整体结构机翼
- 格式:ppt
- 大小:6.59 MB
- 文档页数:35
机翼结构设计方案及强度计算模型一设计思路:根据设计要求,机翼全长4m,翼弦长1m,前后两根梁。
于是利用abaqus软件的壳单元建立了一个基本的机翼模型。
图1 单只机翼模型然后参考《实用飞机复合材料结构设计与制造》、《复合材料设计手册》、《复合材料力学》等资料,初步设计机翼采用蒙皮夹心结构,上下表面分别铺3层复合材料,考虑到机翼的工况采用[45/0/-45]铺层方式,每层厚度为0.125mm,具体如图2所示。
中间夹心材料采用PMI泡沫,该材料具有突出的比强度和良好的耐蠕变性,可以很好的克服屈曲。
夹心材料厚度初步拟定为5mm,进行计算模拟,如果屈曲明显则可加厚。
表1 机翼的材料参数图2 机翼的蒙皮夹心铺层结构考虑到梁是主要的承力部件,采用[-45/0/45/90]s铺层方式,每层厚度为0.125mm,具体如图3所示。
图3 梁的铺层结构利用abaqus模拟计算时将工况环境简化,采用一端固定,在机翼下表面加载Y方向的升力,分布如图5所示。
图4 机翼的固定端约束图5 机翼的载荷分布模型一的计算结果:梁每层复合材料的应力云图图6 梁每层复合材料的应力云图梁的计算结果分析:从计算结果中不难发现,机翼前缘的梁承受的力要比尾部的梁大很多,可以考虑适当加厚。
对比各层复合材料的受力情况,0°的复合材料层受力明显,可以适当增加0°的复合材料层数。
靠机身段的梁应力集中明显,可以在该部位适当增加梁的厚度,也可考虑用工字梁强化该部位。
机翼每层复合材料的应力云图:图7 机翼每层复合材料的应力云图(1-5层)图7 机翼每层复合材料的应力云图(6-7层)图8 机翼的变形云图计算结果总体分析:表2 模型一的计算结果部件材料最大应力最大剪应力梁、肋单向带复材454.8MPa9.872Mpa蒙皮单向带复材315.4MPa15.1 Mpa蒙皮PMI泡沫0.278MPa0.0175 MPa 单向带复材的拉伸强度为1541MPa,PMI泡沫的拉伸强度为1.6MPa单向带复材的剪切强度为60MPa,PMI泡沫的剪切强度为0.8MPa从表中可以得出,模型的强度在材料的许用强度范围内,该设计符合强度要求。
飞机机翼结构分析前言飞机机翼结构分析实根据发《飞机结构强度》一书中第三章的内容,本文主要论述了飞机机翼的功用及翼面结构。
机翼由副翼前缘缝翼襟翼扰流板组成,从机翼的空气动力载荷到机翼的总体受力,能够更深入更全面的了解机翼了解航空领域所涉及学科的基础知识基础原理及发展概况,对开拓视野,扩大知识面以及今后的学习和工作都有帮助。
1.1机翼的功用机翼是飞机的一个重要部件,其主要功用是产生升力。
当它具有上反角时,可为飞机提供一定的横侧安定性。
除后缘布置有横向操纵用的副翼、扰流片、等附翼外,目前在机翼的前、后缘越来越多地装有各种形式的襟翼、缝翼、等增升装置,以提高飞机的起降或机动性能。
机翼上常安装有起落架、发动机等其它部件。
现代歼击机和歼击轰炸机往往在机翼下布置多种外挂,如副油箱和导弹、炸弹等军械设备。
机翼的内部空间常用来收藏起落架或其部分结构和储放燃油。
特别是旅客机,为了保证旅客的安全,很多飞机不在机身内贮存燃油,而全部贮存在机翼内。
为了最大限度地利用机翼容积,同时减轻重量,现代飞机的机翼油箱大多采用利用机翼结构构成的整体油箱。
此外机翼内常安装有操纵系统和一些小型设备和附件。
1.2翼面结构设计要求1.气动要求翼面是产生升力主要部件,对飞行性能有很大的影响,因此,满足空气动力方面的要求是首要的。
翼面除保证升力外,还要求阻力尽量小﹙少数特殊机动情况除外﹚。
翼面的气动特性主要取决于其外行参数﹙如展弦比、相对厚度、后掠角和翼型等﹚,这些参数在总体设计时确定;结构设计则应强度、刚度及表面光滑度等方面来保证机翼气动外形要求的实现。
2.质量要求在外形、装载和连接情况一定的条件下,质量要求时翼面结构设计的主要要求。
具体地说,就是在保证结构完整性的前提下,设计出尽可能请的结构。
结构完整性包含了强度、刚度、耐久性和损伤容限等多方面内容。
3.刚度要求随着飞机速度的提高,翼面所受载荷增大,特别对于高机动性能歼击机和高速飞行的导弹;由于减小阻力等空气动力的要求,翼面的相对厚度越来越小,再加上后掠角的影响,导致翼面结构的扭转刚度、弯曲度将越来越难保证,这些均将引起翼面在飞行中的变形增加。
