第十二章 微分方程(习题及解答)
- 格式:doc
- 大小:791.50 KB
- 文档页数:8
第十二章 微分方程答案一、选择题1.以下不是全微分方程的是C1A. (x 2 y)dx ( x 2 y)dy 0B.( y 3x 2 )dx (4 y x)dyC. 3(2x 33xy 2 ) dx 2(2 x 2 y y 2 )dy0 D.2x( ye x 2 1)dxe x 2dy2. 若 y 3 是二阶非齐次线性方程 (1):y P(x) y Q (x) f ( x) 的一个特解, y 1, y 2 是对应的齐次线性方程 (2) 的两个线性没关的特解,那么以下说法错误的选项是(c 1 , c 2 ,c 3 为随意常数)C 2A. c 1 y 1 c 2 y 2 是 (2) 的通解B.c 1 y 1 y 3 是 (1) 的解C. c 1 y 1c 2 y 2 c 3 y 3 是 (1) 的通解D.y 2 y 3 是(1) 的解3.以下是方程 xdx ydyx 2y2dx 的积分因子的是 D2A. x 2y 2B.1 y 2C.x 2 y 2D.1y 2x 2x 2d 3 yxd 2 y 2 x1 的通解应包括得独立常数的个数为( B ) .14.方程e dx 2edx 3(A) 2(B) 3(C) 4 (D) 05.已知方程 y ' p(x) y 0 的一个特解 y cos 2x ,则该方程知足初始特解y(0) 2 的特解为( C ) .2(A)y cos 2x2 (B) y cos 2x 1 (C) y 2cos 2 x (D)y 2cos x6.方程 d 3 ye x d 2 ye 2 x1 的通解应包括得独立常数的个数为( B ) . 1dx 3dx 2(A) 2(B) 3(C) 4 (D) 07.设线性没关的函数 y 1 , y 2 , y 3 都是微分方程 y '' p(x) y ' q( x) y f ( x) 的解,则该方程的通解为 ( D ) .2(A)y c1 y1c2 y2y3(B)y c1 y1c2 y2(c1c2 ) y3 (C)y c1 y1c2 y2(1c1c2 ) y3(D)y c1 y1c2 y2(1c1 c2 ) y38.设方程y '' 2 y '3y f ( x) 有特解y *,则其通解为(B).1(A)c1e x c2 e3 x(B)c1e x c2e3x y *(C)c1xe x c2xe3x y *(D)c1e x c2e 3 x y * 9.微分方程y 'y cot x0 的通解为(A).1(A)y c sin x (B)yc(C)y c cosx(D)c sin xycosx10.方程y cos x的通解为 ( C)1(A)ysin x c1 x c2(B)y sin x c1x c2(C)y cosx c1x c2(D)y cos xc1x c211.y e x的通解为(C)1(A) e x(B) e x(C) e x c1 x c2(D) e x c1 x c2y 2y312.微分方程y x y4的阶是 (B)1(A)1(B)2(C)3(D)413.以下微分方程中,属于可分别变量方程的是(C)1(A)xsin xy dx ydy0(B)y ln x ydy xsin y y 1 y e x y2(C)dx(D)x14. 方程y 2 y0 的通解是(C)1A.y sin 2x;B.y4e2 x;C.y ce2x;D.y e x c 。
2第十二章 微分方程 § 微分方程基本概念、可分离变量的微分方程、 、单项选择题 1.下列所给方程中,不是微分方程的是 (A) xy 2y ; (C) y y 0 ; 4 2•微分方程5y y xy (A) 1 ; (B) 2 ;3. 下列所给的函数,是微分方程 (A) y C i cosx ;(C) y cosx Csinx ;齐次微分方程2y (3)( x 2(7x(B) (D) 0的阶数是( (C) 3 ; y (B) (D) 4. 下列微分方程中,可分离变量的方程是 (A) y e x y ; (B) xy (C) y xy 1 0 ; (D) (x ). 2 2 y C ;6y)dx (x y)d y ).(D) 4 ; 0的通解的是( ). C 2 sin x ;G cosx ( ). y x ; y)dx (x 5. 下列微分方程中,是齐次方程是微分方程的是 (A) y (C) y 、填空题 c x y e ;xy x 0 ;(B) xy (D) (x 答(B). 答(C).C 2 si nx 答(D).y)dy 0.答(A).(2y x y)dx答(D).1. 