诱导公式(第一课时) 教案
- 格式:doc
- 大小:112.71 KB
- 文档页数:3
教学设计90︒的角的(一)情景引入(引发认知冲突,激发学习兴趣)如图所展示的图片是天津之眼,是一座跨河建设,桥轮合一的摩天轮,兼具观光和交通功能,是世界上唯一建设在桥上的摩天轮。
在乘坐摩天轮的过程中,随着摩天轮的旋转即角α变化,我们离地面的高度对应变化,其实,在这种一圈一圈转动的运动形式背后,也蕴涵了丰富的数学内涵(如:对称性、周期性),下面我们先看一个具体的数学问题:【教师提问1】:如图,摩天轮轴心为O ,轴心到地面距离为d ,轴半径设为1 ,当我们乘坐摩天轮从点P 逆时针运动到1P 时,旋转角︒=30α,此时距离地面高度h 为多少?摩天轮继续转动,你能用任意时刻的旋转角α表达离地高度h 吗?【教师提问2】:你能用任意时刻的旋转角x 表示离地高度h 吗?设计意图:体会生活中的周期现象,初步学会用三角知识刻画周期变化规律;通过分析,学生发现要求高度h ,只需求出角α(任意角)的正弦即可;初步学会抽象实际问题成数学问题的基本方法;通过从特殊角正弦函数值推广到任意角正弦值引起认知冲突,让学生主动提出问题,激发学生的学习兴趣,为后续小组合作探究推波助澜。
(二)问题探究【教师提问3】:知1sin 302︒=,你还能求哪些角度的正弦值?请给出理由。
(注:教师根据情况启发学生,引导学生回顾三角函数定义,发现sin30︒的值即角30︒的终边与单位圆交点的纵坐标)【学生探究1】:单位圆中数形结合发现角3015021030︒︒︒-︒、、、、 60的终边有对称性,由此猜测还可以求上述角的正弦值。
【教师提问4】:上述结论中的30︒可以换成任意锐角α吗?【学生探究2】:根据任意角三角函数定义,结合对应角的终边的对称性,发现对任意作业练习。
课 题:1.2.3三角函数的诱导公式(一)1.教学目标知识与技能(1)掌握三角函数诱导公式二~四的推导方法,体验数学知识的“发现”过程;(2)掌握三角函数诱导公式二~四的应用,能正确运用诱导公式求任意角的三角函数值,以及进行简单三角函数式的化简与恒等式证明;(3)培养学生借助图形直观进行观察、感知、探究、发现的能力,进一步理解掌握数形结合思想方法,通过诱导公式的证明,培养学生逻辑思维能力及运算能力。
过程与方法(1) 借助单位圆推导诱导公式,特别是学习从单位圆的对称性与任意角终边的对称性中,发现问题(任意角α的三角函数值与α- ,πα- ,πα+ 的三角函数值之间有内在联系),提出研究方法(利用坐标的对称性,从三角函数定义得出相应的关系式);(2) 体会未知到已知、复杂到简单的转化过程。
情感态度与价值观通过本节的学习,让学生感受数学探索的成功感,从而激发学生学习数学的热情,培养学生学习数学的兴趣,增强他们学习数学的信心。
2.教学重点:用联系的观点,发现、证明及运用诱导公式,体会数形结合思想、化归思想在解决数学问题中的指导作用。
教学难点:如何引导学生从单位圆的对称性与任意角终边的对称性中,发现终边分别与α的终边关于原点、x 轴、y 轴对称的角与α之间的数量关系,并提出研究方法。
3.教学方法与教学手段:引导合作探究式教学并结合多媒体教学4.教学过程:(一)复习引入:1.利用单位圆表示任意角α的正弦值和余弦值;2.画出一组特殊角的图象(体会特殊到一般的思想)(二)新课讲解:问题1:360?k αα+⋅角与的正弦,余弦,正切值有什么关系公式一: ααsin )360sin(=︒⋅+k ααcos )360cos(=︒⋅+kααtan )360tan(=︒⋅+k (其中Z ∈k )诱导公式(一)的作用:把任意角的正弦、余弦、正切化为0º―360º之间角的正弦、余弦、正切,其方法是先在0º―360º内找出与角α终边相同的角,再把它写成诱导公式(一)的形式,然后得出结果。
《三角函数的诱导公式(一)》教学设计◆教学目标1.了解三角函数的诱导公式的意义和作用.2.理解诱导公式的推导过程.3.能运用有关诱导公式解决一些三角函数的求值、化简和证明问题.◆教学重难点◆教学重点:推导出四组的诱导公式,能正确运用诱导公式将任意角的三角函数化为锐角的三角函数.教学难点:解决有关三角函数求值、化简和恒等式证明问题.◆课前准备PPT课件.◆教学过程一、新课导入对称美是日常生活中最常见的,在三角函数中-α、π±α、2π-α等角的终边与角α的终边关于坐标轴或原点对称,那么它们的三角函数值之间是否也存在对称美呢?引语:要解决这个问题,就需要进一步学习三角函数的诱导公式.(板书:7.2.3三角函数的诱导公式(一))设计意图:情境导入,引入新课。
