第一章 1.3 第一课时 诱导公式(一
- 格式:doc
- 大小:406.00 KB
- 文档页数:11
第一章 §1.3 三角函数的诱导公式 第一课时学习目标:(1)理解识记诱导公式(2)理解和掌握公式的内涵及结构特征,会初步运用诱导公式求三角函数的值 (3)会进行简单三角函数式的化简和证明。
复习回顾:1.任意角的三角函数的定义?2.三角函数的诱导公式一?作用?思考1:你能推导出角π+α与角α之间的三角函数值吗? 利用诱导公式(一),将任意范围内的角的三角函数值转化到)2,0[π角后,又如何将)2,0[π角间的角转化到)2,0[π角呢?除此之外还有一些角,它们的终边具有某种特殊关系,如关于坐标轴对称、关于原点对称等。
那么它们的三角函数值有何关系呢?(抓住角的终边的对称关系) 若角α的终边与角β的终边关于x 轴对称,那么α与β的三角函数值之间有什么关系?特别地,角α-与角α的终边关于x 轴对称,由单位圆性质可以推得:ααααααtan )tan(cos )cos(sin )sin(-=-=--=- (公式二)特别地,角απ-与角α的终边关于y 轴对称,故有ααπααπααπtan )tan(cos )cos(sin )sin(-=--=-=- (公式三)特别地,角απ+与角α的终边关于原点O 对称,故有ααπααπααπtan )tan(cos )cos(sin )sin(=+-=+-=+ (公式四)所以,我们只需研究απαπαπ-+-2,,的同名三角函数的关系即研究了βα与的关系了。
说明:①公式中的α指任意角;②在角度制和弧度制下,公式都成立; ③记忆方法: “函数名不变,符号看象限”;小结:用诱导公式可将任意角的三角函数化为锐角的三角函数,其一般方向是: ①化负角的三角函数为正角的三角函数; ②化为)2,0[π内的三角函数; ③化为锐角的三角函数。
可概括为:“负化正,大化小,化到锐角为终了”(有时也直接化到锐角求值)。
思考2:三角函数的诱导公式分别有什么作用?例1:利用公式求下列三角函数值:(1)︒225cos (2)311sin π (3))316sin(π- (4))2040cos(︒-方法小结:用诱导公式可将任意角的三角函数化为锐角的三角函数,其一般步骤是:①化负角的三角函数为正角的三角函数; ②化为)0,360⎡⎣内的三角函数; ③化为锐角的三角函数。
1.3三角函数的诱导公式1.3.1 三角函数的诱导公式(一)[学习目标]1.了解三角函数的诱导公式的意义和作用.2.理解诱导公式的推导过程.3.能运用有关诱导公式解决一些三角函数的求值、化简和证明问题.[知识链接]1.三角函数诱导公式一是什么?答终边相同的角的同一三角函数的值相等,即:sin(α+k·2π)=sin_α,cos(α+k·2π)=cos_α,tan(α+k·2π)=tan_α,其中k∈Z.2.诱导公式一的作用是什么?答把求任意角的三角函数值转化为求0°~360°的三角函数值.3.设α为任意角,则π+α,-α,π-α的终边与α的终边之间有什么对称关系?答[预习导引]1.诱导公式一~四(1)公式一:sin(α+2kπ)=sin_α,cos(α+2kπ)=cos_α,tan(α+2k π)=tan_α,其中k ∈Z .(2)公式二:sin(π+α)=-sin_α,cos(π+α)=-cos_α, tan(π+α)=tan_α.(3)公式三:sin(-α)=-sin_α,cos(-α)=cos_α, tan(-α)=-tan_α.(4)公式四:sin(π-α)=sin_α,cos(π-α)=-cos_α, tan(π-α)=-tan_α. 2.诱导公式的整合与记忆2k π+α(k ∈Z ),π+α,π-α,-α的三角函数值,等于α的同名函数值,前面加上一个把α看成锐角时原函数值的符号.简记为“函数名不变,符号看象限”!要点一 给角求值问题例1 求下列各三角函数式的值:(1)sin 1 320°; (2)cos ⎝ ⎛⎭⎪⎫-31π6; (3)tan (-945°).解 (1)法一 sin 1 320°=sin (3×360°+240°) =sin 240°=sin (180°+60°)=-sin 60°=-32.法二 sin 1 320°=sin(4×360°-120°)=sin(-120°) =-sin (180°-60°)=-sin 60°=-32. (2)法一 cos ⎝ ⎛⎭⎪⎫-31π6=cos 31π6=cos ⎝ ⎛⎭⎪⎫4π+7π6=cos (π+π6)=-cos π6=-32. 法二 cos ⎝ ⎛⎭⎪⎫-31π6=cos ⎝ ⎛⎭⎪⎫-6π+5π6=cos ⎝⎛⎭⎪⎫π-π6=-cos π6=-32. (3)tan (-945°)=-tan 945°=-tan (225°+2×360°)=-tan 225°=-tan (180°+45°)=-tan 45°=-1.规律方法 此问题为已知角求值,主要是利用诱导公式把任意角的三角函数转化为锐角的三角函数求解.如果是负角,一般先将负角的三角函数化为正角的三角函数.跟踪演练1 求sin ⎝ ⎛⎭⎪⎫2n π+2π3·cos ⎝ ⎛⎭⎪⎫n π+4π3的值(n ∈Z ).解 ①当n 为奇数时,原式=sin 2π3·⎝ ⎛⎭⎪⎫-cos 43π =sin ⎝ ⎛⎭⎪⎫π-π3·⎣⎢⎡⎦⎥⎤-cos ⎝ ⎛⎭⎪⎫π+π3 =sin π3·cos π3=32×12=34.②当n 为偶数时,原式=sin 23π·cos 43π =sin ⎝ ⎛⎭⎪⎫π-π3·cos ⎝ ⎛⎭⎪⎫π+π3=sin π3·⎝ ⎛⎭⎪⎫-cos π3=-34. 