人教版七年级下册一元二次方程练习题
- 格式:doc
- 大小:79.00 KB
- 文档页数:1
第二章一元二次方程测试题(1)姓名学号一、选择题(每小题3分,共30分)1.下列方程属于一元二次方程的是().(A)(x2-2)·x=x2(B)ax2+bx+c=0 (C)x+1x=5 (D)x2=02.方程x(x-1)=5(x-1)的解是().(A)1 (B)5 (C)1或5 (D)无解3.已知x=2是关于x的方程32x2-2a=0的一个根,则2a-1的值是().(A)3 (B)4 (C)5 (D)64.把方程x2-4x-6=0配方,化为(x+m)2=n的形式应为().(A)(x-4)2=6 (B)(x-2)2=4 (C)(x-2)2=0 (D)(x-2)2=105.下列方程中,无实数根的是().(A)x2+2x+5=0 (B)x2-x-2=0(C)2x2+x-10=0 (D)2x2-x-1=06.当代数式x2+3x+5的值为7时,代数式3x2+9x-2的值是().(A)4 (B)0 (C)-2 (D)-47.方程(x+1)(x+2)=6的解是().(A)x1=-1,x2=-2 (B)x1=1,x2=-4 (C)x1=-1,x2=4 (D)x1=2,x2=3 8.如果关于x的一元二次方程x2+px+q=0的两根分别为x1=3,x2=1,•那么这个一元二次方程是().(A)x2+3x+4=0 (B)x2-4x+3=0 (C)x2+4x-3=0 (D)x2+3x-4=09.某市计划经过两年时间,绿地面积增加44%,•这两年平均每年绿地面积的增长率是().(A)19% (B)20% (C)21% (D)22%10.在一幅长80cm,宽50cm的矩形风景画的四周镶一条金色纸边,•制成一幅矩形挂图,如图所示.如果要使整个挂图的面积是5 400cm2,设金色纸边的宽为xcm,•那么x满足的方程是().(A)x2+130x-1 400=0 (B)x2+65x-350=0(C)x2-130x-1 400=0 (D)x2-65x-350=0二、填空题(每小题3分,共24分)11.方程2x2-x-2=0的二次项系数是________,一次项系数是________,•常数项是________.12.若方程ax2+bx+c=0的一个根为-1,则a-b+c=_______.13.已知x2-2x-3与x+7的值相等,则x的值是________.14.请写出两根分别为-2,3的一个一元二次方程_________.15.如果(2a+2b+1)(2a+2b-1)=63,那么a+b的值是________.16.已知x 2+y 2-4x+6y+13=0,x ,y 为实数,则x y =_________.17.已知三角形的两边分别是1和2,第三边的数值是方程2x 2-5x+3=0的根,则这个三角形的周长为_______.18.若-2是关于x 的一元二次方程(k 2-1)x 2+2kx+4=0的一个根,则k=________.三、解答题(共46分)19.解方程:8x 2=24x (x+2)2=3x+6 (7x-1)2=9x 2 (3x-1)2=10x 2+6x=1 -2x 2+13x-15=0. 22x =- 2211362x x -=20.(本题8分)李先生存入银行1万元,先存一个一年定期,•一年后将本息自动转存另一个一年定期,两年后共得本息1.045 5万元.存款的年利率为多少?(•不考虑利息税)21.(本题8分)现将进货为40元的商品按50元售出时,就能卖出500件.•已知这批商品每件涨价1元,其销售量将减少10个.问为了赚取8 000元利润,售价应定为多少?这时应进货多少件?第二章 一元二次方程测试题(2)一、选择题(每小题3分,共30分)1.方程(y+8)2=4y+(2y-1)2化成一般式后a ,b ,c 的值是( )A .a=3,b=-16,c=-63;B .a=1,b=4,c=(2y-1)2C .a=2,b=-16,c=-63;D .a=3,b=4,c=(2y-1)22.方程x 2-4x+4=0根的情况是( )A .有两个不相等的实数根;B .有两个相等的实数根;C .有一个实数根;D .没有实数根3.方程y 2+4y+4=0的左边配成完全平方后得( )A .(y+4)2=0B .(y-4)2=0C .(y+2)2=0D .(y-2)2=04.设方程x 2+x-2=0的两个根为α,β,那么(α-1)(β-1)的值等于( )A .-4B .-2C .0D .25.下列各方程中,无解的方程是( )A ..3(x-2)+1=0 C .x 2-1=0 D .1x x -=26.已知方程,则方程的实数解为( )A .3B .0C .0,1D .0,37.已知2y 2+y-2的值为3,则4y 2+2y+1的值为( )A.10 B.11 C.10或11 D.3或118.方程x2+2px+q=0有两个不相等的实根,则p,q满足的关系式是() A.p2-4q>0 B.p2-q≥0 C.p2-4q≥0 D.p2-q>09.已知关于x的一元二次方程(m-1)x2+x+m2+2m-3=0的一个根为0,则m 的值为()A.1 B.-3 C.1或-3 D.不等于1的任意实数10.已知m是整数,且满足210521mm->⎧⎨->-⎩,则关于x的方程m2x2-4x-2=(m+2)x2+3x+4的解为()A.x1=-2,x2=-32B.x1=2,x2=32C.x=-67D.x1=-2,x2=32或x=6 7二、填空题(每题3分,共30分)11.一元二次方程x2+2x+4=0的根的情况是________.12.方程x2(x-1)(x-2)=0的解有________个.13.如果(2a+2b+1)(2a+2b-2)=4,那么a+b的值为________.14.已知二次方程3x2-(2a-5)x-3a-1=0有一个根为2,则另一个根为________.15.关于x的一元二次方程x2+bx+c=0的两根为-1,3,则x2+bx+c•分解因式的结果为_________.16.若方程x2-4x+m=0有两个相等的实数根,则m的值是________.17.若b(b≠0)是方程x2+cx+b=0的根,则b+c的值为________.18.一元二次方程(1-k)x2-2x-1=•0•有两个不相等的实根数,•则k•的取值范围是______.19.若关于x的一元二次方程x2+bx+c=0没有实数根,则符合条件的一组b,c 的实数值可以是b=______,c=_______.20.等腰三角形ABC中,BC=8,AB,AC的长是关于x的方程x2-10x+m=0的两根,则m•的值是________.三、解答题21.(12分)选用适当的方法解下列方程:(1)(x+1)(6x-5)=0;(2)2x2;(3)2(x+5)2=x(x+5);(42=0.22.(5分)不解方程,判别下列方程的根的情况:(1)2x2+3x-4=0;(2)16y2+9=24y;(3x2x+2=0;(4)3t2t+2=0;(5)5(x2+1)-7x=0.23.(4分)已知一元二次方程a x2+bx+c=0(a≠0)的一个根是1,且a,b满足,•求关于y的方程14y2-c=0的根.24.(4分)已知方程x2+kx-6=0的一个根是2,求它的另一个根及k的值.25.(4分)某村的粮食年产量,在两年内从60万千克增长到72.6万千克,问平均每年增长的百分率是多少?26.(5分)为了合理利用电力资源,缓解用电紧张状况,我市电力部门出台了使用“峰谷电”的政策及收费标准(见表).已知王老师家4月份使用“峰谷电”95kMh,缴电费43.40元,问王老师家4月份“峰电”和“谷电”各用了多少kMh?27.(6分)印刷一张矩形的张贴广告(如图),•它的印刷面积是32dm2,•上下空白各1dm,两边空白各0.5dm,设印刷部分从上到下的长是xdm,四周空白处的面积为Sd m2.(1)求S与x的关系式;(2)当要求四周空白的面积为18dm2时,求用来印刷这张广告的纸张的长和宽各是多少?。
