中职数学诱导公式(第一课时)(公开课)
- 格式:ppt
- 大小:942.50 KB
- 文档页数:16
诱导公式微型课教案[001]一、教学目标1.认识什么是诱导公式;2.了解诱导公式的化简方法;3.能够使用诱导公式解决相关问题。
二、教学内容1.诱导公式的概念;2.诱导公式的化简方法;3.诱导公式在解决问题中的应用。
三、教学重难点1.重点:诱导公式的化简方法;2.难点:诱导公式在解决问题中的应用。
四、教学过程【教学环节】一、导入(5分钟)通过引入熟知的练习题,让学生回忆起各种化简方法和公式:比如,把$sinA$化简成$cos(A-\\frac{\\pi}{2})$等等,使学生对待学问题的态度积极。
二、讲解(20分钟)1.诱导公式的概念:什么是诱导公式?诱导公式也叫代数恒等式,是通过一系列数学变换得到的等式。
这里,我们先讲一组比较简单的代数恒等式:$$(a+b)^2=a^2+2ab+b^2$$$$(a-b)^2=a^2-2ab+b^2$$这两个式子就是诱导公式。
2.诱导公式的化简方法:下面,我们来讲一下诱导公式的化简方法:(1)归零法;(2)加减法,即使$A+B=C$,那么$A$可表示成$C-B$或$B-C$;(3)平方差、平方和公式、观察特征、代换法等。
3.诱导公式在解决问题中的应用:诱导公式的应用十分广泛,特别是在解决三角函数或代数式的问题中。
例如,我们可以利用其进行复杂式子的化简或方程的求解。
我们通过一个例题来了解这个过程:已知:$sinx-sin3x=-4cosxsinx$,求证:$sin4x=-4sin^3x$【教学环节】三、练习(15分钟)请学生完成一些练习,把所学的知识应用于问题的解决中,提高学生解决问题的能力。
四、总结(10分钟)通过本节课的学习,使学生能够掌握诱导公式的概念、化简方法和应用,以及如何正确地运用诱导公式解决问题。
五、作业请学生自己完成一下习题:(1)已知$sinx+cosx=1$,求证:$tan\\frac{x}{2}=1$(2)已知$sinx+sin2x=cosx+cos2x$,求证:$sin4x=4sinxsin3x$六、板书设计$$(a+b)^2=a^2+2ab+b^2$$$$(a-b)^2=a^2-2ab+b^2$$。
5.2.3诱导公式(一)
【教学目标】
1. 理解并掌握诱导公式,会求任意角的三角函数值与证明简单的三角恒等式;
2. 了解对称变换思想在数学问题中的应用;
3. 通过教学,使学生进一步体会数形结合的思想.
【教学重点】
利用诱导公式进行三角函数式的求值、化简.
【教学难点】
诱导公式(一)、(二)的推导.
【教学方法】
本节课主要采用启发诱导与讲练结合的教学方法,引导学生借助单位圆和三角函数线,充分利用对称的性质,揭示诱导公式与同角公式之间的联系,然后讲练结合,使学生牢固掌握其应用.【教学过程】
129
130
131
132。
1.3 三角函数的诱导公式(第1课时)一、教学目标:1.知识与技能(1)借助单位圆,推导出诱导公式。
(2)理解和掌握公式的内涵及结构特征,能正确运用诱导公式将任意角的三角函数化为锐角的三角函数,掌握有关三角函数求值问题,并进行简单三角函数式的化简和证明。
2.过程与方法(1)通过诱导公式的推导,培养学生的观察力、分析归纳能力,领会数学的归纳转化思想方法。
(2)通过诱导公式的推导、分析公式的结构特征,使学生体验和理解从特殊到一般的数学归纳推理思维方式。
(3)通过基础训练题组和能力训练题组的练习,提高学生分析问题和解决问题的实践能力。
3.情感、态度与价值观(1)通过诱导公式的推导,培养学生主动探索、勇于发现的科学精神,培养学生的创新意识和创新精神。
(2)通过归纳思维的训练,培养学生踏实细致、严谨科学的学习习惯,渗透从特殊到一般、把未知转化为已知的辨证唯物主义思想。
二、教学重点、难点:1、重点:诱导公式二、三、四的探究,运用诱导公式进行简单三角函数式的求值,提高对数学内部联系的认识。
2、难点:发现圆的对称性与任意角终边的坐标之间的联系;诱导公式的合理运用。
三、教学方法与手段:1、教学方法:讲解法、讨论法、探究法、演示法2、教学手段:多媒体、几何画板四、教学过程:(一)复习引入师:问题1:任意角α的正弦、余弦、正切是怎样定义的?生:学生口述三角函数的单位圆定义:sin =y,cos =x,tan =xy (x ≠0) 师:问题2:试写出诱导公式(一),并说出诱导公式的结构特征;生:诱导公式一:()∂=∙+sin 2sin παk ;απαcos )2cos(=∙+k ;απαtan )2tan(=∙+k ; (其中Z k ∈)结构特征:①终边相同的角的同一三角函数值相等②把求任意角的三角函数值问题转化为求0°~360°角的三角函数值。
师:这节课咱们继续学习三角函数的诱导公式,看看今天的诱导公式是解决什么问题的。