塑性力学基本概念
- 格式:ppt
- 大小:1.35 MB
- 文档页数:57
材料力学基本概念及计算公式材料力学是研究物质在外力作用下的力学性质和变形规律的学科,主要研究物质的力学性质,包括弹性、塑性、稳定性等。
下面将介绍材料力学的基本概念及计算公式。
1.弹性力学:(1) 弹性模量(Young’s modulus):材料承受应力时的应变程度。
计算公式:E = σ / ε,其中 E 为弹性模量,σ 为应力,ε 为应变。
(2) 剪切模量(Shear modulus):材料抵抗剪切变形的能力。
计算公式:G = τ/ γ,其中 G 为剪切模量,τ 为剪切应力,γ 为剪切应变。
(3) 泊松比(Poisson’s ratio):材料在受力作用下沿一方向延伸时,在垂直方向上收缩的比例。
计算公式:ν = -ε_y / ε_x,其中ν 为泊松比,ε_x 为纵向应变,ε_y 为横向应变。
2.稳定性分析:(1) 屈曲载荷(Buckling load):结构在受压作用下失去稳定性的临界载荷。
计算公式:F_cr = π²EI / L²,其中 F_cr 为屈曲载荷,E 为弹性模量,I 为截面惯性矩,L 为结构长度。
(2) 欧拉稳定性理论(Euler’s stability theory):用于分析长杆(例如柱子)的稳定性。
计算公式:P_cr = π²EI / (KL)²,其中P_cr 为屈曲载荷,E 为弹性模量,I 为截面惯性矩,K 为杆件端部支撑系数,L 为杆件长度。
3.塑性力学:(1) 屈服点(yield point):材料开始发生塑性变形的点,也是材料在加强阶段的上线。
计算公式:σ_y = F_y / A_0,其中σ_y 为屈服点应力,F_y 为屈服点力,A_0 为断面积。
(2) 韧性(toughness):材料吸收能量的能力,一般由应力-应变曲线上的面积表示。
计算公式:T = ∫σ dε,其中 T 为韧性,σ 为应力,ε 为应变。
4.疲劳力学:(1) 疲劳极限(fatigue limit):材料在循环应力作用下出现裂纹的最大应力。
塑性力学的基本概念和应用塑性力学是力学学科中的一个重要领域,研究物体在超过其弹性限度之后发生的塑性变形和力学行为。
它在工程领域中有着广泛的应用,可以用于设计和分析各种结构和材料。
本文将介绍塑性力学的基本概念和应用。
一、塑性力学的基本概念塑性力学研究材料在受力过程中的变形行为,重点关注材料的塑性变形和它们与应力应变关系之间的联系。
以下是塑性力学中的几个基本概念:1. 弹性和塑性:在外力作用下,材料会产生变形。
当外力移除后,材料能够完全恢复到其初始形状,这种变形称为弹性变形。
而当外力作用超过了材料的弹性限度时,材料会发生不可逆的塑性变形,导致永久性的形变。
2. 屈服点和屈服应力:材料在受力过程中,当应力达到一定数值时会开始产生塑性变形,此时的应力称为屈服应力。
屈服点是应力-应变曲线上的一个特定点,表示材料开始发生塑性变形的阈值。
3. 工程应力应变和真实应力应变:工程应力指材料在不考虑变形前尺寸的情况下受到的力与单位面积的比值,工程应变指材料在变形前尺寸和力的情况下的应变与原始尺寸比值。
真实应力和真实应变则考虑了材料在受力过程中的变形,分别是力和应变与变形的比值。
二、塑性力学的应用塑性力学在工程领域中有着广泛的应用,以下是其中几个典型的应用。
1. 金属成形加工:塑性力学在金属成形加工中扮演着重要的角色。
通过了解材料的塑性特性和应力应变关系,可以优化金属成形加工的工艺参数,提高材料的形变能力,减小残余应力,提高产品质量。
2. 板结构设计:在板结构的设计中,塑性力学可以用于评估结构的稳定性和承载能力。
通过分析材料的屈服点和塑性变形情况,可以确定合适的结构尺寸和加强措施,以满足结构的强度和刚度要求。
3. 地震工程:塑性力学在地震工程中的应用也很重要。
通过研究材料的塑性行为,可以评估结构在地震荷载下的响应和潜在破坏模式。
这有助于设计出抗震性能良好的建筑和结构,并提供灾害防护措施。
4. 仿真和模拟:在产品设计和工艺优化中,塑性力学可以被应用于数值模拟和仿真。
塑性力学大报告1、绪论塑性力学的简介尽管弹塑性理论的研究己有一百多年,但随着电子计算机和各种数值方法的快速发展,对弹塑性本构关系模型的不断深入认识,使得解决复杂应力条件、加载历史和边界条件下的塑性力学问题成为可能。
现在复杂应力条件下塑性本构关系的研究,已成为当务之急。