函数y 5x 2是否是微分方程 xy 2y 的解? 答: 是.2 . 微分方程 dx dy0, y x 3 4的解是 .答:2x 2y25 .y x3x2冬C .3 . 微分方程 3x 2 5x 5y 0的通解是 . 答: y5 24 . 微分方程 xy y lny 0的通解是 答: yCxe .5 . 微分方程 1 2 x y -1 y 2的通解是 . 答: arcsin y arcsin x6. 微分方程 xy y y(ln y ln x)的通解是 . 答: _yxCxe三、解答题y);C .xy a(y 2(x y)d y1•求下列微分方程的通解. ⑵ (1) sec xtanydx s ec ytanxdy 0 ; 解:解:dy 心y⑶ —10 ; ⑷dx解:解:2 . 求下列微分方程满足所给初始条件的特解:(1) 2x yy e ,y x 0 0 ;(2) 解:解:⑶ xdy 2ydx 0, yx 21;⑷解:解:y (y 2 x 3 o.y si nx yl ny2xtf - dt ln 2,求f (x)的非积分表达式. 答:f(x) e x ln2 .0 2§ 一阶线性微分方程、全微分方程23xy xy 的通解.可降阶的高阶微分方程、二阶线性微分方程、单项选择题 1.方程ysinx 的通解是().1.下列所给方程中,是一阶微分方程的是((A)字址dx (C)乎dx 2•微分方程(X (A) 齐次微分方程; (C) 可分离变量的微分方程;23(lnx)y ;(B)(x y)2 ;(D) y 2)dx 2xydy ).dy dx2y x 1(x(x y)dx (x y)dy 答(B).0的方程类型是 (B) 一阶线性微分方程; (D)全微分方程.( ).答(D).二、填空题1 .微分方程xy e 的通解为.答: y Cedx32 .微分方程 (x 2 y)dx xdy 0的通解为.答:x3xy 3 •方程(x y)(dx dy) dx dy 的通解为.答: x y 三、简答题C .ln(x y)1 .求下列微分方程的通解:3.方程xy . x (A)齐次方程;(C)伯努利方程;(B) 一阶线性方程;(D)可分离变量方程.答(A).xxxe(1)ycosx sin xex 竺dx解:⑶ 解:xy3x 解:⑷解:ytanx sin2x ;(5) (y 2 6x)塑 dx 2ye y(xe y 2y)dy 0 ;解:解:(a 22xy y 2)dx (x y)2dy 0 . 解: 2 .求下列微分方程满足所给初始条件的特解. (1)乎 3y 8, y x 0 2 ;dx解:dy dx解:sin x ,y xx3* •设连续函数f (X )、单项选择题 y 2 y 是()• 3* .求伯努利方程— dx解:(A) y cosx (C) y sin x2.微分方程1C 1x 2 C 2x C 3 ; 2 Gx? C 2X C 3 ;2y xy 满足条件y (A) y (x 1)2;(B) y cosx G ; (D) y(B)2sin 2x .答(A) y x2的解是(2).1(C) y -(x3. 对方程y1)21 2 ;y 2,以下做法正确的是 y p 代入求解;(D)答(C).(A)令 y p(x), (C)按可分离变量的方程求解;4. 下列函数组线性相关的 是(2 x2 x(A) e , 3e ;(C) sinx, cosx ;5. 下列方程中,二阶线性微分方程是(A) y (C) y 6. y 1, (A) y (C) y (D) yp(y), yp p 代入求解;答(B).).32y(y)0 ;2 o 2y 3x ; py qy y 2 ; C 2『2,其中C 2『2,其中2x y y 2是yC i y i C i y iG% (B) 2xe 3x ,e ;(D)2xe 2x,xe).(B) y 2yy xy (D) y 2xy2x y则其通解是().(B) yC 1y1C 2 y2 ;(0的两个解, xe ;2e x .((B)令 y(D)按伯努利方程求解. 答(A).答(D).y 1与y 线性相关; y 与y 2线性无关.7.下列函数组线性相关的 是( ).(A) e 2x , 3e 2x ; (C) si nx,、填空题 答(D).1 .微分方程 cosx; (B) (D) 3x2xy x sinx 的通解为 2x : e , e2xe , xe答(A).答:sin x C 1e xC 1x C 2. x C 2.三、简答题 1 •求下列微分方程的通解.2(1) y 1 (y); (2) y 如)2解: 解:2 .