一元二次方程100道计算题练习1、)4(5)4(2+=+x x 2、x x 4)1(2=+ 3、22)21()3(x x -=+4、31022=-x x 5、(x+5)2=16 6、2(2x -1)-x (1-2x )=07、x 2 =64 8、5x 2 - 52=0 9、8(3 -x )2 –72=010、3x(x+2)=5(x+2) 11、(1-3y )2+2(3y -1)=0 12、x 2+ 2x + 3=013、x 2+ 6x -5=0 14、x 2-4x+ 3=0 15、x 2-2x -1 =016、2x 2+3x+1=0 17、3x 2+2x -1 =0 18、5x 2-3x+2 =019、7x 2-4x -3 =0 20、 -x 2-x+12 =0 21、x 2-6x+9 =022、22(32)(23)x x -=- 23、x 2-2x-4=0 24、x 2-3=4x25、3x 2+8 x -3=0(配方法) 26、(3x +2)(x +3)=x +14 27、(x+1)(x+8)=-1228、2(x -3) 2=x 2-9 29、-3x 2+22x -24=0 30、(2x-1)2+3(2x-1)+2=031、2x 2-9x +8=0 32、3(x-5)2=x(5-x) 33、(x +2) 2=8x34、(x -2) 2=(2x +3)2 35、2720x x += 36、24410t t -+=37、()()24330x x x -+-= 38、2631350x x -+= 39、()2231210x --=40、2223650x x -+=补充练习:一、利用因式分解法解下列方程(x -2) 2=(2x-3)2 042=-x x 3(1)33x x x +=+x 2x+3=0 ()()0165852=+---x x二、利用开平方法解下列方程51)12(212=-y 4(x-3)2=25 24)23(2=+x三、利用配方法解下列方程25220x x -+= 012632=--x x01072=+-x x四、利用公式法解下列方程-3x 2+22x -24=0 2x (x -3)=x -3. 3x 2+5(2x+1)=0五、选用适当的方法解下列方程(x +1) 2-3 (x +1)+2=0 22(21)9(3)x x +=- 2230x x --=21302x x ++= 4)2)(1(13)1(+-=-+x x x x2)2)(113(=--x x x (x +1)-5x =0. 3x (x -3) =2(x -1) (x +1).应用题:1、某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为扩大销售增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价一元,市场每天可多售2件,若商场平均每天盈利1250元,每件衬衫应降价多少元?2、两个正方形,小正方形的边长比大正方形的边长的一半多4 cm,大正方形的面积比小正方形的面积的2倍少32平方厘米,求大小两个正方形的边长.3、如图,有一块梯形铁板ABCD,AB∥CD,∠A=90°,AB=6 m,CD=4 m,AD=2 m,现在梯形中裁出一内接矩形铁板AEFG,使E在AB上,F在BC上,G在AD上,若矩形铁板的面积为5 m2,则矩形的一边EF长为多少?4、如右图,某小在长32米,区规划宽20米的矩形场地ABCD上修建三条同样宽的3条小路,使其中两条与AD平行,一条与AB平行,其余部分种草,若使草坪的面积为566米2,问小路应为多宽?5、某商店经销一种销售成本为每千克40元的水产品,据市场分析,若按每千克50元销售一个月能售出500千克;销售单价每涨1元,月销售量就减少10千克,商店想在月销售成本不超过1万元的情况下,使得月销售利润达到8000元,销售单价应定为多少?6.某工厂1998年初投资100万元生产某种新产品,1998年底将获得的利润与年初的投资的和作为1999年初的投资,到1999年底,两年共获利润56万元,已知1999年的年获利率比1998年的年获利率多10个百分点,求1998年和1999年的年获利率各是多少?思考:1、关于x 的一元二次方程()04222=-++-a x x a 的一个根为0,则a 的值为 。
一元二次方程与二次函数测试题1一.选择题(共10小题)1.下列方程中,关于x的一元二次方程是()A.(x+1)2=2(x+1)B.C.ax2+bx+c=0 D.x2+2x=x2﹣12.关于x的一元二次方程(m﹣1)x2+x+m2﹣1=0的一个根是0,则m的值为()A.1 B.1或﹣1 C.﹣1 D.0.53.若关于x的一元二次方程x2﹣2x+kb+1=0有两个不相等的实数根,则一次函数y=kx+b的大致图象可能是()A.B.C.D.4.用配方法解一元二次方程x2+4x﹣5=0,此方程可变形为()A.(x+2)2=9 B.(x﹣2)2=9 C.(x+2)2=1 D.(x﹣2)2=15.一元二次方程(1﹣k)x2﹣2x﹣1=0有两个不相等的实数根,则k的取值范围是()A.k>2 B.k<2 C.k<2且k≠1 D.k>2且k≠16.函数y=﹣x2+1的图象大致为()A.B.C. D.7.已知二次函数y=x2﹣4x+a,下列说法错误的是()A.当x<1时,y随x的增大而减小B.若图象与x轴有交点,则a≤4C.当a=3时,不等式x2﹣4x+a>0的解集是1<x<3D.若将图象向上平移1个单位,再向左平移3个单位后过点(1,﹣2),则a=﹣38.已知(﹣1,y1),(﹣2,y2),(﹣4,y3)是抛物线y=﹣2x2﹣8x+m上的点,则()A.y1<y2<y3 B.y3<y2<y1 C.y3<y1<y2D.y2<y3<y1 9.如图,Rt△AOB中,AB⊥OB,且AB=OB=3,设直线x=t截此三角形所得阴影部分的面积为S,则S与t之间的函数关系的图象为下列选项中的()A.B.C.D.10.如图,将一块正方形空地划出部分区域进行绿化,原空地一边减少了2m,另一边减少了3m,剩余一块面积为20m2的矩形空地,则原正方形空地的边长是()A.7m B.8m C.9m D.10m二.填空题(共10小题)11.关于x的一元二次方程(a﹣1)x2+x+|a|﹣1=0的一个根是0,则实数a的值为.12.2x2﹣x﹣1=0的二次项系数是,一次项系数是,常数项是.13.已知α、β是关于x的一元二次方程x2+(2m+3)x+m2=0的两个不相等的实数根,且满足,则m的值是.14.一元二次方程x2+3﹣2x=0的解是.15.抛物线y=﹣x2﹣2x+m,若其顶点在x轴上,则m=.16.已知抛物线y=ax2+bx+c经过点A(5,0)、B(6,﹣6)和原点,则抛物线的函数关系式是.17.如图,已知抛物线y1=﹣x2+4x和直线y2=2x.我们约定:当x任取一值时,x对应的函数值分别为y1、y2,若y1≠y2,取y1、y2中的较小值记为M;若y1=y2,记M=y1=y2.则①当x>4时,M<0;②当x<2时,M随着x增大而增大;③使得M大于4的x值不存在;④若M=2,则x=1,其中正确的有(填写序号)18.已知二次函数y=(x﹣2)2+3,当x时,y随x的增大而减小.19.如果一条抛物线经过平移后与抛物线y=﹣x2+2重合,且顶点坐标为(4,﹣2),则它的解析式为.20.用一根长为32cm的铁丝围成一个矩形,则围成矩形面积的最大值是cm2.三.解答题(共10小题)21.解方程(1)3x(x﹣1)=2﹣2x (2)x2+8x﹣9=0.(3)(x﹣3)2=3﹣x (4)3x2+5(2x+1)=0.22.已知关于x的一元二次方程kx2﹣4x+2=0有实数根.(1)求k的取值范围;(2)若△ABC中,AB=AC=2,AB,BC的长是方程kx2﹣4x+2=0的两根,求BC的长.23.已知关于x的一元二次方程x2+(2m﹣3)x+m2=0的两个不相等的实数根α、β满足,求m的值.24.(2014•蜀山区校级模拟)已知抛物线y=﹣﹣x+4,(1)用配方法确定它的顶点坐标、对称轴;(2)x取何值时,y随x增大而减小?(3)x取何值时,抛物线在x轴上方?25.某商场销售一种进价为20元/台的台灯,经调查发现,该台灯每天的销售量w(台),销售单价x(元)满足w=﹣2x+80,设销售这种台灯每天的利润为y(元).(1)求y与x之间的函数关系式;(2)当销售单价定为多少元时.毎天的利润最大?最大利润多少?(3)在保证销售量尽可能大的前提下.该商场每天还想获得150元的利润,应将销售单价定位为多少元?28.(2015•黑龙江)如图,抛物线y=x2﹣bx+c交x轴于点A(1,0),交y轴于点B,对称轴是x=2.(1)求抛物线的解析式;(2)点P是抛物线对称轴上的一个动点,是否存在点P,使△PAB的周长最小?若存在,求出点P的坐标;若不存在,请说明理由.一元二次方程与二次函数测试题1参考答案与试题解析一.选择题(共10小题)1.(2016•新都区模拟)下列方程中,关于x的一元二次方程是()A.(x+1)2=2(x+1)B.C.ax2+bx+c=0 D.x2+2x=x2﹣1【分析】利用一元二次方程的定义判断即可.【解答】解:下列方程中,关于x的一元二次方程是(x+1)2=2(x+1),故选A.2.(2016春•无锡校级期中)关于x的一元二次方程(m﹣1)x2+x+m2﹣1=0的一个根是0,则m的值为()A.1 B.1或﹣1 C.﹣1 D.0.5【分析】根据一元二次方程的定义得到m﹣1≠0;根据方程的解的定义得到m2﹣1=0,由此可以求得m的值.【解答】解:∵关于x的一元二次方程(m﹣1)x2+x+m2﹣1=0的一个根是0,∴m2﹣1=0且m﹣1≠0,解得m=﹣1.故选:C.3.(2016•枣庄)若关于x的一元二次方程x2﹣2x+kb+1=0有两个不相等的实数根,则一次函数y=kx+b的大致图象可能是()A.B. C.D.【分析】根据一元二次方程x2﹣2x+kb+1=0有两个不相等的实数根,得到判别式大于0,求出kb的符号,对各个图象进行判断即可.【解答】解:∵x2﹣2x+kb+1=0有两个不相等的实数根,∴△=4﹣4(kb+1)>0,解得kb<0,A.k>0,b>0,即kb>0,故A不正确;B.k>0,b<0,即kb<0,故B正确;C.k<0,b<0,即kb>0,故C不正确;D.k>0,b=0,即kb=0,故D不正确;故选:B.4.(2016•夏津县二模)用配方法解一元二次方程x2+4x﹣5=0,此方程可变形为()A.(x+2)2=9 B.(x﹣2)2=9 C.(x+2)2=1 D.(x﹣2)2=1【分析】移项后配方,再根据完全平方公式求出即可.