弹塑性力学之应变状态理论
- 格式:pdf
- 大小:891.92 KB
- 文档页数:27
第二章 应力理论和应变理论2—3.试求图示单元体斜截面上的σ30°和τ30°(应力单位为MPa )并说明使用材料力学求斜截面应力为公式应用于弹性力学的应力计算时,其符号及正负值应作何修正。
解:在右图示单元体上建立xoy 坐标,则知 σx = -10 σy = -4 τxy = -2 (以上应力符号均按材力的规定)代入材力有关公式得: 代入弹性力学的有关公式得: 己知 σx = -10 σy= -4 τxy = +2由以上计算知,材力与弹力在计算某一斜截面上的应力时,所使用的公式是不同的,所得结果剪应力的正负值不同,但都反映了同一客观实事。
2—6. 悬挂的等直杆在自重W 作用下(如图所示)。
材料比重为γ弹性模量为 E ,横截面面积为A 。
试求离固定端z 处一点C 的应变εz 与杆的总伸长量Δl 。
解:据题意选点如图所示坐标系xoz ,在距下端(原点)为z 处的c 点取一截面考虑下半段杆的平衡得:c 截面的内力:N z =γ·A ·z ;c 截面上的应力:z z N A zz A Aγσγ⋅⋅===⋅;所以离下端为z 处的任意一点c 的线应变εz 为:z z z E Eσγε==;则距下端(原点)为z 的一段杆件在自重作用下,其伸长量为:()22z z z z z z z z y zz l d l d d zd EEEγγγε=⎰⋅∆=⎰⋅=⎰=⎰=ooooV ;显然该杆件的总的伸长量为(也即下端面的位移):()2222ll A l lW ll d l EEAEAγγ⋅⋅⋅⋅⋅=⎰∆===oV ;(W=γAl ) 2—9.己知物体内一点的应力张量为:σij =50030080030003008003001100-⎡⎤⎢⎥+-⎢⎥⎢⎥--⎣⎦应力单位为kg /cm 2 。
试确定外法线为n i(也即三个方向余弦都相等)的微分斜截面上的总应力n P v、正应力σn 及剪应力τn 。
弹塑性力学应变分析弹塑性力学是固体力学的一个重要分支,研究了材料在外力作用下的弹性和塑性变形行为。
应变分析是弹塑性力学研究中的一个重要方法,用来描述材料的应变分布和变形机制。
本文将从简介弹塑性力学的基本概念开始,然后介绍应变分析的基本原理和方法,最后结合实例进行具体分析。
弹塑性力学是固体力学中研究物体在外力作用下产生变形和失去变形能力的行为的学科,弹塑性力学将材料的变形分为弹性和塑性两个阶段进行研究。
所谓弹性变形是指当外力作用撤除后,物体完全恢复到原来的形状和体积;而塑性变形则是在外力作用下,物体永久性的改变了形状和体积。
弹性力学研究了材料的弹性性质,主要通过描述应力-应变关系来分析材料的弹性行为;而塑性力学则以塑性应变的定义和计算为基础,研究材料的塑性行为。
应变分析是一种通过测量物体表面上的变形情况来分析物体内部应变分布和变形机制的方法。
应变分析的基本原理是根据平面几何关系,通过测量物体表面上的位移或形变情况,计算出表面上各点的法向和剪切应变分量,然后根据连续性假设推导出物体内部的应变分布。
应变分析主要通过两种方法进行,一种是光学方法,即应变光学方法;另一种是电子方法,即电子应变分析方法。
应变光学方法是应变分析中最常用的方法之一,主要利用光的干涉和衍射原理来测量物体表面上的位移和形变情况。
最常用的光学方法是全场应变测量方法,主要包括光栅投影法、相位差法和光弹性法。
在这些方法中,光栅投影法是最简单和最常用的方法,它通过在物体表面上投影一组光栅,然后根据物体表面上的光强分布来计算出位移和形变信息。
相位差法和光弹性法则是基于光的相位差和光的偏振状态来计算应变信息的。
电子应变分析方法主要利用电子束的散射和衍射原理来测量物体表面上的位移和形变信息。
最常用的电子应变分析方法是SEM-EBSD方法和EBSD方法。
SEM-EBSD方法是通过扫描电子显微镜和电子背散射衍射技术来测量物体表面上的位移和形变信息。
EBSD方法则是通过扫描电子显微镜和电子回散射衍射技术来测量物体表面上的位移和形变信息。