求方程y x(y )2 0满足条件y x12,y x 1 1的特解.2 .微分方程 答:y y x 的通解为 解: § 二阶常系数线性齐次微分方程、单项选择题 1.下列函数中,不是微分方程 y y 0的解的是( ).(A) y sin x ; (B) y cosx ; (C) y e x ;(D) y sin x cosx .答(C).x 3 x2.下列微分方程中,通解是 y GeC ?e 的方程是( ).(A) y 2y 3y 0 ;(B) y 2y 5y 0 ; (C) yy 2y 0 ;(D) y 2y y 0 .答(A)3.下列微分方程中, 通解是y C 1e xC 2 x xe 的方程是().(A) y 2y y 0 ;(B) y 2yy 0 ;(C) y2y y 0 ;(D) y 2y4y 0 .答(B)4.下列微分方程中, 通解是y xe (C 1 cos2x C 2sin2x)的方程是().(A) y 2y 4y 0 ;(B) y2y 4y 0(C) y2y5y 0 ;(D)y 2y5y 0 .答(D) 5.若方程 ypyqy 0的系数满足1 p q 0 ,则方程的一个解是( ).(A) x ;(B) x e ;(C) xe(D) sin x . 答(B)6*.设 y f(x)是方程 y 2y 2y 0 的一个解,若 f(X o ) 0, f (xj 0,则 f(x)在 x x 0 处( ).(A) x 0的某邻域内单调减少;(B) X 0的某邻域内单调增加;(C)取极大值;(D)取极小值.答(C).、填空题1 •微分方程的通解为 y 4y 0的通解为. 答: y C 1 C 2e 4x .2 .微分方程y y 2y 0的通解为 答: y C 1e x C 2e 2x .3 .微分方程y4y 4y 0的通解为 答: y Ge 2x C 2xe 2x .4 .微分方程y 4y 0的通解为答: y C 1 cos2x C 2si n2x 5 .方程 y 6y 13y 0 的通解为 __________________________ . 答:y e 3x (C 1 cos2x C 2sin 2x). 三、简答题1 •求下列微分方程的通解:(1) y y 2y 0 ; (2) 4d ^ 20空 25x 0 .dt 2 dt解:解:、单项选择题 1.微分方程 y y2x 的一个特解应具有形式 ( ).(A) Ax 2;(B) Ax 2Bx ;(C) Ax 2Bx C ;(D) x(Ax 2Bx C).答(C).2.微分方程 y y2x 的一个特解应具有形式 ().(A) Ax 2 ;(B) Ax 2Bx -(C) Ax 2Bx C ;(D) x(Ax 2Bx C).答(C)3.微分方程y 5y6y xe 2x 的一个特解应具有形式( ).(A) Axe 2x;(B) (Ax 2x B)e(C) (Ax 2Bx C)e 2x ;(D) x(Ax B)e 2x答(B) 4.微分方程y y2 y x 2e x 的一个特解应具有形式().(A) Ax 2e x(B) (Ax 2x Bx)e解:2 •求下列方程满足初始条件的特解.(1) y 4y 3y 0,y x 0 10, y x 06⑵ y 25y 0, y x 05,y x 02.解:§ 二阶常系数线性非齐次微分方程(C) x(Ax2Bx C)e x;(D) (Ax2 Bx C)e x.答(C).5. 微分方程y 2y 3y e x sin x的一个特解应具有形式().(A) e x(AcosxBsinx);(B) Ae x sinx ;(C) xe x (Asin x Bcosx) ;(D) Axe x sinx 答(A). 、填空题1 .微分方程y 4y 3 x x的一个特解形式为答:y*3x x4 82.微分方程y 2y x的一个特解形式为. 答:y* x(Ax B).3 .微分方程y 5y 6y xe x的一个特解形式为.答:y* (Ax B)e x.4.微分方程y 5y 6y xe3x的一个特解形式为.答:y* x(Ax B)e3x.5 .微分方程y y sin x的一个特解形式为. 答:y* Asin x .6 .微分方程y y si n x的一个特解形式为. 答:y* x(Acosx Bsin x)三、简答题1.求下列微分方程的通解•:(1) 2y y y 2e x;(2) y 5y 4y 3 2x ;解:解:⑶y 6y 9y (x 1)e2x.解:。
