12-微分方程
- 格式:ppt
- 大小:365.50 KB
- 文档页数:16
第十二章 微分方程§12-1 微分方程的基本概念、判断题 1.y=ce 2x(c 的任意常数 )是 y =2x 的特解。
2. y=( y ) 3是二阶微分方程。
3. 微分方程的通解包含了所有特解。
4. 若微分方程的解中含有任意常数,则这个解称为通解。
5. 微分方程的通解中任意常数的个数等于微分方程的阶数。
二、填空题 微分方程 .(7x-6y)dx+dy=0 的阶数是 函数 y=3sinx-4cosx 微分方程的解。
A)( y )+x 2 y+x 2=0 (B) ( y ) 2+3x 2y=x 3 (C) y +3 y +y=0 (D) y -y 2=sinx2 2 2x 3x 1.y Cx 2 C 2(其中 C 为任意常数) 2.y C 1e 2x C 2e 3x (其中 C 1 ,C 2为任意常数)五、质量为 m 的物体自液面上方高为 h 处由静止开始自由落下,已知物体在液体中受的阻 力与运动的速度成正比。
用微分方程表示物体, 在液体中运动速度与时间的关系并写出初始 条件。
12-2 可分离变量的微分方程 一、求下列微分方程的通解1. 2. 3. 积分曲线 y=(c 1 +c 2 x)e 2x中满足y x=0=0, y x=0=1 的曲线是三、选择题 1.下列方程是常微分方程A )、x 2+y 2=a 2 (B) 、 y+ d(earctanx) 0 (C)dx2 a2+ 2a2 22=0 (D)、 y =x 2+y 2y2.下列方程中是二阶微分方程3.微分方程 ddx 2y+w 2y=0 的通解是其中 c.c 1.c 2 均为任意常数A ) y=ccoswx(B)y=c sinwx (C)y=c 1coswx+c 2sinwx (D)y=c coswx+c sinwx2 则微分方程 y =3y3 的一个特解是 (B)y=x 3+1 (C) y=(x+c) 34. C 是任意常数,(A )y-=(x+2) 3 四、试求以下述函数为通解的微分方程。