【探究新知】问题1:当角α分别为30°,390°,-330°时,它们的终边有什么特点?它们的三角函数之间有什么关系?师生活动:学生分析解题思路,给出答案.预设的答案:它们的终边重合.由三角函数的定义知,它们的三角函数值相等.诱导公式一:sin(α+k·2π)=sinα,cos(α+k·2π)=cosα,tan(α+k·2π)=tanα,其中k∈Z.即终边相同的角的同一三角函数值相等.问题2:角π+α的终边与角α的终边有什么关系?角π+α的终边与单位圆的交点P1(cos(π+α),sin(π+α))与点P(cosα,sinα)呢?它们的三角函数之间有什么关系?师生活动:学生分析解题思路,给出答案.预设的答案:角π+α的终边与角α的终边关于原点对称,P1与P也关于原点对称,它们的三角函数关系如下:诱导公式二:sin(π+α)=-sinα,cos(π+α)=-cosα,tan(π+α)=tanα.问题3:角-α的终边与角α的终边有什么关系?角-α的终边与单位圆的交点P2(cos(-α),sin(-α))与点P(cosα,sinα)有怎样的关系?它们的三角函数之间有什么关系?师生活动:学生分析解题思路,给出答案.预设的答案:角-α的终边与角α的终边关于x轴对称,P2与P也关于x轴对称,它们的三角函数关系如下:诱导公式三:sin(-α)=-sinα,cos(-α)=cosα,tan(-α)=-tanα.问题4:角π-α的终边与角α的终边有什么关系?角π-α的终边与单位圆的交点P3(cos(π-α),sin(π-α))与点P(cosα,sinα)有怎样的关系?它们的三角函数之间有什么关系?师生活动:学生分析解题思路,给出答案.预设的答案:角π-α的终边与角α的终边关于y轴对称,P3与P也关于y轴对称,它们的三角函数关系如下:诱导公式四:sin(π-α)=sinα,cos(π-α)=-cosα,tan(π-α)=-tanα.追问1:如何记忆这四组诱导公式呢?预设的答案:2kπ+α(k∈Z),-α,π±α的三角函数值,等于α的同名函数值,前面加上一个把α看成锐角时原函数值的符号,可以简单地说成“函数名不变,符号看象限”.“函数名不变”是指等式两边的三角函数同名;“符号”是指等号右边是正号还是负号;“看象限”是指假设α是锐角,要看原三角函数值是取正值还是负值,如sin (π+α),若把α看成锐角,则π+α是第三象限角,故sin (π+α)=-sinα. 追问2:诱导公式一、二、三、四的作用是什么?预设的答案:公式一的作用在于把绝对值大于2π的任一角的三角函数问题转化为绝对值小于2π的角的三角函数问题;公式三的作用在于把负角的三角函数转化成正角的三角函数;公式二、公式四的作用在于把钝角或大于180°的角的三角函数转化为0°~90°之间的角的三角函数.设计意图:培养学生分析和归纳的能力.【巩固练习】例1. 求值:(1)sin (-60°)+cos 120°+sin 390°+cos 210°;(2师生活动:学生分析解题思路,给出答案.预设的答案:(1) 原式=-sin 60°+cos (180°-60°)+sin (360°+30°)+cos (180°+30°) =-sin 60°-cos 60°+sin 30°-cos 30°1122=+=(2 cos1012cos102︒=︒.反思与感悟:利用诱导公式求任意角三角函数的步骤: (1)“负化正”——用公式一或三来转化;(2)“大化小”——用公式一将角化为0°到360°间的角; (3)“小化锐”——用公式二或四将大于90°的角转化为锐角; (4)“锐求值”——得到锐角的三角函数后求值.设计意图:掌握利用诱导公式求任意角三角函数的方法。
高一数学《三角函数的诱导公式(第1课时)》教案示范三篇高一数学《三角函数的诱导公式(第1课时)》教案1教材分析:高一数学《三角函数的诱导公式(第1课时)》是一节基础性课程,课本中主要包含了三角函数诱导公式的定义、常见角度的三角函数值以及相应的推导方法等内容。
教师需要全面了解教材的内容,并对教材的组织结构、难易程度及与之相应的教学资源进行细致的分析和处理。
教学目标:通过本节课的教学,学生应该能够掌握诱导公式的基本概念、运用方法及其相关定理,能够熟练地计算一些常见角度的三角函数值,并能够对不同情况下的三角函数值进行求解。
教学重点:本节课教学的重点主要集中在诱导公式的定义及其相关定理的理解和运用上,同时也需要教师在教学过程中重点关注学生对于诱导公式的记忆和运用情况。