习题 12.11. (1) 是一阶线性微分方程; (2) 是一阶非线性微分方程; (3) 是二阶非线性微分方程; (4)是二阶非线性微分方程.2. (1) 是; (2)是; (3)不是; (4)不是二阶非线性微分方程.3. 验证略,所求特解为 .s i n422x x y ⎪⎪⎭⎫⎝⎛-=π 4.(1) 2y x y '=+,00x y==(2)xy y '-=以及初值条件23x y ==。
习 题 12-21.( 1) C x y =+-1010; (2); C x y +=a r c s i n a r c s i n (3) C e e y x =-+)1)(1(; (4) C x y +-=sin 1C x a a y+--=)1ln(1;2.(1) 2)(arctan 21x y =; (2)0)cos 2(cos =-y x ; (3) )4(412--=x y ; (4) y e xcos 221=+;(5) 0322=+-y y x ; (6) )2(ln 222+=x x y ; 3. (物体冷却的数学模型))20(--=T k dtdT. 4. ).310107(265.45335h h gt +-⨯=π5. 6分钟后,车间内2CO 的百分比降低到%.056.0习题12-31. (1) x C x y sin e )(-+=;(2) x x C y 2cos 2cos -=;(3) 1sin esin -+=-t C s t; (4) 2e 2x C y -+=; (5) )2()2(3-+-=x C x y ;(6))||(ln 12C y yx +=2. (1) 412e e 22++-=x y xx; (2) 11332e 2--=x x x y ; (3) x x y sec =; (4) )cos 1(1x xy --π=; (5) 1e5sin cos =+xx y ; (6).ln 1ln 21⎪⎭⎫ ⎝⎛+=x x y 3.⎰-=dx dx d e y ϕ⎥⎥⎦⎤⎢⎢⎣⎡+⎰⎰C dx e dxd x dx dx d ϕϕϕ)(⎰+=-])([)()(C d e x e x x ϕϕϕϕ.1)()(x Ce x ϕϕ-+-= 4. ,62320⎪⎪⎭⎫⎝⎛-=T t t m F x .0T t ≤≤5 ..224⎪⎭⎫⎝⎛+=C x x y 6. yx ⎥⎦⎤⎢⎣⎡-2)(l n 2x a C .1= 习题12-41. (1) Cxy x =-331; (2) x sin y +y cos x =C ; (3) xe y -y 2=C ;(4) .132C yx y =+- (5)不是全微分方程;(6) 不是全微分方程.2. (1) y x +1, x -y =ln(x +y )+C ; (2) 21y , C x y x =+22.(3) 21y , Cxy y x =--3122; (4) 221y x +为, x 2+y 2=Ce 2x ; (5) 21x , x ln x +y 2=Cx ; (6) 2y x , 032=-x y x .3. (1)2212yx e Cy x =; (2) C y y x y x =++||ln 3113322.4. (1)21ln 2x C x y +-=; (2) x C x x y cos 1tan ++=. 习 题12-51、(1)21c x c e y x ++=(2)21212x y x x c e c =--++(3)12ln y C x C =+ (4)12arcsin()xy c e c =+(5).3231C x x C y +⎪⎪⎭⎫ ⎝⎛+=(6)221121()c y c x c -=+ 2、(1).4521cos 412-++=x x e y x (2) .133++=x x y (3)x y 11+= (4)11y x=-(5) ).4tan(π+=x y3、 .212+=x y 4、2)1()(-=x x f5 、.2⎪⎪⎭⎫ ⎝⎛+==-a xa x e e a a x ach y 这曲线叫做悬链线.习题12-61. (1) 线性相关(2) 线性无关(3) 线性无关(4) 线性无关2. 略.3. (1) y x x x x e C e C e xe -+++=2202x x x e C e C xe -++=221,其中.101C C += (2) ;22x x xe e y y y -=-'-''(3) .342x x x xe e e y ++=- 4. .33221x C x C y ++=习题12-71.(1) y =C 1e -x+C 2e-2x;(2)=C 1e 0x +C 2e-2/3x=C 1+C 2e-2/3x ;(3) y =C 1cos2x +C 2sin2x .