确定因素。