【解答】解:x2+4x﹣5=0,x2+4x=5,x2+4x+22=5+22,(x+2)2=9,故选:A.5.(2016•邹城市一模)一元二次方程(1﹣k)x2﹣2x﹣1=0有两个不相等的实数根,则k的取值范围是()A.k>2 B.k<2 C.k<2且k≠1 D.k>2且k≠1【分析】根据一元二次方程的根的判别式,以及二次项系数不等于0,建立关于k的不等式组,求出k的取值范围.【解答】解:∵a=1﹣k,b=﹣2,c=﹣1,方程有两个不相等的实数根.∴△=b2﹣4ac=4+4(1﹣k)=8﹣4k>0∴k<2又∵一元二次方程的二次项系数不为0,即k≠1.∴k<2且k≠1.故选C.6.(2016•当涂县三模)函数y=﹣x2+1的图象大致为()A.B.C.D.【分析】根据二次函数的开口方向,对称轴,和y轴的交点可得相关图象.【解答】解:∵二次项系数a<0,∴开口方向向下,∵一次项系数b=0,∴对称轴为y轴,∵常数项c=1,∴图象与y轴交于(0,1),故选B.7.(2016•滨州一模)已知二次函数y=x2﹣4x+a,下列说法错误的是()A.当x<1时,y随x的增大而减小B.若图象与x轴有交点,则a≤4C.当a=3时,不等式x2﹣4x+a>0的解集是1<x<3D.若将图象向上平移1个单位,再向左平移3个单位后过点(1,﹣2),则a=﹣3【分析】现根据函数解析式,画出草图.A、此函数在对称轴的左边是随着x的增大而减小,在右边是随x增大而增大,据此作答;B、和x轴有交点,就说明△≥0,易求a的取值;C、解一元二次不等式即可;D、根据左加右减,上加下减作答即可.【解答】解:∵y=x2﹣4x+a,∴对称轴x=2,此二次函数的草图如图:A、当x<1时,y随x的增大而减小,此说法正确;B、当△=b2﹣4ac=16﹣4a≥0,即a≤4时,二次函数和x轴有交点,此说法正确;C、当a=3时,不等式x2﹣4x+a>0的解集是x<1或x>3,此说法错误;D、y=x2﹣4x+a配方后是y=(x﹣2)2+a﹣4,向上平移1个单位,再向左平移3个单位后,函数解析式是y=(x+1)2+a﹣3,把(1,﹣2)代入函数解析式,易求a=﹣3,此说法正确.故选C.8.(2016•滨江区模拟)已知(﹣1,y1),(﹣2,y2),(﹣4,y3)是抛物线y=﹣2x2﹣8x+m上的点,则()A.y1<y2<y3B.y3<y2<y1C.y3<y1<y2D.y2<y3<y1【分析】求出抛物线的对称轴,结合开口方向画出草图,根据对称性解答问题.【解答】解:抛物线y=﹣2x2﹣8x+m的对称轴为x=﹣2,且开口向下,x=﹣2时取得最大值.∵﹣4<﹣1,且﹣4到﹣2的距离大于﹣1到﹣2的距离,根据二次函数的对称性,y3<y1.∴y3<y1<y2.∴故选C.9.(2016•东莞市二模)如图,Rt△AOB中,AB⊥OB,且AB=OB=3,设直线x=t截此三角形所得阴影部分的面积为S,则S与t之间的函数关系的图象为下列选项中的()A. B. C.D.【分析】Rt△AOB中,AB⊥OB,且AB=OB=3,所以很容易求得∠AOB=∠A=45°;再由平行线的性质得出∠OCD=∠A,即∠AOD=∠OCD=45°,进而证明OD=CD=t;最后根据三角形的面积公式,解答出S与t之间的函数关系式,由函数解析式来选择图象.【解答】解:∵Rt△AOB中,AB⊥OB,且AB=OB=3,∴∠AOB=∠A=45°,∵CD⊥OB,∴CD∥AB,∴∠OCD=∠A,∴∠AOD=∠OCD=45°,∴OD=CD=t,∴S△OCD=×OD×CD=t2(0≤t≤3),即S=t2(0≤t≤3).故S与t之间的函数关系的图象应为定义域为[0,3]、开口向上的二次函数图象;故选D.10.(2015•佛山)如图,将一块正方形空地划出部分区域进行绿化,原空地一边减少了2m,另一边减少了3m,剩余一块面积为20m2的矩形空地,则原正方形空地的边长是()A.7m B.8m C.9m D.10m【分析】本题可设原正方形的边长为xm,则剩余的空地长为(x﹣2)m,宽为(x﹣3)m.根据长方形的面积公式方程可列出,进而可求出原正方形的边长.【解答】解:设原正方形的边长为xm,依题意有(x﹣3)(x﹣2)=20,解得:x1=7,x2=﹣2(不合题意,舍去)即:原正方形的边长7m.故选:A.二.填空题(共10小题)11.(2016春•惠山区期末)关于x的一元二次方程(a﹣1)x2+x+|a|﹣1=0的一个根是0,则实数a的值为﹣1.【分析】已知了一元二次方程的一个实数根,可将其代入该方程中,即可求出a 的值.【解答】解:∵关于x的一元二次方程(a﹣1)x2+x+|a|﹣1=0的一个根是0,∴|a|﹣1=0,即a=±1,∵a﹣1≠0∴a=﹣1,故答案为:﹣1.12.(2015秋•凤庆县校级期末)2x2﹣x﹣1=0的二次项系数是2,一次项系数是﹣,常数项是﹣1.【分析】一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0),在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.【解答】解:根据一元二次方程的定义得:2x2﹣x﹣1=0的二次项系数是2,一次项系数是﹣,常数项是﹣1.13.(2016•高安市一模)已知α、β是关于x的一元二次方程x2+(2m+3)x+m2=0的两个不相等的实数根,且满足,则m的值是3.【分析】先求出两根之积与两根之和的值,再将+化简成两根之积与两根之和的形式,然后代入求值.【解答】解:∵α、β是关于x的一元二次方程x2+(2m+3)x+m2=0的两个不相等的实数根;∴α+β=﹣2m﹣3,α•β=m2;∴+===﹣1;∴m2﹣2m﹣3=0;解得m=3或m=﹣1;∵一元二次方程x2+(2m+3)x+m2=0有两个不相等的实数根;∴△=(2m+3)2﹣4×1×m2=12m+9>0;∴m>﹣;∴m=﹣1不合题意舍去;∴m=3.14.(2015•天水)一元二次方程x2+3﹣2x=0的解是x1=x2=.【分析】先分解因式,即可得出完全平方式,求出方程的解即可.【解答】解:x2+3﹣2x=0(x﹣)2=0∴x1=x2=.故答案为:x1=x2=.15.(2012•滕州市校级模拟)抛物线y=﹣x2﹣2x+m,若其顶点在x轴上,则m=﹣1.【分析】根据抛物线y=﹣x2﹣2x+m,若其顶点在x轴上可知其顶点纵坐标为0,故可得出关于m的方程,求出m的值即可.【解答】解:∵抛物线y=﹣x2﹣2x+m,若其顶点在x轴上,∴=0,解得m=﹣1.故答案为:﹣1.16.(2008秋•周村区期中)已知抛物线y=ax2+bx+c经过点A(5,0)、B(6,﹣6)和原点,则抛物线的函数关系式是y=﹣x2+5x.【分析】把三点坐标代入函数解析式,即可得到关于a,b,c的方程组,即可求得a,b,c的值,求出函数解析式.【解答】解:把点A(5,0)、B(6,﹣6)、(0.0)代入抛物线y=ax2+bx+c,得:解得:则抛物线的函数关系式是y=﹣x2+5x.17.如图,已知抛物线y1=﹣x2+4x和直线y2=2x.我们约定:当x任取一值时,x对应的函数值分别为y1、y2,若y1≠y2,取y1、y2中的较小值记为M;若y1=y2,记M=y1=y2.则①当x>4时,M<0;②当x<2时,M随着x增大而增大;③使得M大于4的x值不存在;④若M=2,则x=1,其中正确的有②③(填写序号)【分析】若y1=y2,记M=y1=y2.首先求得抛物线与直线的交点坐标,利用图象可得当x>2时,利用函数图象可以得出y2>y1;当0<x<2时,y1>y2;当x<0时,利用函数图象可以得出y2>y1;然后根据当x任取一值时,x对应的函数值分别为y1、y2.若y1≠y2,取y1、y2中的较小值记为M;即可求得答案.【解答】解:∵当y1=y2时,即﹣x2+4x=2x时,解得:x=0或x=2,∴当x>2时,利用函数图象可以得出y2>y1;当0<x<2时,y1>y2;当x<0时,利用函数图象可以得出0>y2>y1;∴①错误;∵抛物线y1=﹣x2+4x,直线y2=2x,当x任取一值时,x对应的函数值分别为y1、y2.若y1≠y2,取y1、y2中的较小值记为M;∴当x<2时,根据函数图象可以得出x值越大,M值越大;∴②正确;∵抛物线y1=﹣x2+4x的最大值为4,故M大于4的x值不存在,∴③正确;∵如图:当0<x<2时,y1>y2;当M=2,2x=2,x=1;x>2时,y2>y1;当M=2,﹣x2+4x=2,x1=2+,x2=2﹣(舍去),∴使得M=2的x值是1或2,∴④错误;故答案为:②③.18.(2015•漳州)已知二次函数y=(x﹣2)2+3,当x<2时,y随x的增大而减小.【分析】根据二次函数的性质,找到解析式中的a为1和对称轴;由a的值可判断出开口方向,在对称轴的两侧可以讨论函数的增减性.【解答】解:在y=(x﹣2)2+3中,a=1,∵a>0,∴开口向上,由于函数的对称轴为x=2,当x<2时,y的值随着x的值增大而减小;当x>2时,y的值随着x的值增大而增大.故答案为:<2.19.(2015•东光县校级二模)如果一条抛物线经过平移后与抛物线y=﹣x2+2重合,且顶点坐标为(4,﹣2),则它的解析式为y=﹣(x﹣4)2﹣2.【分析】一条抛物线经过平移后与抛物线y=﹣x2+2重合,所以所求抛物线的二次项系数为a=﹣,再根据顶点坐标写出表达式则可.