(4)x =(C 1+C 2t) e 5t/2;(5) .321x x e C e C y +=-(6).)(221x e x C C y -+=(7)).2sin 2cos (21x C x C e y x +=-(8))3sin 3cos (212x C x C e y x +=.(9) y =C 1cosx +C 2sinx +C 3e x +C 4e -x;(10)).2sin 2cos (4321x C x C e x C C y x +++=(11)w ⎪⎪⎭⎫⎝⎛+=x C x C ex 2sin 2cos 212βββ.2sin 2cos 432⎪⎪⎭⎫⎝⎛++-x C x C ex βββ(12) .sin )(cos )(54321x x C C x x C C C y ++++= (13) x x xxe C e C e C eC y --+++=432221.sin cos 65x C x C ++(14) y =C 1+C 2x +(C 3+C 4x)e x. 2. ϕ(x)=1/2(cosx +sinx +e x).3. ,04852)4(=+'-''+'''-y y y y y .2sin 2cos )(4321x C x C e x C C y x +++=4.略.习题12-81. (1) ;30*x e b y =(2) ;)(210*x e b x b x y -+=(3) .)(21202*x e b x b x b x y -++=(4) *(c o s 2s i n 2).xy x e a xb x =+2.(1).31*+-=x y (2)*y **21y y +=.3)221(22++-=x e x x x 3. (1) .)121(2221x x x e x x e C e C y -++=(2) y .21s i n c o s 21x e x x C x C +++=(3) y *y Y +=.81)(2321x x e e x C x C C +++=-(4) .cos 2sin cos 21x x x C x C y -+=(5).2sin 942cos 31sin cos 21x x x x C x C y +-+=4. y =-1/16 sin2x +1/8 x(1+sin2x) 5..32cos cos 3sin )(++-=x x x x y 6. .221x x x xe e C e C y ++=7.y .1)(ln ln 321xx x C C -++=8. y .2123321x x C x C C -++= 9. .)1(41)1()1ln(2141x x x y +++⎥⎦⎤⎢⎣⎡++-=本章复习题A1.(1)二;(2);(3)ln(ln )xy x x e=+;(4)''2'50y y y -+=;(5)2()x Ax B x e -+. 2. (1) A (2) (A)(3)(C )(4) (B )(5)(C ) 3. (1));(12x x e Ce xy +=(2)3221Cy y x += (3)C x xy +=2;(4)x Ce x y tan 1tan -+-=(5)13423++=x Cx y (6)22)1(1-=-x C y (7)31)1(tan x e C y -=- (8)221ln xCx y +-=(9)C x e x x +=+2)1(;(10)C xy x =-4. (1)322142224181C x C x C x e y x +++-=; (2)2212C x C e xe y x x ++-= (3)21|)cos(|ln C C x y ++-= (4))sin cos (e 212x C x C y x+=x x x2cos e 412-5. (1))1(ln 222+=x x y (2))2sin 22(cos x x e y x +=- (3)x x x y 2sin 31sin 31cos +--= (4)2135672--+=-x e e y x x . 6. 2231()()4f x x x=- 7. 可知当敌舰行245个单位距离时,将被鱼雷击中。
第十二章常微分方程(A)、是非题1.任意微分方程都有通解。
()2 •微分方程的通解中包含了它所有的解。
()3. 函数y =3si nx-4cosx是微分方程y,y=0的解。
()4. 函数y = x2・e x是微分方程y';"-2y ' y = 0的解。
()5. 微分方程xy"T nx=0的通解是y =丄(1 nx)2+C (C为任意常数)。
()26. y"=siny是一阶线性微分方程。