要点二 给值求值问题例2 已知cos (α-75°)=-13,且α为第四象限角,求sin (105°+α)的值. 解 ∵cos (α-75°)=-13<0,且α为第四象限角, ∴α-75°是第三象限角.∴sin (α-75°)=-1-cos 2(α-75°) =-1-⎝ ⎛⎭⎪⎫-132=-223. ∴sin (105°+α)=sin []180°+(α-75°) =-sin (α-75°)=223.规律方法 解答这类给值求值的问题,首先应把所给的值进行化简,再结合被求值的式子的特点,观察所给值的式子与被求式的特点,找出它们之间的内在联系,特别是角之间的关系,恰当地选择诱导公式.跟踪演练2 已知cos(π+α)=-35,π<α<2π,求sin(α-3π)+cos(α-π)的值. 解 ∵cos(π+α)=-cos α=-35,∴cos α=35, ∵π<α<2π,∴3π2<α<2π,∴sin α=-45.∴sin(α-3π)+cos(α-π)=-sin(3π-α)+cos(π-α) =-sin(π-α)+(-cos α)=-sin α-cos α=-(sin α+cos α) =-⎝ ⎛⎭⎪⎫-45+35=15.要点三 三角函数式的化简 例3 化简下列各式. (1)tan (2π-α)sin (-2π-α)cos (6π-α)cos (α-π)sin (5π-α);(2)1+2sin 290°cos 430°sin 250°+cos 790°.解 (1)原式=sin (2π-α)cos (2π-α)·sin (-α)cos (-α)cos (π-α)sin (π-α)=-sin α(-sin α)cos αcos α(-cos α)sin α=-sin αcos α=-tan α. (2)原式=1+2sin (360°-70°)cos (360°+70°)sin (180°+70°)+cos (720°+70°)=1-2sin 70°cos 70°-sin 70°+cos 70°=|cos 70°-sin 70°|cos 70°-sin 70°=sin 70°-cos 70°cos 70°-sin 70°=-1. 规律方法 三角函数式的化简方法:(1)利用诱导公式,将任意角的三角函数转化为锐角的三角函数. (2)常用“切化弦”法,即表达式中的切函数通常化为弦函数. (3)注意“1”的变式应用:如1=sin 2α+cos 2α=tan π4.跟踪演练3 化简下列各式.(1)cos (π+α)·sin (2π+α)sin (-α-π)·cos (-π-α);(2)cos 190°·sin (-210°)cos (-350°)·tan (-585°).解 (1)原式=-cos α·sin α-sin (π+α)·cos (π+α)=cos αsin αsin α·cos α=1. (2)原式=cos (180°+10°)[-sin (180°+30°)]cos (-360°+10°)[-tan (360°+225°)]=-cos 10°·sin 30°cos 10°·[-tan (180°+45°)]=-12-tan 45°=12.1.求下列三角函数的值.(1)sin 690°;(2)cos ⎝ ⎛⎭⎪⎫-203π;(3)tan(-1 845°).解 (1)sin 690°=sin(360°+330°)=sin 330° =sin(180°+150°)=-sin 150°=-sin(180°-30°) =-sin 30°=-12.(2)cos ⎝ ⎛⎭⎪⎫-203π=cos 203π=cos(6π+23π)=cos 23π=cos ⎝ ⎛⎭⎪⎫π-π3=-cos π3=-12.(3)tan(-1 845°)=tan(-5×360°-45°)=tan(-45°) =-tan 45°=-1. 2.化简:cos (180°+α)sin (α+360°)sin (-α-180°)cos (-180°-α).解 原式=(-cos α)·sin α[-sin (α+180°)]·cos (180°+α)=sin αcos αsin (α+180°)cos (180°+α) =sin αcos α(-sin α)(-cos α)=1.3.求sin (π+α)cos (π-α)cos (3π-α)sin (3π+α).解 原式=-sin α(-cos α)-cos α(-sin α)=1.4.证明:2sin (α+n π)cos (α-n π)sin (α+n π)+sin (α-n π)=(-1)n cos α,n ∈Z .证明 当n 为偶数时,令n =2k ,k ∈Z , 左边=2sin (α+2k π)cos (α-2k π)sin (α+2k π)+sin (α-2k π)=2sin αcos αsin α+sin α=2sin αcos α2sin α=cos α. 右边=(-1)2k cos α=cos α, ∴左边=右边.当n 为奇数时,令n =2k -1,k ∈Z , 左边=2sin (α+2k π-π)cos (α-2k π+π)sin (α+2k π-π)+sin (α-2k π+π)=2sin (α-π)cos (α+π)sin (α-π)+sin (α+π) =2[-sin (π-α)](-cos α)(-sin α)+(-sin α)=2sin αcos α-2sin α=-cos α.右边=(-1)2k -1cos α=-cos α, ∴左边=右边.综上所述,2sin (α+n π)cos (α-n π)sin (α+n π)+sin (α-n π)=(-1)n cos α,n ∈Z 成立.1.