第三章 应变状态理论在外力、温度变化或其他因素作用下,物体内部各质点将产生位置的变化,即发生位移。
如果物体内各点发生位移后仍保持各质点间初始状态的相对位置,则物体实际上只发生了刚体平移和转动,这种位移称为刚体位移。
如果物体各质点发生位移后改变了各点间初始状态的相对位置,则物体同时也产生了形状的变化,其中包括体积改变和形状畸变,物体的这种变化称为物体的变形运动或简称为变形,它包括微元体的纯变形和整体运动。
应变状态理论就是研究物变形后的几何特性。
即给定物体内各点变形前后的位置,确定无限接近的任意两点之间所连矢量因物体变形所引起剧烈变化。
这是一个单纯的几何问题,并不涉及物体变形的原因,也就是说并不涉及物体抵抗变形的物理规律。
本章主要从物体变形前后的几何变化论述物体内一点的应变状态。
位移与线元长度、方向的变化坐标与位移设变形前物体上各点的位置在笛卡尔坐标(Descarter coordinate)系的轴(X 、、Y、Z )上的投影为(z y x ,,),又设物体上各点得到一位移,并在同一坐标轴上的投影为(u 、v 、w ),这些位移分量可看作是坐标(z y x ,,)的函数。
于是物体上任点的最终位置由下述坐标值决定。
即⎪⎭⎪⎬⎫+=+=+=),,(),,(),,(z y x w z z y x v y z y x u x ζηξ上式中函数u 、v 、w 以及它们对坐标(z y x ,,)的偏导数假设是连续的,则式确定了变量(z y x ,,)与),,(ζηξ之间的关系。
因为物体中变形前各点对应看变形后的各点,因此式是单值的,所以式可看成是坐标的一个变换。
如果在中,假设00,y y x x ==,则由式可得如下三个方程⎪⎭⎪⎬⎫+=+=+=),,(),,(),,((00000000z y x w z z y x v y z y x u x ςηξ式决定了一条曲线,曲线上各点Λ,,21**M M ,在物体变形前为平行于z 轴的直线(00,y y x x ==)上(图。
弹塑性⼒学定理和公式应⼒应变关系弹性模量||⼴义虎克定律1.弹性模量对于应⼒分量与应变分量成线性关系的各向同性弹性体,常⽤的弹性常数包括:a弹性模量单向拉伸或压缩时正应⼒与线应变之⽐,即b切变模量切应⼒与相应的切应变之⽐,即c体积弹性模量三向平均应⼒与体积应变θ(=εx+εy+εz)之⽐,即d泊松⽐单向正应⼒引起的横向线应变ε1的绝对值与轴向线应变ε的绝对值之⽐,即此外还有拉梅常数λ。
对于各向同性材料,这五个常数中只有两个是独⽴的。
常⽤弹性常数之间的关系见表3-1 弹性常数间的关系。
室温下弹性常数的典型值见表3-2 弹性常数的典型值。
2.⼴义虎克定律线弹性材料在复杂应⼒状态下的应⼒应变关系称为⼴义虎克定律。
它是由实验确定,通常称为物性⽅程,反映弹性体变形的物理本质。
A各向同性材料的⼴义虎克定律表达式(见表3-3 ⼴义胡克定律表达式)对于圆柱坐标和球坐标,表中三向应⼒公式中的x 、y、z分别⽤r、θ、z和r、θ、φ代替。
对于平⾯极坐标,表中平⾯应⼒和平⾯应变公式中的x、y、z⽤r、θ、z代替。
B⽤偏量形式和体积弹性定律表⽰的⼴义虎克定律应⼒和应变量分解为球量和偏量两部分时,虎克定律可写成更简单的形式,即体积弹性定律应⼒偏量与应变偏量关系式在直⾓坐标中,i,j=x,y,z;在圆柱坐标中,i,j=r,θ,z,在球坐标中i,j=r,θ,φ。
弹性⼒学基本⽅程及其解法弹性⼒学基本⽅程|| 边界条件|| 按位移求解的弹性⼒学基本⽅法|| 按应⼒求解的弹性⼒学基本⽅程|| 平⾯问题的基本⽅程|| 基本⽅程的解法|| ⼆维和三维问题常⽤的应⼒、位移公式1.弹性⼒学基本⽅程在弹性⼒学⼀般问题中,需要确定15个未知量,即6个应⼒分量,6个应变分量和3个位移分量。
这15个未知量可由15个线性⽅程确定,即(1)3个平衡⽅程[式(2-1-22)],或⽤脚标形式简写为(2)6个变形⼏何⽅程[式(2-1-29)],或简写为(3)6个物性⽅程[式(3-5)或式(3-6)],简写为或2.边界条件弹性⼒学⼀般问题的解,在物体部满⾜上述线性⽅程组,在边界上必须满⾜给定的边界条件。