计算结构力学有限元方法_三维结构和轴对称
- 格式:pdf
- 大小:1.47 MB
- 文档页数:36
三维有限元法计算过程三维有限元法的计算过程:1)网格单元剖分;2)线性插值;3)单元分析;4)总体刚度矩阵合成;5)求解线性方程组等部分组成。
一、偏微分方程对应泛函的极值问题矿井稳恒电流场分布示意图主要任务是分析在给定边界条件下,求解稳定电流场的Laplace 方程或Poisson方程的数值解,即三维椭圆型微分方程的边值问题:)()((0)(0)()()(000z z y y x x I F u n un u F z u z y u y x u x Lu w D ---=⎪⎪⎪⎩⎪⎪⎪⎨⎧=+∂∂=∂∂=∂∂∂∂+∂∂∂∂+∂∂∂∂≡ΓΓ+Γδδδγσσσ 上述微分方程边值问题等价于下面泛函的极小值问题:dS U dxdydz fU z U y U x U U J w D ⎰⎰⎰⎰⎰Γ+Γ+ΓΩ+-∂∂+∂∂+∂∂=222221}])()()[(2{][γσσ二、网格剖分∞1ρiih ρ......1、网格单元的类型图2-5 网格单元类型2、网格单元剖分原则及其步长选择 因此,网格内的单元剖分应按以下剖分原则1)、各单元节点(顶点)只能与相邻单元节点(顶点)重合,而不能成为其它单元内点;2)、如果求解区域对称,那么单元剖分也应该对称;3)、在场变化剧烈的区域网格剖分单元要密一些,在场变化平缓的区域单元密度应小。
4)、网格单元体的大小变化应逐步过渡。
根据上述剖分原则,以x 、y 、z 坐标轴原点o 为中心,分别向x 、y 、z 方向的两侧作对称变步长剖分,距o 越远,步长应越大。
常用的变步长方法有:c i x x i i )1(1+=∆-∆+ c x x i i =∆∆+/1(i ≠0)c x x i i =∆-∆+111(i ≠0) 以上各式中c 为常数,1+∆i x 、i x ∆为同一坐标轴上相邻步长值。
以x 方向为例,可知,x 正方向与负方向对称,只相差一负号。
若令00=∆x ,只要给出距原点最近节点的坐标1x ∆,由上式即可求出其它相应的步长i x ∆。
第1节基本知识本节的有限元对象为轴对称问题,目的是学习将3D问题转化为2D问题分析的轴对称方法,涉及如何选取轴对称单元、建模规律、载荷的施加方法和后处理技术。
一、轴对称问题的定义轴对称问题是指受力体的几何形状、约束状态,以及其它外在因素都对称于某一根轴(过该轴的任一平面都是对称面)。
轴对称受力体的所有应力、应变和位移均对称于这根轴。
二、用ANSYS解决2D轴对称问题的规定用ANSYS解决2D轴对称问题时,轴对称模型必须在总体坐标系XOY平面的第一象限中创建,并且Y轴为轴旋转的对称轴。
求解时,施加自由约束、压力载荷、温度载荷和Y方向的加速度可以像其它非轴对称模型一样进行施加,但集中载荷有特殊的含义,它表示的是力或力矩在360°范围内的合力,即输入的是整个圆周上的总的载荷大小。
同理,在求解完毕后进行后处理时,轴对称模型输出的反作用力结果也是整个圆周上的合力输出,即力和力矩按总载荷大小输出。
在ANSYS中,X方向是径向,Z方向是环向,受力体承载后的环向位移为零,环向应力和应变不为零。
常用的2D轴对称单元类型和用途见表11-1。
表11-1 2D轴对称常用结构单元列表的高阶单的高阶单在利用ANSYS进行有限元分析时,将这些单元定义为新的单元后,设置单元配置项KEYOPT(3)为Axisymmetric(Shell51和Shell61单元本身就是轴对称单元,不用设置该项),单元将被指定按轴对称模型进行计算。
后处理时,可观察径向和环向应力,它对应的是SX与SZ应力分量,并且在直角坐标系下观察即可。
可以通过轴对称扩展设置将截面结果扩展成任意扇型区域大小的模型,以便更加真实地观察总体模型的各项结果。