【解答】解:根据题意,可设所求的抛物线的解析式为y=a(x﹣h)2+k;∵此抛物线经过平移后与抛物线y=﹣x2+2重合,∴a=﹣;∵此抛物线的顶点坐标为(4,﹣2),∴其解析式为:y=﹣(x﹣4)2﹣2.20.(2015•莆田)用一根长为32cm的铁丝围成一个矩形,则围成矩形面积的最大值是64cm2.【分析】设矩形的一边长是xcm,则邻边的长是(16﹣x)cm,则矩形的面积S 即可表示成x的函数,根据函数的性质即可求解.【解答】解:设矩形的一边长是xcm,则邻边的长是(16﹣x)cm.则矩形的面积S=x(16﹣x),即S=﹣x2+16x,当x=﹣=﹣=8时,S有最大值是:64.故答案是:64.三.解答题(共10小题)21.(2014秋•成都期中)解方程(1)3x(x﹣1)=2﹣2x(2)x2+8x﹣9=0.【分析】(1)移项后分解因式,即可得出两个一元一次方程,求出方程的解即可;(2)先分解因式,即可得出两个一元一次方程,求出方程的解即可.【解答】解:(1)3x(x﹣1)=2﹣2x,3x(x﹣1)+2(x﹣1)=0,(x﹣1)(3x+2)=0,x﹣1=0,3x+2=0,x1=1,x2=﹣;(2)x2+8x﹣9=0,(x+9)(x﹣1)=0,x+9=0,x﹣1=0,x1=﹣9,x2=1.22.(2013秋•武穴市校级月考)解方程:(3x﹣1)(x﹣1)=(4x+1)(x﹣1).【分析】分析本题容易犯的错误是约去方程两边的(x﹣1),将方程变为3x﹣1=4x+1,所以x=﹣2,这样就丢掉了x=1这个根.故特别要注意:用含有未知数的整式去除方程两边时,很可能导致方程失根.【解答】解:(3x﹣1)(x﹣1)﹣(4x+1)(x﹣1)=0,(x﹣1)[(3x﹣1)﹣(4x+1)]=0,(x﹣1)(x+2)=0,∴x1=1,x2=﹣2.23.(2013秋•嘉峪关校级期中)解方程(1)(x﹣1)(x+3)=12(2)(x﹣3)2=3﹣x(3)3x2+5(2x+1)=0.【分析】(1)方程整理为一般形式后,左边利用十字相乘法分解因式,然后利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解;(2)方程移项后,提取公因式化为积的形式,然后利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解;(3)方程整理为一般形式后,找出a,b,c的值,代入求根公式即可求出值.【解答】解:(1)方程整理得:x2+2x﹣15=0,分解因式得:(x﹣3)(x+5)=0,解得:x1=3,x2=﹣5;(2)方程变形得:(x﹣3)2+(x﹣3)=0,分解因式得:(x﹣3)(x﹣3+1)=0,解得:x1=3,x2=2;(3)方程整理得:3x2+10x+5=0,这里a=3,b=10,c=5,∵△=100﹣60=40,∴x==.24.(2015秋•永川区校级期中)已知关于x的一元二次方程kx2﹣4x+2=0有实数根.(1)求k的取值范围;(2)若△ABC中,AB=AC=2,AB,BC的长是方程kx2﹣4x+2=0的两根,求BC的长.【分析】(1)若一元二次方程有实数根,则根的判别式△=b2﹣4ac≥0,建立关于k的不等式,即可求出k的取值范围.(2)由于AB=2是方程kx2﹣4x+2=0,所以可以确定k的值,进而再解方程求出BC的值.【解答】解:(1)∵方程有实数根,∴△=b2﹣4ac=(﹣4)2﹣4×k×2=16﹣8k≥0,解得:k≤2,又因为k是二次项系数,所以k≠0,所以k的取值范围是k≤2且k≠0.(2)由于AB=2是方程kx2﹣4x+2=0,所以把x=2代入方程,可得k=,所以原方程是:3x2﹣8x+4=0,解得:x1=2,x2=,所以BC的值是.25.(2004•重庆)已知关于x的一元二次方程x2+(2m﹣3)x+m2=0的两个不相等的实数根α、β满足,求m的值.【分析】首先根据根的判别式求出m的取值范围,利用根与系数的关系可以求得方程的根的和与积,将转化为关于m的方程,求出m的值并检验.【解答】解:由判别式大于零,得(2m﹣3)2﹣4m2>0,解得m<.∵即.∴α+β=αβ.又α+β=﹣(2m﹣3),αβ=m2.代入上式得3﹣2m=m2.解之得m1=﹣3,m2=1.∵m2=1>,故舍去.∴m=﹣3.26.(2014•蜀山区校级模拟)已知抛物线y=﹣﹣x+4,(1)用配方法确定它的顶点坐标、对称轴;(2)x取何值时,y随x增大而减小?(3)x取何值时,抛物线在x轴上方?【分析】(1)用配方法时,先提二次项系数,再配方,写成顶点式,根据顶点式的坐标特点求顶点坐标及对称轴;(2)对称轴是x=﹣1,开口向下,根据对称轴及开口方向确定函数的增减性;(3)令y=0,确定函数图象与x轴的交点,结合开口方向判断x的取值范围.【解答】解:(1)∵y=﹣﹣x+4=﹣(x2+2x﹣8)=﹣[(x+1)2﹣9]=﹣+,∴它的顶点坐标为(﹣1,),对称轴为直线x=﹣1;(2)∵抛物线对称轴是直线x=﹣1,开口向下,∴当x>﹣1时,y随x增大而减小;(3)当y=0时,即﹣+=0解得x1=2,x2=﹣4,而抛物线开口向下,∴当﹣4<x<2时,抛物线在x轴上方.27.(2011•乌鲁木齐)某商场销售一种进价为20元/台的台灯,经调查发现,该台灯每天的销售量w(台),销售单价x(元)满足w=﹣2x+80,设销售这种台灯每天的利润为y(元).(1)求y与x之间的函数关系式;(2)当销售单价定为多少元时.毎天的利润最大?最大利润多少?(3)在保证销售量尽可能大的前提下.该商场每天还想获得150元的利润,应将销售单价定位为多少元?【分析】(1)用每台的利润乘以销售量得到每天的利润.(2)由(1)得到的是一个二次函数,利用二次函数的性质,可以求出最大利润以及销售单价.(3)把y=150代入函数,求出对应的x的值,然后根据w与x的关系,舍去不合题意的值.【解答】解:(1)y=(x﹣20)(﹣2x+80),=﹣2x2+120x﹣1600;(2)∵y=﹣2x2+120x﹣1600,=﹣2(x﹣30)2+200,∴当x=30元时,最大利润y=200元;(3)由题意,y=150,即:﹣2(x﹣30)2+200=150,解得:x1=25,x2=35,又销售量W=﹣2x+80随单价x的增大而减小,所以当x=25时,既能保证销售量大,又可以每天获得150元的利润.28.(2015•黑龙江)如图,抛物线y=x2﹣bx+c交x轴于点A(1,0),交y轴于点B,对称轴是x=2.(1)求抛物线的解析式;(2)点P是抛物线对称轴上的一个动点,是否存在点P,使△PAB的周长最小?若存在,求出点P的坐标;若不存在,请说明理由.【分析】(1)根据抛物线经过点A(1,0),对称轴是x=2列出方程组,解方程组求出b、c的值即可;(2)因为点A与点C关于x=2对称,根据轴对称的性质,连接BC与x=2交于点P,则点P即为所求,求出直线BC与x=2的交点即可.【解答】解:(1)由题意得,,解得b=4,c=3,∴抛物线的解析式为.y=x2﹣4x+3;(2)∵点A与点C关于x=2对称,∴连接BC与x=2交于点P,则点P即为所求,根据抛物线的对称性可知,点C的坐标为(3,0),y=x2﹣4x+3与y轴的交点为(0,3),∴设直线BC的解析式为:y=kx+b,,解得,k=﹣1,b=3,∴直线BC的解析式为:y=﹣x+3,则直线BC与x=2的交点坐标为:(2,1)∴点P的坐标为:(2,1).29.(2015•齐齐哈尔)如图,在平面直角坐标系中,正方形OABC的边长为4,顶点A、C分别在x轴、y轴的正半轴,抛物线y=﹣x2+bx+c经过B、C两点,点D为抛物线的顶点,连接AC、BD、CD.(1)求此抛物线的解析式.(2)求此抛物线顶点D的坐标和四边形ABCD的面积.【分析】(1)根据题意确定出B与C的坐标,代入抛物线解析式求出b与c的值,即可确定出解析式;(2)把抛物线解析式化为顶点形式,找出顶点坐标,四边形ABDC面积=三角形ABC面积+三角形BCD面积,求出即可.【解答】解:(1)由已知得:C(0,4),B(4,4),把B与C坐标代入y=﹣x2+bx+c得:,解得:b=2,c=4,则解析式为y=﹣x2+2x+4;(2)∵y=﹣x2+2x+4=﹣(x﹣2)2+6,∴抛物线顶点坐标为(2,6),则S=S△ABC+S△BCD=×4×4+×4×2=8+4=12.四边形ABDC30.(2015•湖北)如图,一农户要建一个矩形猪舍,猪舍的一边利用长为12m 的住房墙,另外三边用25m长的建筑材料围成,为方便进出,在垂直于住房墙的一边留一个1m宽的门,所围矩形猪舍的长、宽分别为多少时,猪舍面积为80m2?【分析】设矩形猪舍垂直于住房墙一边长为xm可以得出平行于墙的一边的长为(25﹣2x+1)m.根据矩形的面积公式建立方程求出其解就可以了.【解答】解:设矩形猪舍垂直于住房墙一边长为xm可以得出平行于墙的一边的长为(25﹣2x+1)m,由题意得x(25﹣2x+1)=80,化简,得x2﹣13x+40=0,解得:x1=5,x2=8,当x=5时,26﹣2x=16>12(舍去),当x=8时,26﹣2x=10<12,答:所围矩形猪舍的长为10m、宽为8m.。