机翼的横向受力结构引言机翼是飞机的重要组成部分,承担着产生升力和控制飞行姿态的重要任务。
在飞行中,机翼需要承受来自气流和飞机自身的各种力,其中包括横向受力。
本文将详细介绍机翼的横向受力结构及其相关原理和设计。
机翼的功能和结构机翼是飞机上产生升力的主要部件,其主要功能包括: - 产生升力:通过机翼的气动特性,使得飞机能够在空中维持飞行。
- 提供稳定性和操纵性:机翼的形状和布局对飞机的稳定性和操纵性有重要影响。
- 承受各向受力:机翼需要承受来自气流和飞机自身的各种力,包括横向受力。
机翼的基本结构包括: - 主翼:产生大部分升力的翼面。
- 副翼:用于操纵飞机的翼面,通常位于主翼的后缘。
- 翼尖:机翼的末端,对气动性能有重要影响。
- 翼梁:连接机翼和机身的结构,承受机翼的各种受力。
机翼的横向受力在飞行中,机翼需要承受来自气流和飞机自身的横向受力,主要包括以下几种: - 滚转力:由于飞机的横向姿态变化,机翼会受到滚转力的作用,产生滚转力矩。
- 侧向力:由于飞机受到侧风的作用,机翼会受到侧向力的作用,产生侧向力矩。
- 副翼力:在操纵飞机时,副翼会产生力矩,使机翼受到横向力的作用。
机翼的横向受力结构设计为了保证机翼能够承受横向受力并保持结构的稳定性和强度,需要进行合理的设计和优化。
以下是机翼横向受力结构设计的一些关键考虑因素:1. 结构强度机翼的横向受力结构需要具备足够的强度,以承受来自滚转力、侧向力和副翼力的作用。
结构强度的设计主要包括: - 材料选择:选择适当的材料,如高强度铝合金或复合材料,以满足强度和重量的要求。
- 结构布局:合理布置翼梁和副翼,以增强结构的刚度和强度。
- 加强结构:在关键部位添加加强件,如肋骨、肋帽、腹板等,以增加结构的强度和刚度。
2. 气动特性机翼的气动特性对横向受力结构的设计有重要影响。
良好的气动特性可以减小横向受力的大小,并提高飞机的操纵性和稳定性。
气动特性的设计考虑包括: - 翼型选择:选择合适的翼型,以提高机翼的升力和减小阻力。
飞机机翼结构剖析机翼是飞机的重要部件之一,它就好比鸟儿的翅膀。
飞机之所以能在天上飞,靠的就是机翼产生的升力!不过除了提供飞机升力,机翼其实还有许多辅助功能,比如悬挂发动机、存储燃油、控制飞机水平翻转、减速等。
因此在机翼上还有很多特别设计的“机关”,也许经常坐飞机的朋友会注意到,但是不一定说得出这些机关的名字和具体作用。
今天,我们就和大家聊一聊飞机的机翼!机翼如何产生升力?众所周知,机翼的主要功能就是产生升力,让飞机飞起来,那么它为什么能产生升力呢?这还得从飞机机翼具有独特的剖面说起。
我们把机翼横截面的形状称为翼型,翼型上下表面形状是不对称的,顶部弯曲,而底部相对较平。
当飞机发动机推动飞机向前运动时,机翼在空气中穿过将气流分隔开来。
一部分空气从机翼上方流过,另一部分从下方流过。
日常的生活经验告诉我们,当水流以一个相对稳定的流量流过河床时,在河面较宽的地方流速慢,在河面较窄的地方流速快。
空气的流动与水流其实有较大的相似性。
由于机翼上下表面形状是不对称的,空气沿机翼上表面运动的距离更长,因而流速较快。
而流过机翼下表面的气流正好相反,流速较上表面的气流慢。
根据流体力学中的伯努利原理,流动慢的大气压强较大,而流动快的大气压强较小,这样机翼下表面的压强就比上表面的压强高。
换句话说,就是大气施加于机翼下表面的压力(方向向上)比施加于机翼上表面的压力(方向向下)大,二者的压力差便形成了飞机的升力。
机翼有多坚固?机翼除了提供升力之外,还必须得承重。
飞机在天上飞的时候,整个机身的重量几乎都是由机翼给“托”着的。
飞机在地面上的时候,机翼还得悬臂“举”着重重的发动机,像A380、747这样的巨无霸飞机,单片机翼还得悬臂“举”起两个发动机,要知道A380的单台发动机自重就达8吨。
因此,机翼必须得足够坚固。
目前主流的民航客机的机翼结构采用的是双梁单块式,前后有两根梁,之间又有很多的翼肋,这样梁和肋就组成了机翼的内部骨架结构,外侧是蒙皮和壁板设计。
飞机机体结构组成部分和作用
飞机机体结构由机翼、机头、机尾和机身4部分组成,这些部件具有不同的结构特征