明确各诱导公式的作用2.这四组诱导公式的记忆口诀是“函数名不变,符号看象限”.其含义是诱导公式两边的函数名称一致,符号则是将α看成锐角时原角所在象限的三角函数值的符号.α看成锐角,只是公式记忆的方便,实际上α可以是任意角.一、基础达标1.sin 585°的值为( ) A .-22 B.22 C .-32 D.32答案 A2.若n 为整数,则代数式sin (n π+α)cos (n π+α)的化简结果是( )A .±tan αB .-tan αC .tan α D.12tan α答案 C3.若cos(π+α)=-12,32π<α<2π,则sin(2π+α)等于( ) A.12 B .±32 C.32 D .-32 答案 D解析 由cos(π+α)=-12,得cos α=12,故sin(2π+α)=sin α=-1-cos 2 α=-32 (α为第四象限角). 4.tan(5π+α)=m ,则sin (α-3π)+cos (π-α)sin (-α)-cos (π+α)的值为( )A.m +1m -1B.m -1m +1 C .-1 D .1 答案 A解析 原式=sin α+cos αsin α-cos α=tan α+1tan α-1=m +1m -1.5.记cos(-80°)=k ,那么tan 100°等于( ) A.1-k 2k B .-1-k 2k C.k 1-k 2 D .-k1-k2 答案 B解析 ∵cos(-80°)=k ,∴cos 80°=k , ∴sin 80°=1-k 2. ∴tan 80°=1-k 2k .∴tan 100°=-tan 80°=-1-k 2k .6.已知cos ⎝ ⎛⎭⎪⎫π6+θ=33,则cos ⎝ ⎛⎭⎪⎫5π6-θ=________.答案 -33解析 cos ⎝ ⎛⎭⎪⎫5π6-θ=cos ⎣⎢⎡⎦⎥⎤π-⎝ ⎛⎭⎪⎫π6+θ =-cos ⎝ ⎛⎭⎪⎫π6+θ=-33.7.若sin(180°+α)+cos(90°+α)=-a ,则cos(270°-α)+2sin(360°-α)的值是________. 答案 -32a 二、能力提升8.若sin(π-α)=log 8 14,且α∈⎝ ⎛⎭⎪⎫-π2,0,则cos(π+α)的值为( )A.53 B .-53C .±53 D .以上都不对 答案 B解析 ∵sin(π-α)=sin α=log 232-2=-23,∴cos(π+α)=-cos α=-1-sin 2 α =-1-49=-53.9.化简:sin(-α)cos(π+α)tan(2π+α)=________. 答案 sin 2 α解析 原式=(-sin α)(-cos α)tan α =sin αcos αsin αcos α=sin 2 α.10.设f (x )=a sin(πx +α)+b cos(πx +β)+2,其中a 、b 、α、β为非零常数.若f (2 013)=1,则f (2 014)=________. 答案 3解析 f (2 013)=a sin(2 013π+α)+b cos(2 013π+β)+2 =a sin(π+α)+b cos(π+β)+2=2-(a sin α+b cos β)=1, ∴a sin α+b cos β=1,f (2 014)=a sin(2 014π+α)+b cos(2 014π+β)+2 =a sin α+b cos β+2=3. 11.若cos(α-π)=-23,求sin (α-2π)+sin (-α-3π)cos (α-3π)cos (π-α)-cos (-π-α)cos (α-4π)的值.解 原式=-sin (2π-α)-sin (3π+α)cos (3π-α)-cos α-(-cos α)cos α=sin α-sin αcos α-cos α+cos 2α=sin α(1-cos α)-cos α(1-cos α) =-tan α.∵cos(α-π)=cos(π-α)=-cos α=-23, ∴cos α=23.∴α为第一象限角或第四象限角. 当α为第一象限角时,cos α=23,sin α=1-cos 2α=53,∴tan α=sin αcos α=52,∴原式=-52. 当α为第四象限角时,cos α=23, sin α=-1-cos 2α=-53, ∴tan α=sin αcos α=-52,∴原式=52. 综上,原式=±52.12.已知sin(α+β)=1,求证:tan(2α+β)+tan β=0. 证明 ∵sin(α+β)=1, ∴α+β=2k π+π2 (k ∈Z ), ∴α=2k π+π2-β (k ∈Z ).tan(2α+β)+tan β=tan ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫2k π+π2-β+β+tan β =tan(4k π+π-2β+β)+tan β =tan(4k π+π-β)+tan β =tan(π-β)+tan β =-tan β+tan β=0, ∴原式成立. 三、探究与创新13.在△ABC 中,若sin(2π-A )=-2sin(π-B ),3cos A =-2cos(π-B ),求△ABC 的三个内角.解 由条件得sin A =2sin B ,3cos A =2cos B , 平方相加得2cos 2A =1,cos A =±22,又∵A ∈(0,π),∴A =π4或34π.当A =34π时,cos B =-32<0,∴B ∈⎝ ⎛⎭⎪⎫π2,π, ∴A ,B 均为钝角,不合题意,舍去.∴A =π4,cos B =32,∴B =π6,∴C =712π.。