一元二次方程(一)一、选择题1.一元二次方程2210x x --=的根的情况为( )A .有两个相等的实数根B .有两个不相等的实数根C .只有一个实数根D .没有实数根2.若关于z 的一元二次方程 2.20x x m -+=没有实数根,则实数m 的取值范围是 ( )A .m<lB .m>-1C .m>lD .m<-1 3.一元二次方程x 2+x +2=0的根的情况是 ( ) A .有两个不相等的正根 B .有两个不相等的负根 C .没有实数根D .有两个相等的实数根4.用配方法解方程2420x x -+=,下列配方正确的是( )A .2(2)2x -=B .2(2)2x +=C .2(2)2x -=-D .2(2)6x -=5.已知函数2y ax bx c =++的图象如图(7)所示,那么关于x 的方程220ax bx c +++=的根的情况是A .无实数根B .有两个相等实数根C .有两个异号实数根D .有两个同号不等实数根6.关于x 的方程20x px q ++=的两根同为负数,则( )A .0p >且q >0B .0p >且q <0C .0p <且q >0D .0p <且q <07.若关于x 的一元二次方程22430x kx k ++-=的两个实数根分别是12,x x ,且满足1212x x x x +=.则k 的值为( )A.-1或34B.-1C.34D.不存在 8.下列关于x 的一元二次方程中,有两个不相等的实数根的方程是( )A.x 2+4=0B.4x 2-4x +1=0C.x 2+x +3=0D.x 2+2x -1=09.某商品原价200元,连续两次降价a %后售价为148元,下列所列方程正确的是( )A.200(1+a%)2=148B.200(1-a%)2=148图(7)C.200(1-2a%)=148D.200(1-a 2%)=148 10.下列方程中有实数根的是( ) A.x 2+2x +3=0B.x 2+1=0C.x 2+3x +1=0D.111x x x =-- 11.已知关于x 的一元二次方程22x m x -= 有两个不相等的实数根,则m 的取值范围 是 ( ) A . m >-1 B . m <-2 C .m ≥0 D .m <0 12.如果2是一元二次方程x 2=c 的一个根,那么常数c 是( ) A.2 B.-2 C.4 D.-4二、填空题13.已知一元二次方程22310x x --=的两根为1x 、2x ,则12x x += 14.方程()214x -=的解为 。
解一元二次方程练习题(配方法)配方法的理论根据是完全平方公式222)(2b a b ab a +=+±,把公式中的a 看做未知数x ,并用x 代替,则有222)(2b x b bx x ±=+±。
配方法的步骤:先把常数项移到方程的右边,再把二次项的系数化为1,再同时加上1次项的系数的一半的平方,最后配成完全平方公式1.用适当的数填空:①、x 2+6x+ =(x+ )2 ②、x 2-5x+ =(x - )2;③、x 2+ x+ =(x+ )2 ④、x 2-9x+ =(x - )22.将二次三项式2x 2-3x-5进行配方,其结果为_________.3.已知4x 2-ax+1可变为(2x-b )2的形式,则ab=_______.4.将x 2-2x-4=0用配方法化成(x+a )2=b 的形式为___ ____,•所以方程的根为_________.5.若x 2+6x+m 2是一个完全平方式,则m 的值是6.用配方法将二次三项式a 2-4a+5变形,结果是7.把方程x 2+3=4x 配方,得8.用配方法解方程x 2+4x=10的根为9.用配方法解下列方程:(1)3x 2-5x=2. (2)x 2+8x=9(3)x 2+12x-15=0 (4)41 x 2-x-4=010.用配方法求解下列问题(1)求2x 2-7x+2的最小值 ; (2)求-3x 2+5x+1的最大值。
解一元二次方程练习题(公式法)公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法。
一元二次方程)0(02≠=++a c bx ax 的求根公式:)04(2422≥--±-=ac b aac b b x 公式法的步骤:就把一元二次方程的各系数分别代入,这里二次项的系数为a ,一次项的系数为b ,常数项的系数为c一、填空题1.一般地,对于一元二次方程ax 2+bx+c=0(a≠0),当b 2-4ac≥0时,它的根是__ ___ 当b-4ac<0时,方程___ ______.2.方程ax 2+bx+c=0(a≠0)有两个相等的实数根,则有____ ____ ,•若有两个不相等的实数根,则有_____ ____,若方程无解,则有__________.3.用公式法解方程x 2 = -8x-15,其中b 2-4ac= _______,x 1=_____,x 2=________.4.已知一个矩形的长比宽多2cm ,其面积为8cm 2,则此长方形的周长为________.5.用公式法解方程4y 2=12y+3,得到6.不解方程,判断方程:①x 2+3x+7=0;②x 2+4=0;③x 2+x-1=0中,有实数根的方程有 个 7.当x=_____ __时,代数式13x +与2214x x +-的值互为相反数. 8.若方程x-4x+a=0的两根之差为0,则a 的值为________.二、利用公式法解下列方程(1)220x -+= (2) 012632=--x x (3)x=4x 2+2(4)-3x 2+22x -24=0 (5)2x (x -3)=x -3 (6) 3x 2+5(2x+1)=0(7)(x+1)(x+8)=-12 (8)2(x -3) 2=x 2-9 (9)-3x 2+22x -24=0解一元二次方程练习题(因式分解法)因式分解法就是利用因式分解的手段,求出方程的解的方法,这种方法简单易行,是解一元二次方程最常用的方法。
1.下列方程中是一元二次方程的是( ). A.xy +2=1 B. 09212=-+xx C. x 2=0 D.02=++c bx ax 2.配方法解方程2420x x -+=,下列配方正确的是( ) A .2(2)2x -=B .2(2)2x +=C .2(2)2x -=-D .2(2)6x -=3.(2008山东潍坊)已知反比例函数y ab x=,当x >0时,y 随x 的增大而增大,则关于x 的方程220ax x b -+=的根的情况是( )A.有两个正根B.有两个负根C.有一个正根一个负根D.没有实数根4.若1762+--x x x 的值等于零,则x 的值是( )A 7或-1B -7或1C 7D -15.已知一元二次方程02=++c bx ax ,若0=++c b a ,则该方程一定有一个根为( )A. 0B. 1C. -1D. 2 6.方程0134)2(||=++++m x xm m 是关于x 的一元二次方程,则( )A. m=±2B. m=2C. m= -2D. m ≠±2 7.已知a ,b ,c 是△ABC 三条边的长,那么方程cx 2+(a+b)x+4c=0的根的情况是( ). A .没有实数根 B .有两个不相等的正实数根 C .有两个不相等的负实数根 D .有两个异号实数根8.下面是某同学在一次数学测验中解答的填空题,其中答对的是( ) A .若x 2=4,则x=2 B 若3x 2=6x ,则x=2 C .02=-+k x x 的一个根是1,则k=2 D .若分式()xx x 2- 的值为零,则x=2 9.等腰三角形的底和腰是方程2680x x -+=的两个根,则这个三角形的周长是( ) A .8B .10C .8或10D . 不能确定10.方程2(1)5322x x -+=化为一元二次方程的一般形式是________,它的一次项系数是______.11.如果2x 2+1与4x 2-2x-5互为相反数,则x 的值为________.12.已知代数式532++x x 的值是7,则代数式2932-+x x 的值是13.(2008江苏宿迁)已知一元二次方程032=++px x 的一个根为3-,则_____=p 14.阅读材料:设一元二次方程20ax bx c ++=的两根为1x ,2x ,则两根与方程系数之间有如下关系:12b x x a +=-,ac x x =⋅21.根据该材料填空:已知1x ,2x 是方程2630x x ++=的两实数根,则2112x x x x +的值为______ . 15.若()()06522222=-+-+y x yx ,则=+22y x __________。
实际问题与一元二次方程————销售问题
商品定价:
1、利达经销店为某工厂代销一种建筑材料(这里的代销是指厂家先免费提供货源,待货物售出后再进行结算,未售出的由厂家负责处理)。
当每吨售价为260元时,月销售量为45吨。
该经销店为提高经营利润,准备采取降价的方式进行促销。
经市场调查发现:当每吨售价每下降10元时,月销售量就会增加7.5吨。
综合考虑各种因素,每售出一吨建筑材料共需支付厂家及其它费用100元。
(1)当每吨售价是240元时,计算此时的月销售量。
(2)在遵循“薄利多销”的原则下,问每吨材料售价为多少时,该经销店的月利润为9000元。
2、某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映;如调整价格,每涨价1元,每星期要少卖出10件。
已知商品的进价为每件40元. 若该商场某一星期利润为6160元,求这一星期涨了多少元?