教学难点:本节课教学难点在于对于一些相对较为复杂的求解题目的讲解和理解,尤其是在涉及到三角函数值之间的相互替换问题时需要引导学生注重方法逻辑的分析和运用。
学情分析:本节课所涉及到的内容主要是在初中阶段所学习的三角函数知识的基础上进一步推广和延伸,对于新生来说可能需要花费一定的时间来加深对于三角函数概念的理解和记忆。
教学策略:教师可以通过引入案例以及图像的呈现等方式来促进学生对于三角函数概念以及诱导公式的理解和记忆,同时也需要关注学生在解题过程中的思维逻辑和分析方法的引导。
教学方法:本节课教学方法需要注重理论掌握和实践操作的结合,可以通过练习习题,讲解案例和互动讨论等方式来提高学生的思维能力和实际操作水平。
同时也可以通过个性化的辅导方式注重对于学生的学习经历和个体差异进行分析和处理。
高一数学《三角函数的诱导公式(第1课时)》教案2本节课的教学过程如下:一、导入环节(约5分钟)教学内容:复习三角函数的基本概念,介绍本节课的主题——三角函数的诱导公式。
教学活动:1.学生们通过手写练习纸,复习三角函数的基本公式和图像;2.老师引导学生们思考有哪些角的三角函数值已知,而另外一个角的三角函数值不易计算;3.通过引导,学生们提出了需要学习三角函数的诱导公式的需求;4.老师介绍三角函数的诱导公式的含义和作用,引发学生们兴趣。
高中数学《诱导公式》(第一课时)万源市第三中学黄少林一、教材分析教材的地位与作用:《三角函数的诱导公式》选自《普通高中课程标准数学教科书·数学必修4》(人教A版)第一章第3节第一课时,是三角函数这一章中的一个重要内容,它涉及三角函数的求值、化简、证明等应用,而且公式推导过程中所渗透:类比、化归、分类讨论、整体代换等思想方法.二、学情分析学生已掌握了任意角和弧度制,任意角的三角函数的定义,同角三角函数的基本关系.学生学习兴趣比较浓,表现欲较强,逻辑思维能力也初步形成,具有一定的分析问题和解决问题的能力,但却缺乏冷静、深刻,因而片面、不够严谨.三、教学目标知识技能目标:理解并掌握三角函数的诱导公式的推导过程、公式的特点,在此基础上,并能初步应用公式解决与之有关的问题.过程与方法目标:通过对公式推导方法的探索与发现,向学生渗透特殊到一般、类比与转化、分类讨论等数学思想,培养学生观察、比较、抽象、概括等逻辑思维能力和逆向思维的能力.情感态度与价值观:培养学生勇于探索、敢于创新的精神,从探索中获得成功的体验,感受数学的奇异美、结构的对称美、形式的简洁美.四、教学重点、难点教学重点:公式的推导、公式的特点和公式的运用.k 的问题解决.教学难点:公式的推导方法及公式应用中涉及Z五、教法与学法分析培养学生学会学习、学会探究是全面发展学生能力的重要前提,是高中新课程改革的主要任务.本节课采用了启发式和探究式相结合的教学方法,让老师的主导性和学生的主体性有机结合,使学生能够愉快地自觉学习,通过学生自己观察、分析、探索等步骤,自己发现解决问题的方法,比较论证后得到一般性结论,形成完整的数学模型,再运用所得理论和方法去解决问题.六、课堂设计(一)、创设情境,提出问题.[利用投影展示]诱导公式一:1.原理:终边相同的角的同一三角函数的值相等.2.作用:利用公式一,可以把求任意角的三角函数值,转化为求0到π2(或︒0~︒360)角的三角函数值.即负化正,大化小.提出问题1:化简(1)613sin π,(2))945sin(︒,(3))316cos(π-,(4))1845tan(︒-,解:(1)216sin )62sin(613sin ==+=ππππ;(2)︒=︒+︒⨯=︒225sin )2253602sin()945sin(;(3)32cos )326cos()316cos(ππππ=+-=-;(4))45tan()453605tan()1845tan(︒-=︒-︒⨯-=︒-.设计意图:复习诱导公式一,引入新课题,同时激发学生的兴趣,调动学习的积极性. (二)、师生互动,探究问题.提出问题2:︒225sin 、32cos π、)45tan(︒-的值又该如何计算呢?有学生会说:用计算器来求(老师当然肯定这种做法,但考试时不让用计算器.) 提出问题3:同学们,我们来分析一下这些角有什么特征?(学生会发现6π为锐角,而︒225、32π、︒-45分别是第三、二、四象限角.) 提出问题4:我们能找到︒225、32π、︒-45与锐角的联系吗?[利用投影展示].)45180sin()225sin(︒+︒=︒;)3cos()32cos(πππ-=.