弹塑性力学-基本原理
- 格式:ppt
- 大小:194.50 KB
- 文档页数:5
弹塑性力学基础理论与应用弹塑性力学是力学中一个重要的分支,涵盖了弹性力学和塑性力学的基本原理和应用。
本文将简要介绍弹塑性力学的基础理论和一些应用领域。
一、弹塑性力学的基础理论1. 弹性力学理论弹性力学研究材料在外力作用下的弹性变形及其恢复过程。
根据胡克定律,应力与应变成正比。
弹性力学理论通过应力张量与应变张量之间的关系描述了弹性材料的力学行为。
弹性模量是弹性力学的重要参数,表征了材料的刚度。
2. 塑性力学理论塑性力学研究材料在超过弹性极限后的变形行为。
当外力超过材料的弹性极限时,材料会发生塑性变形,而不是立即恢复到原来的形状。
塑性力学理论包括弹塑性本构方程的建立和塑性流动规律的描述。
3. 弹塑性力学理论弹塑性力学是弹性力学和塑性力学的综合应用。
它考虑了材料在弹性和塑性行为之间的转换。
在某些情况下,材料可以同时表现出弹性和塑性特性。
弹塑性力学理论利用不同的本构关系来描述材料在变形过程中的不同阶段。
二、弹塑性力学的应用1. 材料工程弹塑性力学在材料工程领域中具有重要的应用价值。
通过研究材料的弹性行为和塑性行为,可以确定材料的强度、韧性和耐久性,从而指导材料的选用和设计。
在材料的加工过程中,弹塑性力学理论也可以用于模拟和预测材料的变形行为。
2. 结构工程在结构设计和分析中,弹塑性力学也发挥着重要作用。
结构的承载能力和变形行为与材料的弹性和塑性特性密切相关。
通过考虑弹塑性行为,可以更准确地评估结构的安全性和稳定性。
3. 土木工程土木工程中的地基和土壤材料往往存在复杂的弹塑性特性。
弹塑性力学可用于分析土壤的沉降和变形行为,以及地基的稳定性。
在岩土工程中,弹塑性力学理论也可以用于分析岩土体的稳定性和变形行为。
4. 金属加工金属的塑性变形是金属加工过程中的核心问题。
弹塑性力学理论可以用于研究金属的屈服和流动行为,从而指导金属的模具设计和加工工艺的优化。
总结:弹塑性力学是力学中的一个重要分支,它综合了弹性力学和塑性力学的基础理论与应用。
弹塑性⼒学应⼒应变关系应⼒应变都是物体受到外界载荷产⽣的响应。
物体由于受到外界载荷后,在物体内部各部分之间要产⽣互相之间的⼒的作⽤,由于受到⼒的作⽤就会产⽣相应的变形;或者由于变形引起相应的⼒的作⽤。
则⼀定材料的物体其产⽣的应⼒和应变也必然存在⼀定的关系。
在⼒学上由于平衡⽅程仅建⽴了⼒学参数(应⼒分量与外⼒分量)之间的关系,⽽⼏何⽅程也仅建⽴了运动学参数(位移分量与应变分量)之间的连系。
所以平衡⽅程与⼏何⽅程是两类完全相互独⽴的⽅程,它们之间还缺乏必要的联系,这种联系即应⼒和应变之间的关系。
有了可变形材料应⼒和应变之间关系和⼒学参数及运动学参数即可分析具体的⼒学问题。
由平衡⽅程和⼏何⽅程加上⼀组反映材料应⼒和应变之间关系的⽅程就可求解具体的⼒学问题。
这样的⼀组⽅程即所谓的本构⽅程。
讨论应⼒和应变之间的关系即可变为⼀定的材料建⽴合适的本构⽅程。
⼀.典型应⼒-应变关系图1-1 典型应⼒-应变曲线1)弹性阶段(OC段)该弹性阶段为初始弹性阶段OC(严格讲应该为CA’),包括:线性弹性分阶段OA段,⾮线性弹性阶段AB段和初始屈服阶段BC 段。
该阶段应⼒和应变满⾜线性关系,⽐例常数即弹性模量或杨⽒模量,记作:εσE =,即在应⼒-应变曲线的初始部分(⼩应变阶段),许多材料都服从全量型胡克定律。
2)塑性阶段(CDEF 段)CDE 段为强化阶段,在此阶段如图1中所⽰,应⼒超过屈服极限,应变超过⽐例极限后,要使应变再增加,所需的应⼒必须在超出⽐例极限后继续增加,这⼀现象称为应变硬化。
CDE 段的强化阶段在E 点达到应⼒的最⾼点,荷载达到最⼤值,相应的应⼒值称为材料的强度极限(ultimate strength ),并⽤σb 表⽰。
超过强度极限后应变变⼤应⼒却下降,直到最后试件断裂。
这⼀阶段试件截⾯积的减⼩不是在整个试件长度范围发⽣,⽽是试件的⼀个局部区域截⾯积急剧减⼩。
这⼀现象称为“颈缩”(necking )。