3、利达经销店为某工厂代销一种建筑材料(这里的代销是指厂家先免费提供货源,待货物售出后再进行结算,未售出的由厂家负责处理)。
当每吨售价为260元时,月销售量为45吨。
该经销店为提高经营利润,准备采取降价的方式进行促销。
经市场调查发现:当每吨售价每下降10元时,月销售量就会增加7.5吨。
综合考虑各种因素,每售出一吨建筑材料共需支付厂家及其它费用100元。
(1)当每吨售价是240元时,计算此时的月销售量;
(2)在遵循“薄利多销”的原则下,问每吨材料售价为多少时,该经销店的月利润为9000元。
人教版中考数学《一元二次方程》专项练习题一、单选题(每小题3分,共36分)1.一元二次方程x 2﹣4x +4=0的根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .有一个实数根D .没有实数根2.用公式法解方程20(0)ax bx c a -+-=≠,下列代入公式正确的是( )A .x =B .x =C .xD .x = 3.下列方程属于一元二次方程的是( )A .2223x x -= B .20ax bx c ++= C .()2130x -+=D .()222154x x +-= 4.若关于x 的方程220x x a ++=有一个根是1,则a 等于( )A .1-B .3-C .3D .15.汽车产业的发展,有效促进了我国现代化建设.某汽车销售公司2018年盈利1000万元,2020年盈利1440万元,且从2018年到2020年,每年盈利的年增长率相同.设每年盈利的年增长率为x ,则列方程得( )A .1000(1+2x )=1440B .1000(1+x )2=1440C .1000×2×(1+x )=1440D .1000+1000(1+x )+1000(1+x )2=1440 6.若方程x 2﹣2x +m =0没有实数根,则m 的值可以是( )A .3B .1C .0D .﹣27.方程2x 2﹣3x ﹣32=0的根的情况是( ) A .有两个不相等的实数根B .有两个相等的实数根C .只有一个实数根D .没有实数根8.如果-2是方程20x m -=的一个根,则m 的值为( )A .4B .-4C .2D .-2 9.方程(1)(3)0x x -+=的解是( )A .1x =B .3x =-C .11x =,23x =D .13x =-,21x = 10.下列方程是关于x 的一元二次方程的是( )A .4x ²+320x +=B .2x ²﹣y ﹣1=0C .ax ²+2x +1=0D .x (4x ﹣2)=0 11.下列方程中是关于x 的一元二次方程的是( )A .20ax bx c ++=B .22321x x x -=+-C .20x =D .22250x xy y --=12.下列方程中,属于一元二次方程的是( )A .x +2y =1B .xy ﹣5=0C .ax 2+bx +c =0D .x 2﹣16=0二、填空题(每小题4分,共32分)13.如果关于x 的方程x 2+x +c =0有一个根为1,那么c 的值为 ___.14.某厂工业废气年排放量为2000万立方米,为了改善大气质量,决定分两期投入治理,使废气的年排放量减少到1280万立方米,如果每期治理中废气减少的百分率相同,每期减少的百分率是_______.15.关于x 的一元二次方程22(2)0x x m +--=有两个相等的实数根,则m 的值为______. 16.已知3是关于x 的一元二次方程240x x c -+=的一个根,则方程的另一个根_______. 17.已知关于x 的一元二次方程(x ﹣3)(x ﹣2)﹣p 2=0,下列结论:①方程总有两个不等的实数根;②若两个根为x 1,x 2,且x 1>x 2,则x 1>3,x 2<3;③若两个根为x 1,x 2,则(x 1﹣2)(x 2﹣2)=(x 1﹣3)(x 2﹣3);④若x p 为常数),则代数式(x ﹣3)(x ﹣2)的值为一个完全平方数,其中正确的结论是 _____.18.若x =a 是方程x 2+x ﹣1=0的一个根,则代数式a 3+2a 2﹣7的值是____.19.已知在△ABC 中,∠B =45°,AB =AC =10,则BC =_________.20.若2x =是关于x 的一元二次方程2280x mx -+=的一个根,则m 的值为________.三、解答题(52分)21.(6分)解方程:(1)2241x x -=(2)222(3)9x x -=-.22.(8分)已知α、β是关于x的一元二次方程x2+(2m+3)x+m2=0的两个不相等的实数根.(1)试确定m的取值范围;(2)当111αβ+=-时,求m的值.23.(8分)某单位开展了赈灾捐款活动.第一天收到捐款10000元,第三天收到捐款12100元.(1)如果第二天、第三天收到捐款的增长率相同,求捐款增长率;(2)按照(1)中收到捐款的增长速度,第二天该单位收到多少捐款?24.(10分)某农户计划利用现有的长为12m的一面墙再修四面墙,建造如图所示的长方体水池,来培育不同品种的鱼苗,他已备足可以修高为2m,长24m的墙材料并准备施工,设图中与现有一面墙垂直的三面墙的长度都为x m,即AD=EF=BC=x m.(不考虑墙的厚度)(1)则AB=;(用含x的代数式表示),长方体水池的容积V=;(用含x 的代数式表示);(2)若水池的总容积为72m3,x应等于多少?25.(10分)某单位组织员工前往九棵树艺术中心欣赏上海说唱《金铃塔》的表演.表演前,主办方工作人员准备利用26米长的墙为一边,用48米隔栏绳为另三边,设立一个面积为300平方米的长方形等候区,如图,为了方便群众进出,在两边空出两个各为1米的出入口(出入口不用隔栏绳).假设这个长方形平行于墙的一边为长,垂直于墙的一边为宽,那么围成的这个长方形的长与宽分别是多少米呢?26.(10分)已知关于方程x2+2x+m﹣2=0.(1)若该方程有两个不相等的实数根,求实数m的取值范围;(2)当该方程的一个根为1时,求m的值及方程的另一根.参考答案1.B2.B3.C4.B5.B6.A7.A8.A9.D10.D11.C12.D 13.-214.20%15.116.1x=17.①③18.6-19.220.321.(1)x1x22)x1=3,x2=922.(1)34m>-;(2)323.(1)10%;(2)11000元24.(1)(24-3x)m,(-6x2+48x)m3;(2)x=6.25.长方形的长为20米,宽为15米26.(1)3m<;(2) m的值是-1,该方程的另一根为-3.。
一元二次方程的应用测试题时间:90分钟总分: 100题号一二三四总分得分一、选择题(本大题共10小题,共30.0分)1.随州市尚市“桃花节”观赏人数逐年增加,据有关部门统计,2014年约为20万人次,2016年约为28.8万人次,设观赏人数年均增长率为x,则下列方程中正确的是()A. 20(1+2x)=28.8B. 28.8(1+x)2=20C. 20(1+x)2=28.8D. 20+20(1+x)+20(1+x)2=28.82.有x支球队参加篮球比赛,共比赛了45场,每两队之间都比赛一场,则下列方程中符合题意的是()A. 12x(x−1)=45 B. 12x(x+1)=45 C. x(x−1)=45 D. x(x+1)=453.如图,在矩形ABCD中,AB=1,BC=2,将其折叠使AB落在对角线AC上,得到折痕AE,那么BE的长度为()A. √2−12B. √3−12C. √5−12D. √6−124.公园有一块正方形的空地,后来从这块空地上划出部分区域栽种鲜花(如图),原空地一边减少了1m,另一边减少了2m,剩余空地的面积为18m2,求原正方形空地的边长.设原正方形的空地的边长为xm,则可列方程为()A. (x+1)(x+2)=18B. x2−3x+16=0C. (x−1)(x−2)=18D. x2+3x+16=05.某钢铁厂一月份生产钢铁560吨,从二月份起,由于改进操作技术,使得第一季度共生产钢铁1850吨,问二、三月份平均每月的增长率是多少?若设二、三月份平均每月的增长率为x,则可得方程()A. 560(1+x)2=1850B. 560+560(1+x)2=1850C. 560(1+x)+560(1+x)2=1850D. 560+560(1+x)+560(1+x)2=18506.某市计划经过两年时间,绿地面积增加44%,这两年平均每年绿地面积的增长率是()A. 19%B. 20%C. 21%D. 22%7.如图,某小区计划在一块长为32m,宽为20m的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m2.若设道路的宽为xm,则下面所列方程正确的是()A. (32−2x)(20−x)=570B. 32x+2×20x=32×20−570C. (32−x)(20−x)=32×20−570D. 32x+2×20x−2x2=5708.一种药品原价每盒25元,经过两次降价后每盒16元.设两次降价的百分率都为x,则x满足()A. 16(1+2x)=25B. 25(1−2x)=16C. 16(1+x)2=25 D. 25(1−x)2=169.某景点的参观人数逐年增加,据统计,2014年为10.8万人次,2016年为16.8万人次.设参观人次的平均年增长率为x,则()A. 10.8(1+x)=16.8B. 16.8(1−x)=10.8C. 10.8(1+x)2=16.8D. 10.8[(1+x)+(1+x)2]=16.810.如图,将边长为2cm的正方形ABCD沿其对角线AC剪开,再把△ABC沿着AD方向平移,得到△A′B′C′,若两个三角形重叠部分的面积为1cm2,则它移动的距离AA′等于()A. 0.5cmB. 1cmC. 1.5cmD. 2cm二、填空题(本大题共10小题,共30.0分)11.如图,一块矩形铁皮的长是宽的2倍,将这个铁皮的四角各剪去一个边长为3cm的小正方形,做成一个无盖的盒子,若盒子的容积是240cm3,则原铁皮的宽为______ cm.12.红米note手机连续两次降价,由原来的1299元降688元,设平均每次降价的百分率为x,则列方程为______ .13.如图,是一个长为30m,宽为20m的矩形花园,现要在花园中修建等宽的小道,剩余的地方种植花草.如图所示,要使种植花草的面积为532m2,那么小道进出口的宽度应为______ 米.14.原价100元的某商品,连续两次降价后售价为81元,若每次降低的百分率相同,则降低的百分率为______ .15.如图,在边长为6cm正方形ABCD中,点P从点A开始沿AB边向点B以1cm/s的速度移动,点Q从点B开始沿BC和CD边向D点以2cm/s的速度移动,如果点P、Q分别从A、B同时出发,其中一点到终点,另一点也随之停止.过了______ 秒钟后,△PBQ的面积等于8cm2.16.经过两次连续降价,某药品销售单价由原来的50元降到32元,设该药品平均每次降价的百分率为x,根据题意可列方程是______.17.