提出问题5:如何将求0到π2(或︒0~︒360)角的三角函数值转化为求锐角的三角函数值呢?探究问题:给定一个角α.1.角απ-、απ+的终边与角α的终边有什么关系?它们的三角函数之间有什么关系?2.角α-的终边与角α的终边有什么关系?它们的三角函数之间有什么关系?3.角απ-2的终边与角α的终边有什么关系?它们的三角函数之间有什么关系?απαsin )2sin(=⋅+k απαcos )2cos(=⋅+kαπαtan )2tan(=⋅+k 其中Z k ∈设计意图:层层深入,剖析了角变换的妙用,使学生容易接受为什么要变换角,经过变换后,突然发现求0到π2(或︒0~︒360)角的三角函数值可以转化为求锐角的三角函数值;亲身体会从特殊到一般的推导过程.教师讲解:诱导公式的推导:(1)角απ+的终边与角α的终边关于原点对称; (2)角απ-的终边与角α的终边关于y 轴对称; (3)角α-的终边与角α的终边关于x 轴对称;(4)角απ-2的终边与角α的终边关于直线x y =对称.我们结合三角函数的定义,由上述对称性来讨论这些角的三角函数的关系.如图,设任意角α的终边与单位圆的交点坐标为),(1y x P .由于角απ+的终边与角α的终边关于原点对称,角απ+的终边与单位圆的交点坐标为2P 与点1P 关于原点对称,因此2P 的坐标为),(y x --.由三角函数的定义得:y =αsin , x =αcos , xy=αtan , y -=+)sin(απ, x -=+)cos(απ, xy=+)tan(απ.从而得公式二:(三)、类比联想,解决问题.学生活动:请同学们自己完成公式三、四的推导.学生开展合作学习,讨论交流,老师巡视课堂,发现有典型解法的,叫同学板书在黑板上.公式三: 公式四:xyP 1P 2Oααπsin )sin(-=+ ααπcos )cos(-=+ ααπtan )tan(=+ααsin )sin(-=- ααcos )cos(=- ααπcos )2sin(=- ααπsin )2cos(=- π设计意图:从特殊到一般,从模仿到创新,有利于学生的知识迁移和能力提高,让学生在探索过程中,充分感受到成功的情感体验.(四)、解决例题,开拓思维.[利用投影展示]2245sin )45180sin()225sin(-=︒-=︒+︒=︒; 213cos )3cos()32cos(-=-=-=ππππ; 145tan )45tan(-=︒-=︒-.设计意图:共享学习成果,开拓了思维,感受数学的美. (五)、归纳提炼,构建新知.提出问题6:你能用简洁的语言概括一下公式一~四吗?它们的作用是什么? 学生讨论、回答,教师总结板书:)(2Z k k ∈⋅+πα,α-,απ±的三角函数值,等于α的同名函数值,前面加上一个把α看成锐角时原函数值的符号.即函数名不变,符号看象限.设计意图:通过归纳总结,使学生加深对公式特征的了解,加深对知识的认识,完善知识结构,增强思维的严谨性.(六)、层层深入,掌握新知. 例1.利用公式求下列三角函数值:(1))1290sin(︒-;(2))420cos(︒-;(3))679tan(π-. [利用投影展示]2130sin )30180sin(150sin )1503606sin()1290sin(=︒=︒-︒=︒=︒+︒⨯-=︒-; 2160cos )60360cos(420cos )420cos(=︒=︒+︒=︒=︒-; 336tan )6tan()613tan(679tan )679tan(-=-=+-=+-=-=-πππππππ. 设计意图:通过两道简单题来剖析公式中的基本量,进行正反两方面的“短、浅、快”练习,通过总结、辨析和反思,强化公式的结构特征.提出问题6:由例1,你对公式一~四的作用有什么进一步的认识?你能归纳一下把任意角的三角函数转化为求锐角的三角函数的步骤吗?[利用投影展示]设计意图:体现由未知转化为已知的化归思想,培养学生的归纳总结能力. 例2.化简)180cos()180sin()360sin()180cos(αααα-︒-⋅︒--︒+⋅+︒.(先由学生独立求解,然后抽学生板演,教师巡视、指导,讲评学生完成情况,寻找学生中的闪光点,给予热情表扬.)变式1:化简)tan()cos()sin(πααπα---+;变式2:化简)cos(])1sin[(])1cos[()sin(απαπαπαπ+++--+k k k k ,其中Z k ∈.设计意图:变式训练,深化认识,增加思维的梯度的同时,提高学生的模式识别能力,渗透转化思想,分类讨论思想.(七)、总结归纳,加深理解.