轴对称问题有限元分析实例 2D节2第p=1000 N/mF2y611xO61211-1 圆柱筒壳示意图图——圆柱筒的静力分析一、案例1问题,直0.1 m1000 N/m的压力作用,其厚度为如图11-1所示,圆柱筒材质为A3钢,受,并且圆柱筒壳的下部轴线方向固定,其它方向自由,试计算其变形、mm,高度为16 径12径向应力和轴向应力。
思考题5-1 轴对称问题的定义答:工程中又一类结构,其几何形状、边界条件、所受载荷都对称于某一轴线,这种情况下结构再载荷作用下位移、应变和应力也对称于这个轴线,这种问题成为轴对称问题。
5-2 轴对称问题一般采用的坐标系?作图说明每个坐标分量的物理意义答:在描述轴对称弹性体问题的应力及变形时常采用圆柱坐标r,θ,z。
5-3 轴对称问题中每个点有几个位移分量?各位移分量是那几个自变量的函数?答:位移分量u, w,都只是rz的函数,与θ无关。
5-4 轴对称问题中的每个点有哪几个应力分量?是那几个自变量的函数。
答:4个应力分量;5-5 轴对称问题中的每个点有哪几个应变分量?是那几个自变量的函数答:4个应变分量5-6 轴对称问题是三维问题?二维问题?最简单的轴对称单元是哪种单元?作图说明答:由于轴对称,沿θ方向的环向(周向)位移v等于零。
因此轴对称问题是二维问题;三角形环单元。
(三角形轴对称单元,这些圆环单元与r z平面(子午面)正交的截面是三角形)5-7 写出三角形环单元的位移函数。
满足完备性要求吗?答:满足完备性要求。
5-8 三角形环单元形函数的表达式?指出形函数的性质。
5-9 三角形环单元的应力和应变的特点。
其单元刚度矩阵是几阶的?答:应力分量:剪应力为常量,其他3个正应力分量均随位置变化;应变分量:面内(子五面)3个应变分量为常量,环向应变不是常应变,而是与单元中各点的位置有关。
单元刚度矩阵为六阶。
5-10 有限元方法求解对称问题的基本步骤?1.结构离散化:对整个结构进行离散化,将其分割成若干个单元,单元间彼此通过节点相连;2.求出各单元的刚度矩阵[K](e):[K](e)是由单元节点位移量{Φ}(e)求单元节点力向量{F}(e)的转移矩阵,其关系式为:{F}(e)= [K](e) {Φ}(e);3.集成总体刚度矩阵[K]并写出总体平衡方程:总体刚度矩阵[K]是由整体节点位移向量{Φ}求整体节点力向量的转移矩阵,其关系式为{F}= [K] {Φ},此即为总体平衡方程。
地大《计算结构力学》在线作业二
试卷总分:100 得分:100
一、单选题 (共 10 道试题,共 30 分)
1.下述对有限元法特点的描述中,哪种说法是错误的()。
A.需要适用于整个结构的插值函数
B.解题步骤可以系统化、标准化
C.容易处理非均匀连续介质,可以求解非线性问题
D.可以模拟各种几何形状复杂的结构,得出其近似解
答案:A
2.平衡方程研究的是()之间关系的方程式。
A.应变和位移
B.应力和应变
C.应力和体力
D.应力和位移
答案:C
3.等参变换是指单元坐标变换和函数插值采用()的结点和()的插值函数。
A.相同,相同
B.相同,不相同
C.不相同,相同
D.不相同,不相同
答案:A
4.弹性力学平面问题的方程个数有()个。
A.以上都不是
B.9
C.8
D.15
答案:C
5.下面关于有限元分析法的描述中,那种说法是错误的()
A.应力变化梯度较大的部位划分的单元可小一些
B.单元各边的长度以及各内角不应相差太大。
C.单元之间通过其边界连接成组合体
D.分布载荷与自由边界的分界点、支撑点等应取为节点
答案:C
6.下面四种假设中,那种不属于分析弹性力学的基本假设()
A.有限变形假设
B.无初应力假设
C.小变形假设
D.各向同性假设
答案:B。