如图,EF是一面长18米的墙,用总长为32米的木栅栏(图中的虚线)围一个矩形场地ABCD,中间用栅栏隔成同样三块.若要围成的矩形面积为60平方米,则AB的长为______ 米.18.为了改善居民住房条件,我市计划用未来两年的时间,将城镇居民的住房面积由现在的人均约为10m2提高到12.1m2.若每年的年增长率相同且设为x,则列出的方程是______ .19.去年2月“蒜你狠”风潮又一次来袭,某市蔬菜批发市场大蒜价格猛涨,原来单价4元/千克的大蒜,经过2月和3月连续两个月增长后,价格上升很快,物价部门紧急出台相关政策控制价格,4月大蒜价格下降了36%,恰好与涨价前的价格相同,则2月,3月的平均增长率为______ .20.某种药品原来售价100元,连续两次降价后售价为81元,若每次下降的百分率相同,则这个百分率是______.三、计算题(本大题共4小题,共24.0分)21.商场某种新商品每件进价是40元,在试销期间发现,当每件商品售价50元时,每天可销售500件,当每件商品售价高于50元时,每涨价1元,日销售量就减少10件.据此规律,请回答:(1)当每件商品售价定为55元时,每天可销售多少件商品?商场获得的日盈利是多少?(2)在上述条件不变,商品销售正常的情况下,每件商品的销售定价为多少元时,商场日盈利可达到8000元?22.如图,在△ABC中,∠B=90∘,点P从点A开始,沿AB向点B以1cm/s的速度移动,点Q从B点开始沿BC以2cm/s的速度移动,如果P、Q分别从A、B同时出发:(1)几秒后四边形APQC的面积是31平方厘米;(2)若用S表示四边形APQC的面积,在经过多长时间S取得最小值?并求出最小值.23.如图,有长为24米的篱笆,一面利用墙(墙的最大可用长度为11米),围成中间隔有一道篱笆的长方形花圃.(1)如果要围成面积为45平方米的花圃,那么AD的长为多少米?(2)能否围成面积为60平方米的花圃?若能,请求出AD的长;若不能,请说明理由.24.“白马服饰城”某服装柜的某款裤子每条的成本是50元,经市场调查发现,当销售单价是100元时,每天可以卖掉50条,每降低1元,可多卖5条.(1)要使每天的利润为4000元,裤子的定价应该是多少元?(2)如何定价可以使每天的利润最大?最大利润是多少?四、解答题(本大题共2小题,共16.0分)25.为进一步发展基础教育,自2014年以来,某县加大了教育经费的投入,2014年该县投入教育经费6000万元.2016年投入教育经费8640万元.假设该县这两年投入教育经费的年平均增长率相同.(1)求这两年该县投入教育经费的年平均增长率;(2)若该县教育经费的投入还将保持相同的年平均增长率,请你预算2017年该县投入教育经费多少万元.26.如图所示,已知在△ABC中,∠B=90∘,AB=6cm,BC=12cm,点Q从点A开始沿AB边向点B以1cm/s 的速度移动,点P从点B开始沿BC边向点C以2cm/s的速度移动.(1)如果Q、P分别从A、B两点出发,那么几秒后,△PBQ的面积等于8cm2?(2)在(1)中,△PBQ的面积能否等于10cm2试说明理由.答案和解析【答案】1. C2. A3. C4. C5. D6. B7. A8. D9. C10. B11. 1112. 1299×(1−x)2=1299−68813. 114. 10%15. 2或10316. 50(1−x)2=3217. 1218. 10(1+x)2=12.119. 25%20. 10%21. 解:(1)当每件商品售价为55元时,比每件商品售价50元高出5元,即55−50=5(元),则每天可销售商品450件,即500−5×10=450(件),商场可获日盈利为(55−40)×450=6750(元).答:每天可销售450件商品,商场获得的日盈利是6750元;(2)设商场日盈利达到8000元时,每件商品售价为x元.则每件商品比50元高出(x−50)元,每件可盈利(x−40)元,每日销售商品为500−10(x−50)=1000−10x(件).依题意得方程(1000−10x)(x−40)=8000,整理,得x2−140x+4800=0,解得x=60或80.答:每件商品售价为60或80元时,商场日盈利达到8000元.22. 解:(1)设经过x秒钟,可使得四边形APQC的面积是31平方厘米,根据题意得:12BP⋅BQ=12AB⋅BC−31,即12(6−x)⋅2x=12×6×12−31,整理得(x−1)(x−5)=0,解得:x1=1,x2=5.答:经过1或5秒钟,可使得四边形APQC的面积是31平方厘米;(2)依题意得,S四边形APQC=S△ABC−S△BPQ,即S=12AB⋅BC−12BP⋅BQ=12×6×12−12(6−x)⋅2x=(x−3)2+27(0<x<6),当x−3=0,即x=3时,S最小=27.答:经过3秒时,S取得最小值27平方厘米.23. 解:(1)设AD的长为x米,则AB为(24−3x)米,根据题意列方程得,(24−3x)⋅x=45,解得x1=3,x2=5;当x=3时,AB=24−3x=24−9=15>11,不符合题意,舍去;当x=5时,AB=24−3x=9<11,符合题意;答:AD的长为5米.(2)不能围成面积为60平方米的花圃.理由:假设存在符合条件的长方形,设AD的长为y米,于是有(24−3y)⋅y=60,整理得y2−8y+20=0,∵△=(−8)2−4×20=−16<0,∴这个方程无实数根,∴不能围成面积为60平方米的花圃.24. 解:(1)设裤子的定价为每条x元,根据题意,得:(x−50)[50+5(100−x)]=4000,解得:x=70或x=90,答:裤子的定价应该是70元或90元;(2)销售利润y=(x−50)[50+5(100−x)]=(x−50)(−5x+550)=−5x2+800x−27500,=−5(x−80)2+4500,∵a=−5<0,∴抛物线开口向下.∵50≤x≤100,对称轴是直线x=80,∴当x=80时,y最大值=4500;答:定价为每条80元可以使每天的利润最大,最大利润是4500元.25. 解:(1)设该县投入教育经费的年平均增长率为x,根据题意得:6000(1+x)2=8640解得:x1=0.2=20%,x2=−2.2(不合题意,舍去),答:该县投入教育经费的年平均增长率为20%;(2)因为2016年该县投入教育经费为8640万元,且增长率为20%,所以2017年该县投入教育经费为:y=8640×(1+0.2)=10368(万元),答:预算2017年该县投入教育经费10368万元.26. 解:(1)设t秒后,△PBQ的面积等于8cm2,根据题意得:1×2t(6−t)=8,2解得:t=2或4.答:2秒或4秒后,△PBQ的面积等于8cm2.(2)由题意得,1×2t(6−t)=10,2整理得:t2−6t+10=0,b2−4ac=36−40=−4<0,此方程无解,所以△PBQ的面积不能等于10cm2.【解析】1. 【分析】主要考查增长率问题,一般用增长后的量=增长前的量×(1+增长率)增长的次数,一般形式为a(1+x)n=b,a为起始时间的有关数量,b为终止时间的有关数量,n为增长的次数.设这两年观赏人数年均增长率为x,根据“2014年约为20万人次,2016年约为28.8万人次”,可得出方程.【解答】解:设观赏人数年均增长率为x,那么依题意得20(1+x)2=28.8.故选C.2. 解:∵有x支球队参加篮球比赛,每两队之间都比赛一场,∴共比赛场数为12x(x−1),∵共比赛了45场,∴12x(x−1)=45,故选:A.先列出x支篮球队,每两队之间都比赛一场,共可以比赛12x(x−1)场,再根据题意列出方程为12x(x−1)=45.此题是由实际问题抽象出一元二次方程,主要考查了从实际问题中抽象出相等关系.3. 试题分析:根据对称性可知:BE=FE,∠AFE=∠ABE=90∘,又∠C=∠C,所以△CEF∽△CAB,根据相似的性质可得出:EFAB =CEAC,BE=EF=CEAC×AB,在△ABC中,由勾股定理可求得AC的值,AB=1,CE=2−BE,将这些值代入该式求出BE的值.设BE的长为x,则BE=FE=x、CE=2−x在Rt△ABC中,AC=√AB2+BC2=√5∵∠C=∠C,∠AFE=∠ABE=90∘∴△CEF∽△CAB(两对对应角相等的两三角形相似)∴EFAB =CEAC∴FE=x=CEAC ×AB=√5×1,x=√5−12,∴BE=x=√5−12,故选:C.4. 解:设原正方形的边长为xm,依题意有(x−1)(x−2)=18,故选:C.可设原正方形的边长为xm,则剩余的空地长为(x−1)m,宽为(x−2)m.根据长方形的面积公式方程可列出.本题考查了由实际问题抽象出一元二次方程的知识,应熟记长方形的面积公式.另外求得剩余的空地的长和宽是解决本题的关键.5. 解:依题意得二月份的产量是560(1+x),三月份的产量是560(1+x)(1+x)=560(1+x)2,∴560+560(1+x)+560(1+x)2=1850.故选D.增长率问题,一般用增长后的量=增长前的量×(1+增长率),根据二、三月份平均每月的增长为x,则二月份的产量是560(1+x)吨,三月份的产量是560(1+x)(1+x)=560(1+x)2,再根据第一季度共生产钢铁1850吨列方程即可.能够根据增长率分别表示出各月的产量,这里注意已知的是一季度的产量,即三个月的产量之和.6. 解:设原来的绿地面积为a,两年平均每年绿地面积的增长率是x.a×(1+x)2=a×(1+44%),解得:x=0.2或x=−2.2,∵x>0,∴x=0.2=20%,故选B.等量关系为:原来的绿地面积×(1+这两年平均每年绿地面积的增长率)2=原来的绿地面积×(1+绿地面积增加的百分数),把相关数值代入即可求解.考查求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.7. 解:设道路的宽为xm,根据题意得:(32−2x)(20−x)=570,故选:A.六块矩形空地正好能拼成一个矩形,设道路的宽为xm,根据草坪的面积是570m2,即可列出方程.此题主要考查了由实际问题抽象出一元二次方程,这类题目体现了数形结合的思想,需利用平移把不规则的图形变为规则图形,进而即可列出方程.8. 解:第一次降价后的价格为:25×(1−x);第二次降价后的价格为:25×(1−x)2;∵两次降价后的价格为16元,∴25(1−x)2=16.故选:D.等量关系为:原价×(1−降价的百分率)2=现价,把相关数值代入即可.本题考查求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.9. 解:设参观人次的平均年增长率为x,由题意得:10.8(1+x)2=16.8,故选:C.设参观人次的平均年增长率为x,根据题意可得等量关系:10.8万人次×(1+增长率)2=16.8万人次,根据等量关系列出方程即可.