[时间设定:2分钟] 1.诱导公式一~四的推导及应用.2.任意角的三角函数转化为求锐角的三角函数的步骤.设计意图:形成知识模块,从知识的归纳延伸到思想方法的提炼,优化学生的认知结构. (八)、课后作业,巩固提高.[时间设定:1分钟] 1.必做:课本P29习题1.3第2、3题.2.研究性作业:推导诱导公式五、六.3.选做:化简Z k k k ∈-++++),313cos()313sin(απαπ 设计意图:为了使所有学生巩固所学知识,布置了“必做题”;“选做题”又为学有余力者留有自由发展的空间,布置了“探究题”以利于学生开展研究性学习,拓展学生的视野.七、板书设计 1.3三角函数的诱导公式 公式推导: 例二诱导公式一任意负角的 三角函数任意负角的 三角函数任意正角的 三角函数0到π2的角的三角函数公式一公式三公式一公式二 公式四诱导公式二课堂小结例一诱导公式三诱导公式四作业八、教学反思本节课立足课本,着力挖掘,设计合理,层次分明.充分体现以学生发展为本,培养学生的观察、概括和探究能力,遵循学生的认知规律,体现理论联系实际、循序渐进和因材施教的教学原则,通过问题情境的创设,激发兴趣,使学生在问题解决的探索过程中,由学会走向会学,由被动答题走向主动探究.在教学思想上既注重知识形成过程的教学,还特别突出学生学习方法的指导,探究能力的训练,引导学生发现数学的美,体验求知的乐趣.。
课题名称:1.3三角函数的诱导公式(一)课程模块及章节:必修4第一章1.3节教学背景分析(一)课标的理解与把握能够借助三角函数的定义及单位圆中的三角函数线推导三角函数的诱导公式(二)教材分析:本节课教学内容“诱导公式(二)、(三)、(四)”是人教版数学4,第一章1、3节内容,是学生已学习过的三角函数定义、同角三角函数基本关系式及诱导公式(一)等知识的延续和拓展,又是推导诱导公式(五)的理论依据。
(三)学情分析:如何引导学生从单位圆的对称性与任意角终边的对称性中,发现问题,提出研究方法.教学目标1记忆正弦、余弦的诱导公式.2. 诱导公式并运用其进行三角函数式的求值、化简以及简单三角恒等式的证明.教学重点和难点运用诱导公式进行简单三角函数式的求值、化简与恒等式的证明教学准备、教学资源和主要教学方法模型、直尺、多媒体。
自主性学习法;反馈练习式学习法教学过程教学环节教师为主的活动学生为主的活动设计意图导入新课一.问题引入:角的概念已经由锐角扩充到了任意角,前面已经学习过任意角的三角函数,那么任意角的三角函数值怎么求呢?先看一个具体的问题。
求390°角的正弦、余弦值.一般地,由三角函数的定义可以知道,终边相同的角的同一三角函数值相等,即有:sin(+2kπ) = sinα,cos(+2kπ) = cosα,ta n(+2kπ)= tanα (k∈Z) 。
(公式一)通过复习知识引人新课激发学生的学习兴趣目标引领把学习目标板在黑板的右上角,并对目标进行解读。
活动导学二.尝试推导由上一组公式,我们知道,终边相同的角的同一三角函数值一定相等。
反过来呢?问题:你能找出和30°角正弦值相等,但终边不同的角吗?角π 与角的终边关于y轴对称,有sin(π ) = sin ,cos(π ) = cos ,(公式二)tan(π ) = tan 。
学生阅读、观察、思考、讨论交流。
提问式回答,教师再补充完整。
《5.3 诱导公式(第一课时)》教学设计1.借助单位圆的对称性,利用定义推导出诱导公式(π±α,-α的正弦、余弦、正切);通过经历诱导公式的探究过程,积累应用类比、转化、数形结合等方法研究三角函数性质的经验,发展直观想象素养.2.初步应用诱导公式解决问题,积累解题经验,发展数学运算素养.教学重点:利用圆的对称性探究诱导公式,运用诱导公式进行简单三角函数式的求值、化简与恒等式的证明.教学难点:诱导公式的有效识记和应用.PPT课件.资源引用:【知识点解析】对诱导公式一到四的理解【知识点解析】诱导公式一到四的作用【知识点解析】利用诱导公式一到四化简应注意的问题(一)新知探究引导语:我们知道,圆最重要的性质是对称性,而对称性(如奇偶性)也是函数的重要性质.由此想到,可以根据三角函数定义,利用圆的对称性,研究三角函数的对称性.问题1:如图1,在直角坐标系内,设任意角α的终边与单位圆交于点P1,作P1关于原点的对称点P2.(1)以OP2为终边的角β与角α有什么关系?(2)角β,α的三角函数值之间有什么关系?预设的师生活动:先由学生独立完成问题1,然后展示,师生帮助一起完善和调理思路. 