()7. / = x3y3 xy不是一阶线性微分方程。
()8 . /-2/ 5^0的特征方程为『-2—5=0。
()9. dy = 1 x y2 xy2是可分离变量的微分方程。
()dx、填空题1 .在横线上填上方程的名称①y _ 3 ln xdx _ xdy 二0 是__________________________ 。
②xy2 x dx y _ x2 y dy = 0 是__________________________ 。
③x-d^ = y l n 丫是。
dx x④xy := y x2 sin x 是__________________ 。
⑤y y -2y =0是________________________ 。
2 . y si nxy"-x=cosx的通解中应含____________ 个独立常数。
3. _____________________________________ y “ = e Qx的通解是。
4. ______________________________________ y = sin 2x - cos x 的通解是。
5. _______________________________ x^ 2x2y 2,x3y=x4,1是阶微分方程。
6•微分方程y y - y Q =0是________________ 阶微分方程。
i7. y-丄所满足的微分方程是。
第十二章 微分方程§12.1 微分方程基本概念、可分离变量的微分方程、齐次微分方程一、单项选择题1. 下列所给方程中,不是微分方程的是( ) . (A)2xy y '=; (B)222x y C +=;(C)0y y ''+=; (D)(76)d ()d 0x y x x y y -++=. 答(B). 2. 微分方程4(3)520y y xy y '''+-=的阶数是( ).(A)1; (B)2; (C)3; (D)4; 答(C). 3. 下列所给的函数,是微分方程0y y ''+=的通解的是( ). (A)1cos y C x =; (B)2sin y C x =;(C)cos sin y x C x =+; (D)12cos sin y C x C x =+ 答(D).4. 下列微分方程中,可分离变量的方程是( ). (A)x y y e +'=; (B)xy y x '+=;(C)10y xy '--=;(D)()d ()d 0x y x x y y -++=. 答(A).5. 下列微分方程中,是齐次方程是微分方程的是( ). (A)x y y e +'=; 2(B)xy y x '+=;(C)0y xy x '--=; (D)()d ()d 0x y x x y y -++=. 答(D).二、填空题1.函数25y x =是否是微分方程2xy y '=的解? . 答:是 . 2.微分方程3d d 0,4x x y y y x=+==的解是 . 答:2225x y +=. 3.微分方程23550x x y '+-=的通解是. 答:3252x x y C =++.4.微分方程ln 0xy y y '-=的通解是 . 答: Cx y e =.5'的通解是 . 答:arcsin arcsin y x C =+. 6.微分方程 (ln ln )xy y y y x '-=-的通解是. 答:Cxy e x=.三、解答题1.求下列微分方程的通解.(1) 22sec tan d sec tan d 0x y x y x y +=; (2) 2()y xy a y y '''-=+; 解: 解:(3)d 10d x y y x +=; (4) 23d (1)0.d yy x x++= 解: 解:2.求下列微分方程满足所给初始条件的特解:(1) 20,0x y x y e y -='==; (2) 2sin ln ,x y x y y y e π='==;解: 解:(3) 2d 2d 0,1x x y y x y =+==; (4)d 10d x y yx+=. 解: 解:3*.设连续函数20()d ln 22x t f x f t ⎛⎫=+ ⎪⎝⎭⎰,求()f x 的非积分表达式. 答:()ln 2x f x e =⋅.§12.2 一阶线性微分方程、全微分方程一、单项选择题1. 下列所给方程中,是一阶微分方程的是( ).2d (A)3(ln )d y y x y x x+=; 52d 2(B)(1)d 1y y x x x -=++ 2d (C)()d y x y x=+; (D)()d ()d 0x y x x y y -++=. 答(B).2. 