本题主要考查了由实际问题抽象出一元二次方程,若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2= b.10. 解:设AC交A′B′于H,∵∠A=45∘,∠D=90∘∴△A′HA是等腰直角三角形设AA′=x,则阴影部分的底长为x,高A′D=2−x∴x⋅(2−x)=1∴x=1即AA′=1cm.故选B.根据平移的性质,结合阴影部分是平行四边形,△AA′H与△HCB′都是等腰直角三角形,则若设AA′=x,则阴影部分的底长为x,高A′D=2−x,根据平行四边形的面积公式即可列出方程求解.解决本题关键是抓住平移后图形的特点,利用方程方法解题.11. 解:设这块铁片的宽为xcm,则铁片的长为2xcm,由题意,得3(2x−6)(x−6)=240解得x1=11,x2=−2(不合题意,舍去)答:这块铁片的宽为11cm.设这块铁片的宽为xcm,则铁片的长为2xcm,剪去一个边长为3cm的小方块后,组成的盒子的底面的长为(2x−6)cm、宽为(x−6)cm,盒子的高为3cm,所以该盒子的容积为3(2x−6)(x−6),又知做成盒子的容积是240cm3,盒子的容积一定,以此为等量关系列出方程,求出符合题意的值即可.本题主要考查的是一元二次方程的应用,关键在于理解清楚题意找出等量关系,列出方程求出符合题意得解.12. 解:设平均每次降价的百分率为x,由题意得,1299×(1−x)2=1299−688.故答案为:1299×(1−x)2=1299−688.设平均每次降价的百分率为x,则可得:原价×(1−x)2=现价,据此列方程即可.本题考查了由实际问题抽象出一元二次方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.13. 解:设小道进出口的宽度为x米,依题意得(30−2x)(20−x)=532,整理,得x2−35x+34=0.解得,x1=1,x2=34.∵34>30(不合题意,舍去),∴x=1.答:小道进出口的宽度应为1米.故答案为:1.设小道进出口的宽度为x米,然后利用其种植花草的面积为532平方米列出方程求解即可.本题考查了一元二次方程的应用,解题的关键是根据种植花草的面积为532m2找到正确的等量关系并列出方程.14. 解:设这两次的百分率是x,根据题意列方程得100×(1−x)2=81,解得x1=0.1=10%,x2=1.9(不符合题意,舍去).答:这两次的百分率是10%.故答案为:10%.先设平均每次降价的百分率为x,得出第一次降价后的售价是原来的(1−x),第二次降价后的售价是原来的(1−x)2,再根据题意列出方程解答即可.本题考查一元二次方程的应用,要掌握求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.15. 解:设经过x秒,△PBQ的面积等于8cm2,当0<x<3秒时,Q点在BC上运动,P在AB上运动,PB=6−x,BQ=2x,所以S△PBQ=12PB⋅BQ=12×2x×(6−x)=8,解得x=2或4,又知x<3,故x=2符合题意,当3<x<6秒时,Q点在CD上运动,P在AB上运动,S△PBQ=12(6−x)×6=8,解得x=103.故答案为:2或103.设经过x秒,△PBQ的面积等于8cm2,分类讨论当0<x<3秒时,Q点在BC上运动,P在AB上运动,求出面积的表达式,求出一个值,当3<x<6秒时,Q点在CD上运动,P在AB上运动,根据条件列出一个一元一次方程,求出一个值.本题主要考查一元二次方程的应用的知识点,解答本题的关键是Q点的运动位置,此题很容易漏掉一种情况,此题难度一般.16. 解:由题意可得,50(1−x)2=32,故答案为:50(1−x)2=32.根据某药品经过连续两次降价,销售单价由原来50元降到32元,平均每次降价的百分率为x,可以列出相应的方程即可.本题考查由实际问题抽象出一元二次方程,解题的关键是明确题意,找出题目中的等量关系,列出相应的方程.17. 解:∵与墙头垂直的边AD长为x米,四边形ABCD是矩形,∴BC=MN=PQ=x米,∴AB=32−AD−MN−PQ−BC=32−4x(米),根据题意得:x(32−4x)=60,解得:x=3或x=5,当x=3时,AB=32−4x=20>18(舍去);当x=5时,AB=32−4x=12(米),∴AB的长为12米.故答案为:12.由与墙头垂直的边AD长为x米,四边形ABCD是矩形,根据矩形的性质,即可求得AB的长;根据题意可得方程x(32−4x)=60,解此方程即可求得x的值,又由AB=32−x(米),即可求得AB的值,注意EF是一面长18米的墙,即AB<18米.考查了一元二次方程的应用中的围墙问题,正确列出一元二次方程,并注意解要符合实际意义.18. 解:设每年的增长率为x,根据题意得10(1+x)2=12.1,故答案为:10(1+x)2=12.1.如果设每年的增长率为x,则可以根据“住房面积由现在的人均约为10m2提高到12.1m2”作为相等关系得到方程10(1+x)2=12.1.本题考查数量平均变化率问题.原来的数量(价格)为a,平均每次增长或降低的百分率为x的话,经过第一次调整,就调整到a(1±x),再经过第二次调整就是a(1±x)(1±x)=a(1±x)2.增长用“+”,下降用“−”.19. 解:设2月,3月的平均增长率为x,根据题意得:4(1+x)2(1−36%)=4,解得:x=25%或x=−2.25(舍去)故答案为:25%.根据“原来单价4元/千克的大蒜,经过2月和3月连续两个月增长后,价格上升很快,物价部门紧急出台相关政策控制价格,4月大蒜价格下降了36%”可列出关于x的一元二次方程,解方程即可得出结论;本题考查了一元二次方程的应用,解题的关键是能够根据增长率问题列出方程,难度不大.20. 解:设平均每次降价的百分率为x,根据题意列方程得100×(1−x)2=81,解得x1=0.1=10%,x2=1.9(不符合题意,舍去).答:这两次的百分率是10%.故答案为:10%.设平均每次降价的百分率为x,那么第一次降价后的售价是原来的(1−x),那么第二次降价后的售价是原来的(1−x)2,根据题意列方程解答即可.本题考查一元二次方程的应用,要掌握求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.21. (1)首先求出每天可销售商品数量,然后可求出日盈利;(2)设商场日盈利达到8000元时,每件商品售价为x元,根据每件商品的盈利×销售的件数=商场的日盈利,列方程求解即可.本题考查了一元二次方程的实际应用,根据每件商品的盈利×销售的件数=商场的日盈利,列出方程是关键.22. (1)设经过x秒钟,可使得四边形APQC的面积是31平方厘米,根据面积为31列出方程,求出方程的解即可得到结果;(2)根据题意列出S关于x的函数关系式,利用函数的性质来求最值.此题考查了一元二次方程的应用、二次函数的性质,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.23. (1)设出AD的长,表示出AB的长,利用长方形面积公式列方程解答,再据墙的最大可用长度为11米即可;(2)利用(1)中的方法列出方程解答,利用根的判别式进行判定即可.此题的关键是利用长方形的面积计算公式列方程解答问题,注意结合图形.24. (1)根据“利润=(售价−成本)×销售量”列出方程求解可得;(2)根据(1)中的相等关系列出二次函数解析式,再转化为顶点式,利用二次函数图象的性质进行解答.本题考查二次函数的实际应用.建立数学建模题,借助二次函数解决实际问题,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出函数关系式和方程.25. (1)设该县投入教育经费的年平均增长率为x,根据2014年该县投入教育经费6000万元和2016年投入教育经费8640万元列出方程,再求解即可;(2)根据2016年该县投入教育经费和每年的增长率,直接得出2017年该县投入教育经费为8640×(1+0.2),再进行计算即可.此题考查了一元二次方程的应用,掌握增长率问题是本题的关键,若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.26. (1)分别表示出线段PB和线段BQ的长,然后根据面积为8列出方程求得时间即可;(2)根据面积为10列出方程,判定方程是否有解即可.本题考查了一元二次方程的应用,三角形的面积,能够表示出线段PB和QB的长是解答本题的关键.。
一元二次方程和一元二次函数一元二次方程:20(0)ax bx c a ++=≠(1) 若方程没有实根:判别式240b ac ∆=-< (2) 若方程有两个相等实根:判别式240b ac ∆=-=(3) 若方程有两个不等的实根:判别式240b ac ∆=->注:若方程有两个实根:判别式240b ac ∆=-≥ 若方程有两个实根,记为12x x 、则:12b x a -+=、22b x a--=2121222221212122212121240()22()()b ac c x x a b x x a b c x x x x x x a a x x x x x x ⎧∆=-≥⎪⎪=⎪⎪⎪+=-⎨⎪⎪⎛⎫+=+-=-⎪ ⎪⎝⎭⎪⎪-=+-⎩g g g g一元二次函数: 函数)0(2≠++=a c bx ax y 叫做一元二次函数。
配方写成顶点式:a b ac a b x a y 44)2(22-++=(1)图象的顶点坐标为)44,2(2a b ac a b --,对称轴是直线ab x 2-=。
(2)当0>a ,函数图象开口向上,y 有最小值,ab ac y 442min-=,无最大值。
函数在区间)2,(a b --∞上是减函数,在),2(+∞-ab上是增函数。
2ba=-24)4ac b a-(3) 当0a <,函数图象开口向下,y 有最大值,ab ac y 442max-=,无最小值。
当0<a ,函数在区间上),2(+∞-a b 是减函数,在)2,(ab--∞上是增函数。
2ba-244ac b a-两点间距离公式:11(,)A x y 、22(,)B x yd =图像的移动:x 的系数为正先加后减 先左后右 先上后下例1:2(0)y ax a =≠怎么样变为)0(2≠++=a c bx ax y第一步:将被平移的二次函数的x 系数变为正,并化为顶点式。
2(0)0y a x =-+ 移动为: ab ac a b x a y 44)2(22-++=先左移2b a ,变为2()2b y a x a=+ 再上移244ac b a -,变为ab ac a b x a y 44)2(22-++=另:先上移244ac b a -,变为2244ac b y ax a -=+再左移2ba,变为a b ac a b x a y 44)2(22-++=例2:23y x =-+先向右平移3个单位,再向下平移2个单位。