预设的答案:如图2,以OP 2为终边的角β都是与角π+α终边相同的角,即β=2k π+(π+α)(k ∈Z ).因此,只要探究角π+α与α的三角函数值之间的关系即可.设P 1(x 1,y 1),P 2(x 2,y 2).因为P 2是点P 1关于原点的对称点,所以x 2=-x 1,y 2=-y 1. 11=y 1x 1(1sin(π+α)=y 2,cos(π+α)=x 2,tan(π+α)=y 2x 2(x 2≠0). 从而得:公式二设计意图:初步感受如何将圆的一个特殊的对称性:在坐标系中关于原点对称,代数化,并得到诱导公式二.并以此问题作为研究方法的示范,为进一步提出、分析、解决问题做好奠基工作.追问1:应用公式二时,对角α有什么要求?预设答案:只要在定义域内的角α都成立.追问2:探究公式二的过程,可以概括为哪些步骤?每一步蕴含的数学思想是什么? 预设答案:第一步,根据圆的对称性,建立角之间的联系.从形的角度研究.第二步,建立坐标之间的关系.将形的关系代数化,并从不同的角度进行表示,体现了数形结合的思想方法.第三步,根据等量代换,得到三角函数之间的关系,即公式二.体现了联系性.追问3:角π+α还可以看作是角α的终边经过怎样的变换得到的?预设答案:按逆时针方向旋转角π得到的.sin (π+α)=-sin α,cos (π+α)=-cos α,tan (π+α)=tan α. 22465xyO π+aa P 2P 1图2图1设计意图:追问1旨在帮助学生理解角α的任意性,追问2旨在提炼方法,追问3则渗透圆的旋转对称性,为后面几个公式的探索在方法上做好铺垫.问题2:借助于平面直角坐标系,类比问题1,你能说出单位圆上点P 1的哪些特殊对称点?并按照如上问题1总结得到的求解步骤,尝试求出相应的关系式.预设的师生活动1:先由学生独立思考,尽量多地写出点P 1的对称点,然后展示交流,之后再将之代数化,最后得到相应的诱导公式.学生的回答可能会超越教科书中的研究内容,如果是学生自己想到的,可以顺其自然保留,但是不作进一步的要求.如果学生没有想到,教师不需要增加.学生首先想到的应该是点P 1关于坐标轴的对称点;之后关于特殊直线的对称点,比如y=x ;教师启发之后会想到经过两次对称得到的对称点.预设答案:单位圆上点P 1的特殊对称点:第一类,点P 1关于x 轴、y 轴的对称点;第二类,点P 1关于特殊直线的对称点,如y =x ,y =-x ;第三类,点P 1关于x 轴的对称点,再关于特殊直线的对称点.或者是点P 1关于特殊直线的对称点,再关于坐标轴的对称点.等等.预设的师生活动2:针对如上结论,从第一类到第三类依次解决.第一课时可以先解决第一类.预设答案:1.如图3,作P 1关于x 轴的对称点P 3:以OP 3为终边的角β都是与角-α终边相同的角,即β=2k π+(-α)(k ∈Z ).因此,只要探究角-α与α的三角函数值之间的关系即可.设P 3(x 3,y 3).因为P 3是点P 1关于x 轴的对称点,所以x 3=x 1,y 3=-y 1.根据三角函数的定义,得sin α=y 1,cos α=x 1,tan α=y 1x 1(x 1≠0); sin(-α)=y 3,cos(-α)=x 3,tan(-α)=y 3x 3(x 3≠0). 从而得:公式三sin (-α)=-sin α,cos (-α)=cos α,tan (-α)=-tan α. 图32.如图4,作P 1关于y 轴的对称点P 4:以OP 4为终边的角β都是与角π-α终边相同的角,即β=2k π+(π-α)(k ∈Z ).因此,只要探究角π-α与α的三角函数值之间的关系即可.设P 4(x 4,y 4).因为P 4是点P 1关于x 轴的对称点,所以x 4=-x 1,y 4=y 1.根据三角函数的定义,得sin α=y 1,cos α=x 1,tan α=y 1x 1(x 1≠0); sin(π-α)=y 4,cos(π-α)=x 4,tan(π-α)=y 4x 4(x 4≠0). 从而得:公式四追问4:公式三和公式四中的角α有什么限制条件?预设答案:三角函数定义域内的角α.设计意图:类比问题1,进一步探索发现.这是一个开放式的问题设计,给了学生自主的时空,鼓励他们多角度观察思考,提出问题,并类比问题1进行分析,解决问题.强化将单位圆的对称性代数化这种研究思路.★资源名称: 【知识点解析】对诱导公式一到四的理解★使用说明:本资源展现“对诱导公式一到四的理解”,辅助教师教学,加深学生对于sin (π-α)=sin α,cos (π-α)=-cos α,tan (π-α)=-tan α. 