和功能,在飞行中发挥着不同的作用,保证飞机飞行中的正常工作。
一、机翼:机翼是飞机机体的主要部分,也是浮力、翼型面积、机翼形状定位和机头
形状和机尾形状有关系的主要位置,它将空气分割为上下两部分,自上而下分别形成了上
流和下流,机翼可以生成提供正向推力的升力,也可以通过改变机翼表面的形状来调整飞
机的航向。
二、机头:机头是飞机机身的前端部分,主要起到阻力的作用,较高的阻力可降低飞
机的飞行特性,较低的阻力可提高飞机的加速度,同时也是改变飞机行进方向的关键部分,一般采用较窄、较短的结构。
三、机尾:机尾位于飞机机身的后部,由机叶、垂尾及垂尾减流装置组成,主要调节
飞机的姿态、控制飞机行进方向和稳定空气流。
四、机身:机身是飞机重要的结构,是飞机飞行的主要部分,机身包括主翼梁、机翼梁、分量、驾驶舱、燃料筒以及许多连接机翼、机头、机尾的部件,它不仅负责连接各个
结构部分,主要用作空气流动和阻力的传输,也是飞机携带燃料、装备和乘员的地方。
飞机机翼结构强度分析与优化设计飞机机翼是整个飞机结构中最重要的部分之一,其承载着飞行中所受到的各种力和振动。
机翼的结构强度分析与优化设计是确保飞机空中安全飞行的关键环节之一。
首先,我们来讨论机翼结构的强度分析。
机翼的设计要求必须满足飞行过程中的各种负载条件,如升力、阻力、重力、操纵力等。
这些负载条件会给机翼结构造成较大的应力和变形,因此在设计中必须充分考虑这些因素。
强度分析的目的是通过建立合适的数学模型,计算出机翼结构在各个工况下的应力和变形情况,以确保机翼在各种情况下都能满足强度要求。
针对机翼结构的强度分析,通常采用有限元方法进行数值模拟。
有限元方法将机翼划分为一系列小的单元,通过数值计算来预测机翼结构在各种工况下的应力和变形。
通过这种方法可以快速而准确地评估机翼的结构强度,并对不合格的部分进行修改和优化。
在强度分析的基础上,我们可以进行机翼结构的优化设计。
目前,为了提高飞机的性能和降低燃油消耗,很多工程师都在探索更轻、更强的机翼结构设计。
优化设计的目标是在满足强度要求的前提下,尽可能减小机翼的重量。
为了实现这一目标,我们可以借助先进的优化算法和计算机辅助设计工具。
一个常见的优化策略是采用复合材料来替代传统的铝合金结构。
复合材料由两种或多种不同性质的材料按一定比例组合而成,具有高强度、轻质和抗腐蚀等优点。
通过合理选择复合材料的种类和分布方式,可以在保证机翼结构强度的同时,显著降低机翼的重量。
除了材料选择,机翼结构的几何形状也可以通过优化来进行设计。
传统的机翼结构多为直翼或者后掠翼,这种形状在某些情况下可能会导致结构应力集中或者不稳定。
因此,我们可以通过改变机翼的几何形状,如机翼的弯曲程度、长度和展弦比等来达到优化设计的目的。
这样的优化设计可以减小机翼的应力集中程度,提高机翼的承载能力和稳定性。
总而言之,飞机机翼结构的强度分析与优化设计是飞机设计中不可或缺的一环。
通过强度分析可以预测机翼结构在各种工况下的应力和变形情况,评估其结构的可靠性。
专利名称:一种结构功能一体化复合材料机翼及其整体成型方法
专利类型:发明专利
发明人:韩蕾,袁一博,卢山,柳晓辉,李丽英,王国勇,龚文化
申请号:CN201911302283.4
申请日:20191217
公开号:CN110978567A
公开日:
20200410
专利内容由知识产权出版社提供
摘要:本发明涉及一种结构功能一体化复合材料机翼及其整体成型方法。
所述方法:制备复合材料承载梁;干燥具有机翼前后缘形状的泡沫芯层,然后将其拼接在复合材料承载梁的前后侧;将吸波层板粘贴在泡沫芯层上,得到拼接组件;将拼接组件通过真空袋法预压实;将干态玻璃布和/或石英布粘贴在复合材料承载梁和吸波层板的表面,得到预成型体;将预成型体置于机翼成型模具中,采用RTM工艺进行制备,得到结构功能一体化复合材料机翼。
本发明实现了承载梁、泡沫芯层、吸波材料、蒙皮的一次整体成型机翼;同时,将吸波材料成型在材料内部,避免了吸波层放置在最外层时易老化失效的问题,制备出了既具备承载功能又具备吸波隐身功能的结构功能一体机翼。
申请人:航天特种材料及工艺技术研究所
地址:100074 北京市丰台区云岗北里40号院
国籍:CN
代理机构:北京格允知识产权代理有限公司
代理人:刘晓
更多信息请下载全文后查看。