.三角函数的诱导公式第一课时三角函数的诱导公式(一)[提出问题]问题:锐角α的终边与π+α角的终边位置关系如何?它们与单位圆的交点的位置关系如何?任意角α与π+α呢?提示:无论α是锐角还是任意角,π+α与α的终边互为反向延长线,它们与单位圆的交点关于原点对称.问题:任意角α与-α的终边有怎样的位置关系?它们与单位圆的交点有怎样的位置关系?试用三角函数的定义验证-α与α的三角函数值的关系.提示:α与-α的终边关于轴对称,它们与单位圆的交点与关于轴对称,设的坐标为(,),则的坐标为(,-).(-α)=-=-α,(-α)==α,(-α)=-=-α.问题:任意角α与π-α的终边有何位置关系?它们与单位圆的交点的位置关系怎样?试用三角函数定义验证α与π-α的各三角函数值的关系.提示:α与π-α的终边关于轴对称,如图所示,设(,)是α的终边与单位圆的交点,则π-α与单位圆的交点为′(-,),,′关于轴对称,由三角函数定义知,(π-α)==α,(π-α)=-=-α,(π-α)==-α.[导入新知].诱导公式二+π角()α与角原点的终边关于α对称.如图所示.+(π公式:()α)α-=.+(π.)αα-=+π(αα).=.诱导公式三()角-α与角α的终边关于轴对称.如图所示.-(公式:.α())-α=-(α=).α)(-α.=α-.诱导公式四()角π-α与角α的终边关于轴对称.如图所示.(π公式:()-αα=.)α(π-)=α.-α-)(π.=α-[化解疑难]对诱导公式一~四的理解()公式两边的三角函数名称应一致.()符号由将α看成锐角时α所在象限的三角函数值的符号决定.但应注意,将α看成锐角只是为了公式记忆的方便,事实上α可以是任意角.[例]()(-°);() °;().[解]()(-°)=-°=-(×°+°)=-°=-(°-°)=-°=-;。
§1.3 三角函数的诱导公式(一)自主学习1.设α为任意角,则π+α,-α,π-α的终边与(1)公式一:sin(α+2k π)=________, cos(α+2k π)=________,tan(α+2k π)=________,其中k ∈Z . (2)公式二:sin(π+α)=__________, cos(π+α)=__________, tan(π+α)=________. (3)公式三:sin(-α)=________, cos(-α)=________, tan(-α)=________. (4)公式四:sin(π-α)=________, cos(π-α)=__________, tan(π-α)=__________.你能否利用π+α与α终边之间的对称关系,从任意角三角函数的定义出发推导诱导公式二吗?对点讲练给角求值问题例1 求下列各三角函数值.(1)sin(-1 200°);(2)cos 47π6;(3)tan 945°.回顾归纳 此类问题是给角求值,主要是利用诱导公式把任意角的三角函数值转化为锐角的三角函数值求解.如果是负角,一般先将负角的三角函数化为正角的三角函数,要记住一些特殊角的三角函数值.变式训练1 求sin 1 200°·cos 1 290°+cos(-1 020°)·sin(-1 050°)+tan(-495°)的值.给值求值问题例2 已知sin (3π-α)cos (3π-α)=2,求sin (α-3π)+cos (π-α)sin (-α)-cos (π+α)的值.回顾归纳 (1)诱导公式的使用将三角函数式中的角都化为单角.(2)弦切互化是本题的一个重要技巧,值得关注.变式训练2 已知cos ⎝⎛⎭⎫π6-α=33,求cos ⎝⎛⎭⎫5π6+α-sin 2⎝⎛⎭⎫α-π6的值.化简三角函数式例3 化简:sin (-2π-θ)cos (6π-θ)tan (2π-θ)cos (θ-π)sin (5π+θ).回顾归纳 解答此类题目的关键是正确运用诱导公式,如果含有参数k (k 为整数)一般需按k 的奇、偶性分类讨论.变式训练3化简:sin[(k +1)π+θ]·cos[(k +1)π-θ]sin (k π-θ)·cos (k π+θ)(其中k ∈Z ).课堂小结:课时作业一、选择题 1.sin 585°的值为( )A .-22 B.22 C .-32 D.322.若n 为整数,则代数式sin (n π+α)cos (n π+α)的化简结果是( )A .tan nαB .-tan nαC .tan αD .-tan α 3.记cos(-80°)=k ,那么tan 100°等于( )A.1-k 2k B .-1-k 2k C.k 1-k 2 D .-k 1-k 24.tan(5π+α)=m ,则sin (α-5π)cos (π+α)的值为( )A .mB .-mC .-1D .15.若sin(π-α)=log 8 14,且α∈⎝⎛⎭⎫-π2,0,则cos(π+α)的值为( )A.53 B .-53 C .±53 D .以上都不对6.sin ⎝⎛⎭⎫-π3+2sin 5π3+3sin 2π3=______. 7.代数式1+2sin 290°cos 430°sin 250°+cos 790°的化简结果是________.8.设f (x )=a sin(πx +α)+b cos(πx +β)+2,其中a 、b 、α、β为非零常数.若f (2 009)=1,则f (2 010)=________.三、解答题9.若cos(α-π)=-23,求sin (α-2π)+sin (-α-3π)cos (α-3π)cos (π-α)-cos (-π-α)cos (α-4π)的值.10.