图4知识的理解和掌握.适合教师课堂进行展示.注:此图片为“知识卡片”缩略图,如需使用资源,请于资源库调用.例1 利用公式求下列三角函数值:(1)cos 225°;(2)sin 3π8;(3)sin ⎪⎭⎫ ⎝⎛-3π16;(4)tan (-2 040°). 追问5:题目中的角与哪个特殊角接近?拆分之后应该选择哪个诱导公式?预设的师生活动:学生独立完成之后展示交流,注重展示其思考过程,教师帮助规范求解过程.预设答案:(1)cos 225°=cos(180°+45°)=-cos 45°=-22; (2)sin 3π8=sin ⎪⎭⎫ ⎝⎛+3π2π2=sin 3π2=sin ⎪⎭⎫ ⎝⎛-3ππ=sin 3π=23; (3)sin ⎪⎭⎫ ⎝⎛-3π16=-sin 3π16=-sin ⎪⎭⎫ ⎝⎛+3ππ5=⎪⎭⎫ ⎝⎛--3πsin =23; (4)tan(-2 040°)=-tan 2 040° =-tan(6×360°-120°)=tan 120°=tan(180°-60°)=-tan 60°=-3.设计意图:引导学生有序地思考问题,有理地解决问题.问题3:由例1,你对公式一~四的作用有什么进一步的认识?你能自己归纳一下把任意角的三角函数转化为锐角三角函数的步骤吗?★资源名称: 【知识点解析】诱导公式一到四的作用★使用说明:本资源展现“诱导公式一到四的作用”,辅助教师教学,加深学生对于知识的理解和掌握.适合教师课堂进行展示.注:此图片为“知识卡片”缩略图,如需使用资源,请于资源库调用.预设的师生活动:学生独立思考总结,之后展示交流.预设答案:利用公式一~公式四,可以把任意角的三角函数转化为锐角三角函数,一般可按下面步骤进行:设计意图:引导学生梳理求解过程,提炼解题经验,明确从负角转化为锐角的程序,提高自觉地、理性地选择运算公式的能力,提升数学运算素养.例2化简:cos(180°+α)·sin(α+360°)tan(-α-180°)·cos(-180°+α).追问6:本题与例1的异同是什么?由例1总结出的求解程序在此如何应用?预设的师生活动:学生独立完成,之后展示交流,注重展示其思考过程,教师帮助规范求解过程.预设答案:tan(-α-180°)=tan[-(180°+α)]=-tan(180°+α)=-tanα,cos(-180°+α)=cos[-(180°-α)]=cos(180°-α)=-cos α,所以,原式=-cos α·sin α(-tan α)·(-cos α)=-cos α.设计意图:巩固习题的知识和方法,提高学生分析能力和转化能力.★资源名称:【知识点解析】利用诱导公式一到四化简应注意的问题★使用说明:本资源展现“利用诱导公式一到四化简应注意的问题”,辅助教师教学,加深学生对于知识的理解和掌握.适合教师课堂进行展示.注:此图片为“知识卡片”缩略图,如需使用资源,请于资源库调用.(二)梳理小结问题4:诱导公式与三角函数和圆之间有怎样的关系?你学到了哪些基本知识,获得了怎样的研究问题的经验?预设的师生活动:学生自主总结,展示交流.预设答案:(1)诱导公式是圆的对称性的代数化,是三角函数的性质.(2)学到了三组诱导公式.研究方法是数形结合,注重联系.设计意图:帮助学生梳理基本知识,总结研究方法,为进一步的研究铺路奠基.(三)布置作业1.教科书练习;2.教科书习题5.3第1,2,3题.(四)目标检测设计计算:(1)cos(-420°); (2)sin ⎪⎭⎫ ⎝⎛-π67; (3)tan(-1 140°); (4)cos ⎪⎭⎫ ⎝⎛-π677; (5)tan 315°; (6)sin ⎪⎭⎫ ⎝⎛-π411. 预设答案:(1)21;(2)21;(3)-3;(4)23-;(5)-1;(6)22-. 设计意图:检测学生对基本知识和基本及基本技能的掌握情况.。
第1课时诱导公式二、三、四(教师独具内容)课程标准:1.了解三角函数的诱导公式的意义和作用.2.理解诱导公式的推导过程.3.能运用有关诱导公式解决一些三角函数的求值、化简和证明问题.教学重点:诱导公式的推导过程及其应用.教学难点:诱导公式的推导过程.【知识导学】知识点一角的对称(1)角π+α的终边与角α的终边关于□01原点对称,如图a;(2)角-α的终边与角α的终边关于□02x轴对称,如图b;(3)角π-α的终边与角α的终边关于□03y轴对称,如图c.知识点二诱导公式【新知拓展】(1)在公式一~四中,角α是任意角.