弹塑性力学总结弹塑性力学是研究材料在受力后既有一部分弹性变形又有一部分塑性变形的力学学科。
它是力学学科的分支之一,因为它研究的对象是材料,所以也可以看作是材料力学的一个方向。
它的研究对象包括各种传统或新型材料——金属、高分子、陶瓷等。
本文将对弹塑性力学进行总结。
一、弹性力学与塑性力学的区别弹性力学和塑性力学都是力学学科的重要分支。
它们各自关注的是物体在受力后不同的反应。
(1)弹性力学弹性力学研究的是物体在受到力的作用下,发生弹性变形而迅速恢复原状的力学原理。
简单来说,就是物体在受力后可以发生弹性变形,如压缩变形或拉伸变形,但是在撤离力的影响之后能够回复原来的状态。
弹性力学理论主要依赖于胡克定律,胡克定律可以表示为应力与应变之比等于恒定的常数。
(2)塑性力学塑性力学研究的是物体在受到力的作用下,发生塑性变形而无法迅速完全恢复原状的力学原理。
简单来说,就是物体在受力后可以发生塑性变形,但是在恢复撤离力的影响之后,不能完全返回原来的状态,仍有残余塑性变形。
塑性力学理论主要依赖于流动理论,流动理论可以用应变率表示材料变形时受到的应力。
二、弹塑性力学的基本概念(1)应力应力是单位面积上的力,通常用σ表示。
应力有三种类型:拉应力、压应力和剪应力。
(2)应变应变是材料的形变量,通常表示为ε。
应变有三种类型:拉伸应变、压缩应变和剪切应变。
(3)黏塑性黏塑性是材料表现出的一种变形特性,它描述了物质在应力作用下的变形表现。
(4)弹性模量弹性模量是材料在受力作用下相对于其初始长度相应变形程度的比率。
弹性模量是一种力学参数,通常用E表示,单位是帕斯卡(Pa)。
材料的弹性模量越大,其刚度就越高。
(5)屈服点在达到一定的应力时,材料就会开始发生塑性变形。
材料开始发生塑性变形的应力点称为屈服点。
三、弹塑性力学的应用弹塑性力学广泛应用于工程、物理、材料科学和冶金工业等领域。
弹塑性力学理论的应用使我们在实际情况下更好地理解和处理材料的力学性质。
弹塑性⼒学定理和公式应⼒应变关系弹性模量||⼴义虎克定律1.弹性模量对于应⼒分量与应变分量成线性关系的各向同性弹性体,常⽤的弹性常数包括:a弹性模量单向拉伸或压缩时正应⼒与线应变之⽐,即b切变模量切应⼒与相应的切应变之⽐,即c体积弹性模量三向平均应⼒与体积应变θ(=εx+εy+εz)之⽐,即d泊松⽐单向正应⼒引起的横向线应变ε1的绝对值与轴向线应变ε的绝对值之⽐,即此外还有拉梅常数λ。
对于各向同性材料,这五个常数中只有两个是独⽴的。
常⽤弹性常数之间的关系见表3-1 弹性常数间的关系。
室温下弹性常数的典型值见表3-2 弹性常数的典型值。
2.⼴义虎克定律线弹性材料在复杂应⼒状态下的应⼒应变关系称为⼴义虎克定律。
它是由实验确定,通常称为物性⽅程,反映弹性体变形的物理本质。
A各向同性材料的⼴义虎克定律表达式(见表3-3 ⼴义胡克定律表达式)对于圆柱坐标和球坐标,表中三向应⼒公式中的x 、y、z分别⽤r、θ、z和r、θ、φ代替。
对于平⾯极坐标,表中平⾯应⼒和平⾯应变公式中的x、y、z⽤r、θ、z代替。
B⽤偏量形式和体积弹性定律表⽰的⼴义虎克定律应⼒和应变量分解为球量和偏量两部分时,虎克定律可写成更简单的形式,即体积弹性定律应⼒偏量与应变偏量关系式在直⾓坐标中,i,j=x,y,z;在圆柱坐标中,i,j=r,θ,z,在球坐标中i,j=r,θ,φ。
弹性⼒学基本⽅程及其解法弹性⼒学基本⽅程|| 边界条件|| 按位移求解的弹性⼒学基本⽅法|| 按应⼒求解的弹性⼒学基本⽅程|| 平⾯问题的基本⽅程|| 基本⽅程的解法|| ⼆维和三维问题常⽤的应⼒、位移公式1.弹性⼒学基本⽅程在弹性⼒学⼀般问题中,需要确定15个未知量,即6个应⼒分量,6个应变分量和3个位移分量。
这15个未知量可由15个线性⽅程确定,即(1)3个平衡⽅程[式(2-1-22)],或⽤脚标形式简写为(2)6个变形⼏何⽅程[式(2-1-29)],或简写为(3)6个物性⽅程[式(3-5)或式(3-6)],简写为或2.边界条件弹性⼒学⼀般问题的解,在物体部满⾜上述线性⽅程组,在边界上必须满⾜给定的边界条件。