已知sin(α+β)=1,求证:tan(2α+β)+tan β=0.§1.3 三角函数的诱导公式(一)参考答案知识梳理(2)-sin α -cos α tan α (3)-sin α cos α -tan α (4)sin α -cos α -tan α 自主探究解 设P (x ,y )为角α终边上任一点, ∵角α与π+α终边关于原点对称.∴P (x ,y )关于原点的对称点P ′(-x ,-y )位于角π+α的终边上.∴|OP ′|=|OP |=x 2+y 2=r . 由任意角三角函数的定义知:sin(π+α)=-yr =-sin α,cos (π+α)=-xr =-cos α,tan(π+α)=-y -x =yx=tan α.借助任意角三角函数的定义同样可以推得公式三、公式四.对点讲练例1 解 (1)sin(-1 200°)=sin(-4×360°+240°)=sin 240° =sin(180°+60°)=-sin 60°=-32;(2)cos 47π6=cos(11π6+6π)=cos 11π6=cos(2π-π6)=cos π6=32;(3)tan 945°=tan(2×360°+225°)=tan 225° =tan(180°+45°)=tan 45°=1.变式训练1 解 原式=sin(3×360°+120°)·cos(3×360°+210°)-cos(2×360°+300°)·sin(2×360°+330°)-tan(360°+135°)=sin(180°-60°)·cos(180°+30°)-cos(360°-60°)·sin(360°-30°)-tan(180°-45°)=-sin 60°·cos 30°+cos 60°·sin 30°+tan 45°=-32×32+12×12+1=12.例2 解 ∵sin (3π-α)cos (3π-α)=2,∴tan(3π-α)=2,∴tan α=-2. ∵sin (α-3π)+cos (π-α)sin (-α)-cos (π+α)=-sin α-cos α-sin α+cos α=sin α+cos αsin α-cos α =1+tan αtan α-1∴sin (α-3π)+cos (π-α)sin (-α)-cos (π+α)=1-2-2-1=13.变式训练2 解 cos ⎝⎛⎭⎫5π6+α-sin 2⎝⎛⎭⎫α-π6 =-cos ⎣⎡⎦⎤π-⎝⎛⎭⎫5π6+α-sin 2⎝⎛⎭⎫π6-α =-cos ⎝⎛⎭⎫π6-α-sin 2⎝⎛⎭⎫π6-α =-33-⎣⎡⎦⎤1-⎝⎛⎭⎫332=-33-23=-2+33.例3 解 原式=-sin (2π+θ)·cos θ·(-tan θ)cos (π-θ)·sin (π+θ)=sin θ·cos θ·tan θ(-cos θ)·(-sin θ) =sin θ·cos θ·tan θsin θ·cos θ=tan θ变式训练3 解 当k 为偶数时, 不妨设k =2n ,n ∈Z ,则原式=sin[(2n +1)π+θ]·cos[(2n +1)π-θ]sin (2n π-θ)·cos (2n π+θ)=sin (π+θ)·cos (π-θ)-sin θ·cos θ=-sin θ·(-cos θ)-sin θ·cos θ=-1.当k 为奇数时,设k =2n +1,n ∈Z ,则原式=sin[(2n +2)π+θ]·cos[(2n +2)π-θ]sin[(2n +1)π-θ]·cos[(2n +1)π+θ]=sin[2(n +1)π+θ]·cos[2(n +1)π-θ]sin (π-θ)·cos (π+θ)=sin θ·cos θsin θ·(-cos θ) =-1.∴上式的值为-1. 课时作业1.A [sin 585°=sin(360°+225°)=sin(180°+45°)=-22.]2.C [若n 为偶数,则原式=sin αcos α=tan α;若n 为奇数,则原式=sin (π+α)cos (π+α)=tan α.]3.B [∵cos(-80°)=k ,∴cos 80°=k ,∴sin 80°=1-k 2.∴tan 80°=1-k 2k .∴tan 100°=-tan 80°=-1-k 2k.]4.A [∵tan(5π+α)=tan α=m ,∴tan α=m .原式=-sin α-cos α=tan α=m .]5.B [∵sin(π-α)=sin α=log 2 2-23=-23,∴cos(π+α)=-cos α=-1-sin 2α=-1-49=-53.]6.0解析 原式=-sin π3+2sin ⎝⎛⎭⎫2π-π3+3sin 2π3=-32-2×32+3×32=0.7.-1 解析 原式=1+2sin (180°+110°)·cos (360°+70°)sin (180°+70°)+cos (2×360°+70°) =1-2sin 110°cos 70°cos 70°-sin 70°=1-2sin 70°cos 70°cos 70°-sin 70°=|sin 70°-cos 70°|cos 70°-sin 70° =-1. 8.3解析 f (2 009)=a sin(2 009π+α)+b cos(2 009π+β)+2=a sin(π+α)+b cos(π+β)+2 =2-(a sin α+b cos β)=1. ∴a sin α+b cos β=1.f (2 010)=a sin(2 010π+α)+b cos(2 010π+β)+2=a sin α+b cos β+2=3. 9.