弹塑性本构模型大都是在整理和分析试验资料的基础上,综合运用弹性、塑性理论建立起来的。
建立弹塑性材料的本构方程时,应尽量反映塑性材料的主要特性。
由于弹塑性变形的现象十分复杂,因此在研究弹塑性本构关系时必须作一些假设。
塑性力学是研究物体发生塑性变形时应力和应变分布规律的学科. 是固体力学的一个重要分支。
塑性力学是理论性很强、应用范围很广的一门学科,它既是基础学科又是技术学科。
塑性力学的产生和发展与工程实践的需求是密不可分的,工程中存在的实际问题,如构件上开有小孔,在小孔周边的附近区域会产生“应力集中”现象,导致局部产生塑性变形;又如杆件、薄壳结构的塑性失稳问题,金属的压力加工问题等,均是因为产生塑性变形而超出了弹性力学的范畴,需要用塑性力学理论来解决的问题,另一方面,塑性力学能为更有效的利用材料的强度并节省材料、金属压力加工工艺设计等提供理论依据。
正是这些广泛的工程实际需要,促进了塑性力学的发展。
塑性力学的发展1913年,Mises提出了屈服准则,同时还提出了类似于Levy的方程;1924年,Hencky采用Mises屈服准则提出另一种理论,用于解决塑性微小变形问题很方便;1926年,Load证实了Levy-Mises应力应变关系在一级近似下是准确的;1930年,Reuss依据Prandtl的观点,考虑弹性应变分量后,将Prandtl所得二维方程式推广到三维方程式;1937年,Nadai研究了材料的加工硬化,建立了大变形的情况下的应力应变关系;1943年,伊柳辛的“微小弹塑性变形理论”问世,由于计算方便,故很受欢迎;1949年,Batdorf和Budiansky从晶体滑移的物理概念出发提出了滑移理论。
弹塑性力学论文学院:土木建筑学院专业:建筑与土木工程姓名:张硕学号:Z20129208 塑性力学理论与分析摘要:塑性力学又称塑性理论,是固体力学的一个分支,它主要研究固体受力后处于塑性变形状态时,塑性变形与外力的关系,以及物体中的应力场、应变场以及有关规律,及其相应的数值分析方法。
本文阐述了塑性力学中的基本概念、理论,以及塑性力学中的常用求解方法,对材料屈服极限和塑性本构关系作了较为详细的论述。
关键词:塑性,变形,屈服极限,本构关系一、塑性力学基本概念塑性力学是研究材料在塑性变形状态下应力和应变关系的一门基础学科。
物体受到足够大外力的作用后,它的一部或全部变形会超出弹性范围而进入塑性状态,外力卸除后,变形的一部分或全部并不消失,物体不能完全恢复到原有的形态。
塑性力学考虑的永久变形只与应力和应变的历史有关,而不随时间变化。
塑性力学是通过实验,找出受力物体超出弹性极限后的变形规律,从而提出合理的假设和简化模型,来确定应力超过弹性极限后材料的本构关系,从而建立塑性力学的基本方程。
解出这些方程,便可得到不同塑性状态下物体的应力和应变。
塑性力学的基本实验主要分两类:单向拉伸实验和静水压力实验。
通过单向拉伸实验可以获得加载和卸载时的应力- 应变曲线以及弹性极限和屈服极限的值;在塑性状态下,应力和应变之间的关系是非线性的且没有单值对应关系。
而对于静水压力实验,除岩土材料以外,静水压力只能引起金属材料的弹性变形且对材料的屈服极限影响很小。
为简化计算,根据实验结果,塑性力学采用的基本假设有:1 材料是各向同性并连续的;2 平均法向应力不影响材料的屈服,它只与材料的体积应变有关,且体积应变是弹性的,即静水压力状态不影响塑性变形而只产生弹性的体积变化;3 材料的弹性性质不受塑性变形的影响。
这些假设一般适用于金属材料;对于岩土材料则应考虑平均法向应力对屈服的影响。
塑性力学的应力-应变曲线通常有5 种简化模型:其一是理想弹塑性模型,用于低碳钢或强化性质不明显的材料。
《塑性力学及成形原理》知识点汇总第一章绪论1.塑性的基本概念2.了解塑性成形的特点第二章金属塑性变形的物理基础1.塑性和柔软性的区别和联系2.塑性指标的表示方法和测量方法3.磷、硫、氮、氢、氧等杂质元素对金属塑性的影响4.变形温度对塑性的影响;超低温脆区、蓝脆区、热脆区、高温脆区的温度范围补充扩展:1.随着变形程度的增加,金属的强度硬度增加,而塑性韧性降低的现象称为:加工硬化2.塑性指标是以材料开始破坏时的塑性变形量来表示,通过拉伸试验可以的两个塑性指标为:伸长率和断面收缩率3.影响金属塑性的因素主要有:化学成分和组织、变形温度、应变速率、应力状态(变形力学条件)4.晶粒度对于塑性的影响为:晶粒越细小,金属的塑性越好5.