微分方程2()d 2d 0x y x xy y ++=的方程类型是( ).(A) 齐次微分方程; (B)一阶线性微分方程;(C) 可分离变量的微分方程; (D)全微分方程. 答(D).3. 方程y y x y x ++='22是( ).(A)齐次方程; (B)一阶线性方程;(C)伯努利方程; (D)可分离变量方程. 答(A).二、填空题1.微分方程d d x yy e x-+=的通解为 . 答:x x y Ce xe --=+. 2.微分方程2()d d 0x y x x y --=的通解为 . 答:33x xy C -=.3.方程()(d d )d d x y x y x y +-=+的通解为 . 答:ln()x y x y C --+=.三、简答题1.求下列微分方程的通解:(1) sin cos x y y x e -'+=; (2) d ln d y y x y x x=; 解: 解:(3) 232xy y x x '+=++; (4) tan sin 2y y x x '+=; 解: 解:(5) 2d (6)20d yy x y x-+=; (6) (2)d 0y y e xe y y +-=; 解: 解:(7) 222(2)d ()d 0a xy y x x y y ---+=. 解:2.求下列微分方程满足所给初始条件的特解.(1) 0d 38,2d x yy y x=+==; (2)d sin ,1d x y y x y x x x π=+==. 解: 解:3*.求伯努利方程2d 3d yxy xy x-=的通解. 解:§12.3 可降阶的高阶微分方程、二阶线性微分方程一、单项选择题1. 方程x y sin ='''的通解是( ).(A)322121cos C x C x C x y +++=; (B)1cos C x y +=; (C)322121sin C x C x C x y +++=; (D)x y 2sin 2=. 答(A)2. 微分方程y y xy '''''+=满足条件21x y ='=,21x y ==的解是( ).(A)2(1)y x =-; (B)212124y x ⎛⎫=+- ⎪⎝⎭;(C)211(1)22y x =-+; (D)21524y x ⎛⎫=-- ⎪⎝⎭. 答(C).3. 对方程2y y y '''=+,以下做法正确的是( ).(A)令()y p x '=,y p '''=代入求解; (B)令()y p y '=,y p p '''=代入求解; (C)按可分离变量的方程求解; (D)按伯努利方程求解. 答(B). 4. 下列函数组线性相关的().是(A)22,3x x e e ; (B)23,x xe e ;(C)sin ,cos x x ; (D)22,x x e xe . 答(A).5. 下列方程中,二阶线性微分方程是( ).(A)32()0y y y '''-=; (B)2x y yy xy e '''++=;(C)2223y x y y x '''++=; (D)222x y xy x y e '''++=. 答(D). 6. 12,y y 是0y py qy '''++=的两个解,则其通解是( ). (A)112y C y y =+; (B)1122y C y C y =+; (C)1122y C y C y =+,其中1y 与2y 线性相关;(D)1122y C y C y =+,其中1y 与2y 线性无关. 答(D). 7. 下列函数组线性相关的().是 22(A),3x x e e ; 23(B),x x e e ;(C)sin ,cos x x ; 22(D),x x e xe . 答(A).二、填空题1.微分方程sin y x x ''=+的通解为. 答: 312sin .6x y x C x C =-++2.微分方程y y x '''=+的通解为. 答: 212.2xx y C e x C =--+三、简答题1.求下列微分方程的通解.(1) 21()y y '''=+; (2) 21()2y y '''=.解: 解:2.求方程2()0y x y '''+=满足条件12x y ='=,11x y ==-的特解. 解:§12.4 二阶常系数线性齐次微分方程一、单项选择题1. 下列函数中,不是微分方程0y y ''+=的解的是( ).(A)sin y x =; (B)cos y x =;(C)x y e =; (D)sin cos y x x =+. 答(C).2. 下列微分方程中,通解是312x x y C e C e -=+的方程是( ). (A)230y y y '''--=; (B)250y y y '''-+=;(C)20y y y '''+-=; (D)20y y y '''-+=. 