弹塑性力学基础与材料变形分析弹塑性力学是力学中的一个重要分支,研究物体在外力作用下的变形和应力响应。
材料的变形分析则是根据弹塑性力学理论,对材料在外力作用下的变形行为进行研究和分析。
本文将介绍弹塑性力学的基础概念和理论,并探讨材料变形分析的方法和应用。
1. 弹性力学基础在弹塑性力学中,弹性是指物体在外力作用下发生的可恢复变形。
弹性力学的基本定律是胡克定律,它描述了物体的应力与应变之间的关系。
根据胡克定律,线性弹性材料的应力与应变呈线性关系,即应力等于弹性模量与应变的乘积。
除了胡克定律,还有切应力与切变变形之间的关系由牛顿黏性定律给出。
2. 塑性力学基础与弹性力学不同,塑性力学是描述物体在外力作用下发生的不可恢复变形的力学学科。
塑性力学的基本理论是流变学,它研究物体在外力作用下的蠕变行为。
塑性变形通常会导致材料内部的晶格滑移和塑性畸变。
在材料受到足够大的应力时,塑性变形将取代弹性变形。
3. 弹塑性力学弹塑性力学是弹性力学和塑性力学的结合,用于描述物体在外力作用下同时发生弹性和塑性变形的情况。
在弹塑性力学理论中,材料的应力应变关系一般采用应力-应变本构关系来表示。
应力-应变本构关系通常是非线性的,可以根据具体材料的特性进行模型建立。
常见的弹塑性本构模型有弹塑性理想化塑性模型和弹塑性可生长模型等。
4. 材料变形分析方法材料变形分析是基于弹塑性力学理论的数值模拟方法,用于预测材料在外力作用下的变形行为。
常用的材料变形分析方法包括有限元法、有限差分法和有限体积法等。
这些方法可以通过研究材料的应力分布、应变分布和位移分布等来揭示材料的本构特性和变形机理。
材料变形分析方法在工程设计和材料选择等方面起着重要的作用。
5. 材料变形分析的应用材料变形分析在工程领域有广泛的应用。
例如,在机械设计中,通过材料变形分析可以预测零件在使用过程中的变形量,以及材料是否会发生塑性变形,从而指导设计者选择合适的材料和结构。
此外,材料变形分析也可以用于材料的疲劳寿命预测、变形加工工艺的优化和材料损伤分析等方面。
结构静力弹塑性分析的原理和计算实例一、本文概述结构静力弹塑性分析是一种重要的工程分析方法,用于评估结构在静力作用下的弹塑性行为。
该方法结合了弹性力学、塑性力学和有限元分析技术,能够有效地预测结构在静力加载过程中的变形、应力分布以及破坏模式。
本文将对结构静力弹塑性分析的基本原理进行详细介绍,并通过计算实例来展示其在实际工程中的应用。
通过本文的阅读,读者可以深入了解结构静力弹塑性分析的基本概念、分析流程和方法,掌握其在工程实践中的应用技巧,为解决实际工程问题提供有力支持。
二、弹塑性理论基础弹塑性分析是结构力学的一个重要分支,它主要关注材料在受力过程中同时发生弹性变形和塑性变形的情况。
在弹塑性分析中,材料的应力-应变关系不再是线性的,而是呈现出非线性特性。
当材料受到的应力超过其弹性极限时,材料将发生塑性变形,这种变形在卸载后不能完全恢复,从而导致结构的永久变形。
弹塑性分析的理论基础主要包括塑性力学、塑性理论和弹塑性本构关系。
塑性力学主要研究塑性变形的产生、发展和终止的规律,它涉及到塑性流动、塑性硬化和塑性屈服等概念。
塑性理论则通过引入屈服函数、硬化法则和流动法则等,描述了材料在塑性变形过程中的应力-应变关系。
弹塑性本构关系则综合考虑了材料的弹性和塑性变形行为,建立了应力、应变和应变率之间的关系。
在结构静力弹塑性分析中,通常需要先确定材料的弹塑性本构模型,然后结合结构的边界条件和受力情况,建立结构的弹塑性平衡方程。
通过求解这个平衡方程,可以得到结构在静力作用下的弹塑性变形和应力分布。
弹塑性分析在结构工程中有着广泛的应用,特别是在评估结构的承载能力、变形性能和抗震性能等方面。
通过弹塑性分析,可以更加准确地预测结构在极端荷载作用下的响应,为结构设计和加固提供科学依据。
以上即为弹塑性理论基础的主要内容,它为我们提供了分析结构在弹塑性阶段行为的理论框架和工具。
在接下来的计算实例中,我们将具体展示如何应用这些理论和方法进行结构静力弹塑性分析。