应力状态对于塑性的影响可描述为(静水压力越大):主应力状态下压应力个数越多,数值越大时,金属的塑性越好6.通过试验方法绘制的塑性——温度曲线,成为塑性图第三章金属塑性变形的力学基础第一节应力分析1.塑性力学的基本假设2.应力的概念和点的应力状态表示方法3.张量的基本性质4.应力张量的分解;应力球张量和应力偏张量的物理意义;应力偏张量与应变的关系5.主应力的概念和计算;主应力简图的画法公式(...3.-.14..)应力张量不变量的计算...........122222223()2() x y zx y y z z x xy yz zx x y z xy yz zx x yz y zx z xyJ J Jσσσσσσσσστττσσστττστστστ=++=-+++++=+-++公式(...3.-.15..)应力状态特征方程.........321230J J J σσσ---= (当已知一个面上的应力为主应力时,另外两个主应力可以采用简便计算公式(...3.-.35..).的形式计算)6.主切应力和最大切应力的概念计算公式..(.3.-.25..).最大切应力.....)(21min max max σστ-= 7.等效应力的概念、特点和计算主轴坐标系中......公式..(.3.-.31..).8σ=== 任意坐标系中......公式..(.3.-.31a ...).σ=8.单元体应力的标注;应力莫尔圆的基本概念、画法和微分面的标注 9.应力平衡微分方程 第二节 应变分析1.塑性变形时的应变张量和应变偏张量的关系及其原因 2.应变张量的分解,应变球张量和应变偏张量的物理意义 2.对数应变的定义、计算和特点,对数应变与相对线应变的关系 3.主应变简图的画法 3.体积不变条件公式(...3.-.55..).用线应变....0x y z θεεε=++=;用对数应变.....(主轴坐标系中)........0321=∈+∈+∈ 4.小应变几何方程公式(...3.-.66..).1;()21;()21;()2x xy yx y yzzy z zx xz u u v x y x v v w y z yw w u z x zεγγεγγεγγ∂∂∂===+∂∂∂∂∂∂===+∂∂∂∂∂∂===+∂∂∂ 第三节 平面问题和轴对称问题1.平面应变状态的应力特点;纯切应力状态的应力特点、单元体及莫尔圆公式(...3.-.8.6.).12132()z m σσσσσ==+= 第四节 屈服准则1.四种材料的真实应力应变曲线 2.屈雷斯加屈服准则 公式(...3.-.96..).max 2s K στ== 3.米塞斯屈服准则公式(...3.-.10..1.).2222222262)(6)()()(K s zx yz xy x z z y y x ==+++-+-+-στττσσσσσσ 2221323222162)()()(K s ==-+-+-σσσσσσσ公式(...3.-.102...).s sσσσσ==== 4.两个屈服准则的相同点和差别点5.13s σσβσ-=,表达式中的系数β的取值范围 第五节 塑性变形时应力应变关系 1.塑性变形时应力应变关系特点 2.应变增量的概念,增量理论公式(...3.-.125...).'ij ij d d εσλ= 公式(...3.-.129...).)](21[z y x x d d σσσσεε+-=;xy xy d d τσεγ23= )](21[z x y y d d σσσσεε+-=;yz yz d d τσεγ23=)](21[y x z z d d σσσσεε+-=;zx zx d d τσεγ23=3.比例加载的定义及比例加载须满足的条件 第六节 塑性变形时应力应变关系 1.真实应力应变曲线的类型第四章 金属塑性成形中的摩擦1.塑性成形时摩擦的特点和分类;摩擦机理有哪些?影响摩擦系数的主要因素 2.两个摩擦条件的表达式3.塑性成形中对润滑剂的要求;塑性成形时常用的润滑方法 第五章 塑性成形件质量的定性分析 1.塑性成形件中的产生裂纹的两个方面2.晶粒度的概念;影响晶粒大小的主要因素及细化晶粒的主要途径 3.塑性成形件中折叠的特征 第六章 滑移线场理论简介1.滑移线与滑移线场的基本概念;滑移线的方向角和正、负号的确定 2.平面应变应力莫尔圆中应力的计算;公式(...7.-.1.).ωτωσσωσσ2cos 2sin 2sin K K K xy m y m x =+=-= 3.滑移线的主要特性;亨盖应力方程公式(...7.-.5.).2ma mb ab K σσω-=± 4.塑性区的应力边界条件;滑移线场的建立练习题一、应力1、绘制⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=410140002ij σ的单元体和应力莫尔圆,并标注微分面。