答(A).3. 下列微分方程中,通解是12x x y C e C xe =+的方程是( ). (A)20y y y '''--=; (B)20y y y '''-+=;(C)20y y y '''++=; (D)240y y y '''-+=. 答(B).4. 下列微分方程中,通解是12(cos2sin 2)x y e C x C x =+的方程是( ). (A)240y y y '''--=; (B)240y y y '''-+=(C)250y y y '''++=; (D)250y y y '''-+=. 答(D). 5. 若方程0y py qy '''++=的系数满足10p q ++=,则方程的一个解是( ).(A)x ; (B)x e ; (C)x e -; (D)sin x . 答(B).6*. 设()y f x =是方程220y y y '''-+=的一个解,若00()0,()0f x f x '>=,则()f x 在0x x =处( ).(A)0x 的某邻域内单调减少; (B)0x 的某邻域内单调增加;(C) 取极大值;(D) 取极小值. 答(C).二、填空题1.微分方程的通解为40y y '''-=的通解为 . 答:412x y C C e =+. 2.微分方程20y y y '''+-=的通解为 . 答:212x x y C e C e -=+. 3.微分方程440y y y '''-+=的通解为 . 答:2212x x y C e C xe =+.4.微分方程40y y ''+=的通解为 . 答:12cos2sin 2y C x C x =+. 5.方程6130y y y '''++=的通解为 . 答:312(cos2sin 2)x y e C x C x -=+.三、简答题(1) 20y y y '''--=; (2) 22d d 420250d d x xx t t-+=.解: 解:2.求下列方程满足初始条件的特解. (1) 0430,10,6x x y y y y y==''''-+===; (2) 0250,5,2x x y y y y=='''+===.解: 解:§12.5 二阶常系数线性非齐次微分方程一、单项选择题1. 微分方程2y y x ''+=的一个特解应具有形式( ).2(A)Ax ; 2(B)Ax Bx +;2(C)Ax Bx C ++; 2(D)()x Ax Bx C ++. 答(C).2. 微分方程2y y x '''+=的一个特解应具有形式( ).2(A)Ax ; 2(B)Ax Bx +;2(C)Ax Bx C ++; 2(D)()x Ax Bx C ++. 答(C).3. 微分方程256x y y y xe -'''-+=的一个特解应具有形式( ).2(A)x Axe -; 2(B)()x Ax B e -+;22(C)()x Ax Bx C e -++; 2(D)()x x Ax B e -+. 答(B). 4. 微分方程22x y y y x e '''+-=的一个特解应具有形式( ).2(A)x Ax e ; 2(B)()x Ax Bx e +;2(C)()x x Ax Bx C e ++; 2(D)()x Ax Bx C e ++. 答(C).5. 微分方程23sin x y y y e x '''+-=的一个特解应具有形式( ).(A)(cos sin )x e A x B x +; (B)sin x Ae x ;(C)(sin cos )x xe A x B x +; (D)sin x Axe x 答(A).二、填空题1.微分方程34y y x x ''+=+的一个特解形式为答:3*48x xy =-.2.微分方程2y y x '''+=的一个特解形式为 . 答:*()y x Ax B =+. 3.微分方程56x y y y xe '''-+=的一个特解形式为 . 答:*()x y Ax B e =+. 4.微分方程356x y y y xe '''-+=的一个特解形式为 . 答:3*()x y x Ax B e =+. 5.微分方程sin y y x ''-=的一个特解形式为 . 答:*sin y A x =. 6.微分方程sin y y x ''+=的一个特解形式为 . 答:*(cos sin )y x A x B x =+.三、简答题(1) 22x y y y e '''+-=; (2) 5432y y y x '''++=-; 解: 解:(3) 269(1)x y y y x e '''-+=+. 解:。