解 原式=-sin (2π-α)-sin (3π+α)cos (3π-α)-cos α-(-cos α)cos α=sin α-sin αcos α-cos α+cos 2α =sin α(1-cos α)-cos α(1-cos α) =-tan α.∵cos(α-π)=cos(π-α)=-cos α=-23,∴cos α=23.∴α为第一象限角或第四象限角.当α为第一象限角时,cos α=23,sin α=1-cos 2α=53, ∴tan α=sin αcos α=52,则原式=-52.当α为第四象限角时,cos α=23,sin α=-1-cos 2α=-53,∴tan α=sin αcos α=-52,则原式=52.10.证明 ∵sin(α+β)=1,∴α+β=2k π+π2 (k ∈Z ),∴α=2k π+π2-β (k ∈Z ).tan(2α+β)+tan β=tan ⎣⎡⎦⎤2⎝⎛⎭⎫2k π+π2-β+β+tan β =tan(4k π+π-2β+β)+tan β =tan(4k π+π-β)+tan β =tan(π-β)+tan β =-tan β+tan β=0, ∴原式成立.。
三角函数的诱导公式第一课时诱导公式(一)1.诱导公式二(1)角π+α与角α的终边关于原点对称.如图所示.(2)公式:sin(π+α)=-sin_α,cos(π+α)=-cos_α,tan(π+α)=tan_α.2.诱导公式三(1)角-α与角α的终边关于x轴对称.如图所示.(2)公式:sin(-α)=-sin_α.cos(-α)=cos_α.tan(-α)=-tan_α.3.诱导公式四(1)角π-α与角α的终边关于y轴对称.如图所示.(2)公式:sin(π-α)=sin_α.cos(π-α)=-cos_α.tan(π-α)=-tan_α.4.α+k·2π(k∈Z),-α,π±α的三角函数值,等于α的同名函数值,前面加上一个把α看成锐角时原函数值的符号.[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”) (1)诱导公式中角α是任意角.( )(2)公式sin(-α)=-sin α,α是锐角才成立.( ) (3)公式tan(π+α)=tan α中,α=π2不成立.( )答案:(1)× (2)× (3)√ 2.已知cos(π+θ)=36,则cos θ=( ) A .36 B .-36 C .336D .-336答案:B3.若sin(π+α)=13,则sin α等于( )A .13B .-13C .3D .-3答案:B4.已知tan α=4,则tan(π-α)=________. 答案:-4给角求值问题[典例] 求下列三角函数值:(1)sin(-1 200°);(2)tan 945°;(3)cos 119π6.[解] (1)sin(-1 200°)=-sin 1 200°=-sin(3×360°+120°)=-sin 120°=-sin(180°-60°)=-sin 60°=-32. (2)tan 945°=tan(2×360°+225°)=tan 225°=tan(180°+45°)=tan 45°=1. (3)cos 119π6=cos ⎝⎛⎭⎫20π-π6=cos ⎝⎛⎭⎫-π6=cos π6=32.利用诱导公式解决给角求值问题的步骤[活学活用] 求下列各式的值:(1)cos(-120°)sin(-150°)+tan 855°; (2)sin4π3·cos 19π6·tan 21π4. 解:(1)原式=cos 120°(-sin 150°)+tan 855°=-cos(180°-60°)sin(180°-30°)+tan(135°+2×360°) =cos 60°sin 30°+tan 135° =cos 60°sin 30°+tan(180°-45°) =cos 60°sin 30°-tan 45°=12×12-1=-34.(2)原式=sin 4π3·cos ⎝⎛⎭⎫2π+7π6·tan ⎝⎛⎭⎫4π+5π4 =sin4π3·cos 7π6·tan 5π4=sin ⎝⎛⎭⎫π+π3·cos ⎝⎛⎭⎫π+π6·tan ⎝⎛⎭⎫π+π4 =⎝⎛⎭⎫-sin π3·⎝⎛⎭⎫-cos π6·tan π4 =⎛⎫ ⎪ ⎪⎝⎭3-2×⎛⎫ ⎪ ⎪⎝⎭3-2×1=34.化简求值问题[典例] 化简:(1)cos (-α)tan (7π+α)sin (π-α);(2)sin (1 440°+α)·cos (α-1 080°)cos (-180°-α)·sin (-α-180°). [解] (1)cos (-α)tan (7π+α)sin (π-α)=cos αtan (π+α)sin α=cos α·tan αsin α=sin αsin α=1.(2)原式=sin (4×360°+α)·cos (3×360°-α)cos (180°+α)·[-sin (180°+α)]=sin α·cos (-α)(-cos α)·sin α=cos α-cos α=-1.利用诱导公式一~四化简应注意的问题(1)利用诱导公式主要是进行角的转化,从而达到统一角的目的; (2)化简时函数名没有改变,但一定要注意函数的符号有没有改变;(3)同时有切(正切)与弦(正弦、余弦)的式子化简,一般采用切化弦,有时也将弦化切.[活学活用] 化简下列各式:(1)cos (α+π)sin 2(α+3π)tan (α+π)cos 3(-α-π); (2)sin (k π-α)cos[(k -1)π-α]sin[(k +1)π+α]cos (k π+α)(k ∈Z). 解:(1)原式=-cos α·sin 2α-tan α·cos 3α=tan 2 αtan α=tan α .