工程塑性力学简介工程塑性力学是研究工程材料的塑性变形和失效行为的学科。
塑性力学是固体力学的一个重要分支,它研究材料在超过其弹性限度后发生的可逆和不可逆的塑性变形现象。
工程塑性力学的应用领域广泛,包括航空航天、汽车工程、建筑工程等。
塑性与弹性的区别塑性变形和弹性变形是固体力学中两种不同的变形模式。
弹性变形是指物体受到外力作用时,在外力去除后能够完全恢复原状的变形。
而塑性变形是指物体受到外力作用时,即使外力去除后也无法完全恢复原状的变形。
在材料的应力应变曲线上,弹性区域的变形是可逆的,即应变随应力的增加呈线性关系,而塑性区域的变形是不可逆的,即应变随应力的增加不再呈线性关系。
工程塑性力学的研究内容工程塑性力学的研究内容主要包括以下几个方面:塑性力学基本理论塑性力学的基本理论包括应力应变关系、屈服准则、流动准则、应力强度分析等。
应力应变关系是描述材料在塑性变形过程中的应力与应变之间的关系,屈服准则是描述材料发生塑性变形的应力达到一定值时的条件,流动准则是描述材料在塑性变形过程中的流动行为,应力强度分析是研究材料在塑性变形过程中的应力集中现象。
塑性成形工艺塑性成形工艺是指利用塑性变形性质对材料进行加工成形的工艺。
常见的塑性成形工艺有拉伸、压缩、弯曲、挤压等。
塑性成形工艺的选择和优化可以有效提高材料的力学性能和加工效率。
塑性损伤与断裂塑性损伤与断裂是材料塑性变形过程中重要的失效形式。
塑性损伤是材料在塑性变形过程中因应力和应变的作用而导致的微观结构的破坏和变化,断裂是材料在达到其极限强度时出现的失效形式。
研究塑性损伤与断裂的机理和规律有助于提高材料的力学性能和安全性。
塑性力学在工程中的应用工程塑性力学在航空航天、汽车工程和建筑工程等领域有着广泛的应用。
在航空航天工程中,工程塑性力学的研究可以帮助优化飞机结构的设计,提高其载荷承受能力和疲劳寿命。
在汽车工程中,工程塑性力学的研究可以帮助提高车身的安全性能和碰撞能量吸收能力。
塑性力学总结引言塑性力学是研究材料在超过其弹性限度后的行为的学科。
在工程、材料科学和土木工程等领域中,塑性力学的理论和方法非常重要。
本文将对塑性力学的基本概念、应力应变关系以及塑性变形的模型进行总结。
塑性力学的基本概念塑性力学研究材料的形变行为,其基本概念包括应力、应变、变形和弹性限度等。
应力应力是指物体在单位面积上承受的力,常用σ表示。
在塑性力学中,应力主要分为正应力、剪应力和等效应力等。
应变应变是指物体在受力下的形变程度,常用ε表示。
在塑性力学中,应变主要分为线性应变和剪切应变。
变形变形是指材料在受到外部力作用下发生的形状改变。
在塑性力学中,变形可以分为弹性变形和塑性变形两种。
弹性限度弹性限度是指材料能够恢复原状的最大应力。
当材料受力超过弹性限度时,就会产生塑性变形。
塑性力学的应力应变关系塑性力学的应力应变关系可以通过应力应变曲线来描述。
塑性材料在受力下会发生塑性变形,应力应变曲线呈现出明显的弯曲和平台段。
弹性阶段在应力应变曲线的起始阶段,材料表现出弹性行为,应变与应力成正比,同时也满足胡克定律。
此时材料在卸载后能完全恢复初态。
屈服点和屈服应力应力应变曲线上的屈服点对应材料的屈服应力,即超过该应力后,材料将发生塑性变形。
屈服点及其对应的屈服应力是塑性力学中重要的参数。
塑性阶段在超过屈服点后,应力应变曲线进入塑性阶段。
此时材料会发生可逆塑性变形和不可逆塑性变形。
可逆塑性变形指的是材料在卸载后,部分变形能够恢复到弹性状态,而不可逆塑性变形则指的是完全无法恢复的塑性变形。
极限强度和断裂强度应力应变曲线的最高点即为材料的极限强度,此后材料将发生断裂。
断裂强度是指材料在断裂时所能承受的最大应力。
塑性变形的模型为了更好地描述塑性变形过程,塑性力学提出了各种模型来对材料的塑性行为进行建模。
常用的塑性变形模型有弹塑性模型、本构模型和流动应力模型等。
弹塑性模型弹塑性模型是将弹性变形和塑性变形结合起来的模型。
它假设材料在弹性区域内服从胡克定律,在塑性区域内采用流动理论来描述材料的行为。