(2)当k =2n (n ∈Z)时,原式=sin (2n π-α)cos[(2n -1)π-α]sin[(2n +1)π+α]cos (2n π+α)=sin (-α)·cos (-π-α)sin (π+α)·cos α=-sin α·(-cos α)-sin α·cos α=-1;当k =2n +1(n ∈Z)时,原式=sin[(2n +1)π-α]·cos[(2n +1-1)π-α]sin[(2n +1+1)π+α]·cos[(2n +1)π+α]=sin (π-α)·cos αsin α·cos (π+α)=sin α·cos αsin α·(-cos α) =-1. 综上,原式=-1.给值(或式)求值问题[典例] 已知cos ⎝⎛⎭⎫π6-α=33,求cos ⎝⎛⎭⎫5π6+α的值. [解] 因为cos ⎝⎛⎭⎫5π6+α=cos ⎣⎡⎦⎤π-⎝⎛⎭⎫π6-α =-cos ⎝⎛⎭⎫π6-α=-33. [一题多变]1.[变设问]在本例条件下,求: (1)cos ⎝⎛⎭⎫α-13π6的值; (2)sin 2⎝⎛⎭⎫α-π6的值. 解:(1)cos ⎝⎛⎭⎫α-13π6=cos ⎝⎛⎭⎫13π6-α=cos ⎝⎛⎭⎫π6-α=33. (2)sin 2⎝⎛⎭⎫α-π6=sin 2⎣⎡⎦⎤-⎝⎛⎭⎫π6-α=sin 2⎝⎛⎭⎫π6-α =1-cos 2⎝⎛⎭⎫π6-α=1-23⎛⎫ ⎪ ⎪⎝⎭=23. 2.[变条件]若将本例中条件“cos ⎝⎛⎭⎫π6-α=33”改为“sin ⎝⎛⎭⎫α-π6=33,α∈⎝⎛⎭⎫2π3,7π6”,则结论如何?解:因为α∈⎝⎛⎭⎫2π3,7π6,则α-π6∈⎝⎛⎭⎫π2,π. cos ⎝⎛⎭⎫5π6+α=-cos ⎝⎛⎭⎫π6-α=-cos ⎝⎛⎭⎫α-π6 =1-sin 2⎝⎛⎭⎫α-π6= 1-13=63. 3.[变条件,变设问]tan ⎝⎛⎭⎫π6-α=33,求tan ⎝⎛⎭⎫5π6+α. 解:tan ⎝⎛⎭⎫5π6+α=-tan ⎣⎡⎦⎤π-⎝⎛⎭⎫5π6+α =-tan ⎝⎛⎭⎫π6-α=-33.解决条件求值问题的策略(1)解决条件求值问题,首先要仔细观察条件与所求式之间的角、函数名称及有关运算之间的差异及联系.(2)可以将已知式进行变形向所求式转化,或将所求式进行变形向已知式转化.层级一 学业水平达标1.sin 600°的值是( ) A .12B .-12C .32D .-32解析:选D sin 600°=sin(360°+240°)=sin 240° =sin(180°+60°)=-sin 60°=-32. 2.若sin(π+α)=-12,则sin(4π-α)的值是( )A .12B .-12C .-32D .32解析:选B 由题知,sin α=12,所以sin(4π-α)=-sin α=-12.3.如图所示,角θ的终边与单位圆交于点P ⎝⎛⎭⎫-55,255,则cos(π-θ)的值为( )A .-255B .-55C .55D .255解析:选C ∵r =1,∴cos θ=-55, ∴cos(π-θ)=-cos θ=55. 4.已知tan ⎝⎛⎭⎫π3-α=13,则tan ⎝⎛⎭⎫2π3+α=( )A .13B .-13C .233D .-233解析:选B ∵tan ⎝⎛⎭⎫2π3+α=tan ⎣⎡⎦⎤π-⎝⎛⎭⎫π3-α =-tan ⎝⎛⎭⎫π3-α, ∴tan ⎝⎛⎭⎫2π3+α=-13. 5.设tan(5π+α)=m ,则sin (α+3π)+cos (π+α)sin (-α)-cos (π+α)的值等于( )A .m +1m -1B .m -1m +1C .-1D .1解析:选A ∵tan(5π+α)=tan [4π+(π+α)] =tan(π+α)=tan α,∴tan α=m ,∴原式=sin (π+α)-cos α-sin α+cos α=-sin α-cos α-sin α+cos α=tan α+1tan α-1=m +1m -1,故选A. 6.求值:(1)cos 29π6=______;(2)tan(-855°)=______. 解析:(1)cos29π6=cos ⎝⎛⎭⎫4π+5π6=cos 5π6=cos ⎝⎛⎭⎫π-π6=-cos π6=-32. (2)tan(-855°)=-tan 855°=-tan(2×360°+135°)=-tan 135°=-tan(180°-45°)=tan 45°=1.答案:(1)-32(2)1 7.已知sin(π-α)=log 814,且α∈⎝⎛⎭⎫-π2,0,则tan(2π-α)的值为________. 解析:sin(π-α)=sin α=log 814=-23,又α∈⎝⎛⎭⎫-π2,0,所以cos α=1-sin 2α=53,tan(2π-α)=tan(-α)=-tan α=-sin αcos α=255. 答案:2558.已知cos(508°-α)=1213,则cos(212°+α)=________.解析:由于cos(508°-α)=cos(360°+148°-α)=cos(148°-α)=1213,所以cos(212°+α)=cos(360°+α-148°)=cos(α-148°)=cos(148°-α)=1213.答案:12139.求下列各三角函数值: (1)sin ⎝⎛⎭⎫-8π3;(2)cos 23π6;(3)tan 37π6. 解:(1)sin ⎝⎛⎭⎫-8π3=sin ⎝⎛⎭⎫-4π+4π3=sin 4π3 =sin ⎝⎛⎭⎫π+π3=-sin π3=-32. (2)cos 23π6=cos ⎝⎛⎭⎫4π-π6=cos ⎝⎛⎭⎫-π6=cos π6=32. (3)tan 37π6=tan ⎝⎛⎭⎫6π+π6=tan π6=33. 10.若cos α=23,α是第四象限角,求sin (α-2π)+sin (-α-3π)cos (α-3π)cos (π-α)-cos (-π-α)cos (α-4π)的值.解:由已知cos α=23,α是第四象限角得sin α=-53,故sin (α-2π)+sin (-α-3π)cos (α-3π)cos (π-α)-cos (-π-α)cos (α-4π)=sin α-sin αcos α-cos α+cos 2α=52. 层级二 应试能力达标1.已知cos(π-α)=-35,且α是第一象限角,则sin(-2π-α)的值是( )A .45B .-45C .±45D .35解析:选B ∵cos(π-α)=-cos α,∴cos α=35.∵α是第一象限角,∴sin α>0, ∴sin α=1-cos 2α=1-⎝⎛⎭⎫352=45.∴sin(-2π-α)=sin(-α)=-sin α=-45.2.设f (x )=a sin(πx +α)+b cos(πx +β),其中a ,b ,α,β∈R ,若f (2 015)=5,则f (2 016)等于( )A .4B .3C .-5D .5解析:选C ∵f (2 015)=a sin(2 015π+α)+b cos(2 015π+β)=-a sin α-b cos β=5,∴f (2 016)=a sin(2 016π+α)+b cos(2 016π+β)=a sin α+b cos β=-5.3.若α,β的终边关于y 轴对称,则下列等式成立的是( ) A .sin α=sin β B .cos α=cos β C .tan α=tan βD .sin α=-sin β解析:选A 法一:∵α,β的终边关于y 轴对称, ∴α+β=π+2k π或α+β=-π+2k π,k ∈Z , ∴α=2k π+π-β或α=2k π-π-β,k ∈Z , ∴sin α=sin β.法二:设角α终边上一点P (x ,y ),则点P 关于y 轴对称的点为P ′(-x ,y ),且点P 与点P ′到原点的距离相等,设为r ,则sin α=sin β=yr.4.下列三角函数式:①sin ⎝⎛⎭⎫2n π+3π4;②cos ⎝⎛⎭⎫2n π-π6;③sin ⎝⎛⎭⎫2n π+π3; ④cos ⎣⎡⎦⎤(2n +1)π-π6;⑤sin ⎣⎡⎦⎤(2n -1)π-π3. 其中n ∈Z ,则函数值与sin π3的值相同的是( )A .①②B .①③④C .②③⑤D .①③⑤解析:选C ①中sin ⎝⎛⎭⎫2n π+3π4=sin 3π4≠sin π3;②中,cos ⎝⎛⎭⎫2n π-π6=cos π6=sin π3;③中,sin ⎝⎛⎭⎫2n π+π3=sin π3;④中,cos ⎣⎡⎦⎤(2n +1)π-π6=cos ⎝⎛⎭⎫π-π6=-cos π6≠sin π3;⑤中,sin ⎣⎡⎦⎤(2n -1)π-π3=sin ⎝⎛⎭⎫-π-π3=-sin ⎝⎛⎭⎫π+π3=sin π3. 5.化简:cos (-585°)sin 495°+sin (-570°)的值是________.解析:原式=cos (360°+225°)sin (360°+135°)-sin (210°+360°)=cos 225°sin 135°-sin 210°=cos (180°+45°)sin (180°-45°)-sin (180°+30°)=-cos 45°sin 45°+sin 30°=-2222+12=2-2.答案:2-26.已知f (x )=⎩⎪⎨⎪⎧sin πx , x <0,f (x -1)-1, x >0,则f ⎝⎛⎭⎫-116+f ⎝⎛⎭⎫116的值为________. 解析:因为f ⎝⎛⎭⎫-116=sin ⎝⎛⎭⎫-11π6 =sin ⎝⎛⎭⎫-2π+π6=sin π6=12; f ⎝⎛⎭⎫116=f ⎝⎛⎭⎫56-1=f ⎝⎛⎭⎫-16-2 =sin ⎝⎛⎭⎫-π6-2=-12-2=-52. 所以f ⎝⎛⎭⎫-116+f ⎝⎛⎭⎫116=-2. 答案:-2 7.计算与化简(1)tan (2π-θ)sin (2π-θ)cos (6π-θ)(-cos θ)sin (5π+θ);(2)sin 420°cos 330°+sin(-690°)cos(-660°).解:(1)原式=tan (-θ)sin (-θ)cos (-θ)(-cos θ)sin (π+θ)=tan θsin θcos θcos θsin θ=tan θ.(2)原式=sin(360°+60°)cos(360°-30°)+sin(-2×360°+30°)cos(-2×360°+60°)=sin 60°cos 30°+sin 30°cos 60°=32×32+12×12=1.8.已知1+tan (θ+720°)1-tan (θ-360°)=3+22,求:[cos 2(π-θ)+sin(π+θ)·cos(π-θ)+2sin 2(θ-π)]·1cos 2(-θ-2π)的值. 解:由1+tan (θ+720°)1-tan (θ-360°)=3+22, 得(4+22)tan θ=2+22,所以tan θ=2+224+22=22, 故[cos 2(π-θ)+sin(π+θ)·cos(π-θ)+2sin 2(θ-π)]·1cos 2(-θ-2π)=(cos 2θ+sin θcos θ+2sin 2θ)·1cos 2θ=1+tan θ+2tan 2θ=1+22+2×⎝⎛⎭⎫222=2+22.。