(2)公式一、二、三、四都叫做诱导公式,它们可概括如下:①记忆方法:2k π+α(k ∈Z ),-α,π±α的三角函数值,等于α的同名函数值,前面加上一个把α看成锐角时原函数值的符号,可以简单地说成“函数名不变,符号看象限”.②解释:“函数名不变”是指等式两边的三角函数同名;“符号”是指等号右边是正号还是负号;“看象限”是指假设α是锐角,要看原三角函数是取正值还是负值,如sin(π+α),若把α看成锐角,则π+α在第三象限,正弦在第三象限取负值,故sin(π+α)=-sin α.(3)利用诱导公式一和三,还可以得出如下公式: sin(2π-α)=-sin α, cos(2π-α)=cos α, tan(2π-α)=-tan α.1.判一判(正确的打“√”,错误的打“×”)(1)利用诱导公式二可以把第三象限角的三角函数化为第一象限角的三角函数.( ) (2)利用诱导公式三可以把负角的三角函数化为正角的三角函数.( )(3)利用诱导公式四可以把第二象限角的三角函数化为第一象限角的三角函数.( ) (4)诱导公式二~四两边的函数名称一致.( ) (5)诱导公式中的角α只能是锐角.( ) 答案 (1)√ (2)√ (3)√ (4)√ (5)× 2.做一做(1)已知tan α=4,则tan(π-α)等于( ) A .π-4 B .4 C .-4D .4-π(2)sin 7π6的值是( )A .-12B .-2C .2 D.12(3)cos(3π+α)+cos(2π+α)=________. 答案 (1)C (2)A (3)0题型一给角求值问题例1 求下列三角函数值:(1)sin(-1200°);(2)tan945°;(3)cos 119π6.[解] (1)sin(-1200°)=-sin1200° =-sin(3×360°+120°)=-sin120° =-sin(180°-60°) =-sin60°=-32. (2)tan945°=tan(2×360°+225°) =tan225°=tan(180°+45°) =tan45°=1.(3)cos 119π6=cos ⎝ ⎛⎭⎪⎫20π-π6 =cos ⎝ ⎛⎭⎪⎫-π6=cos π6=32.金版点睛利用诱导公式解决给角求值问题的步骤[跟踪训练1] 求下列各式的值:(1)sin(-1320°)cos1110°+cos(-1020°)sin750°+tan495°; (2)sin 8π3cos 31π6+tan ⎝ ⎛⎭⎪⎫-23π4.解(1)原式=sin(120°-4×360°)cos(30°+3×360°)+cos(60°-3×360°)sin(30°+2×360°)+tan(135°+360°)=sin120°cos30°+cos60°sin30°+tan135°=32×32+12×12-1=0.(2)原式=sin ⎝ ⎛⎭⎪⎫2π+2π3cos ⎝ ⎛⎭⎪⎫4π+7π6+tan ⎝ ⎛⎭⎪⎫-6π+π4 =sin 2π3cos 7π6+tan π4=sin π3·⎝ ⎛⎭⎪⎫-cos π6+tan π4=32×⎝ ⎛⎭⎪⎫-32+1=14. 题型二给值求值问题例2 (1)已知cos(π-α)=-35,且α是第一象限角,则sin(-2π-α)的值是( )A.45 B .-45C .±45 D.35(2)已知cos ⎝ ⎛⎭⎪⎫π6-α=33,则cos ⎝ ⎛⎭⎪⎫α+5π6=________.[解析] (1)因为cos(π-α)=-cos α, 所以cos α=35.因为α是第一象限角,所以sin α>0. 所以sin α=1-cos 2α=1-⎝ ⎛⎭⎪⎫352=45. 所以sin(-2π-α)=sin(-α)=-sin α=-45.(2)cos ⎝ ⎛⎭⎪⎫α+5π6=cos ⎣⎢⎡⎦⎥⎤π-⎝ ⎛⎭⎪⎫π6-α =-cos ⎝ ⎛⎭⎪⎫π6-α=-33.[答案] (1)B (2)-33[结论探究] (1)若本例(2)中的条件不变,求cos ⎝ ⎛⎭⎪⎫α-13π6; (2)若本例(2)条件不变,求cos ⎝⎛⎭⎪⎫5π6+α-sin 2⎝ ⎛⎭⎪⎫α-π6的值.解 (1)cos ⎝ ⎛⎭⎪⎫α-13π6=cos ⎝ ⎛⎭⎪⎫13π6-α=cos ⎣⎢⎡⎦⎥⎤2π+⎝ ⎛⎭⎪⎫π6-α=cos ⎝ ⎛⎭⎪⎫π6-α=33.(2)因为cos ⎝⎛⎭⎪⎫5π6+α=cos ⎣⎢⎡⎦⎥⎤π-⎝ ⎛⎭⎪⎫π6-α=-cos ⎝ ⎛⎭⎪⎫π6-α=-33, sin 2⎝ ⎛⎭⎪⎫α-π6=sin 2⎣⎢⎡⎦⎥⎤-⎝ ⎛⎭⎪⎫π6-α=sin 2⎝ ⎛⎭⎪⎫π6-α=1-cos 2⎝ ⎛⎭⎪⎫π6-α=1-⎝ ⎛⎭⎪⎫332=23,所以cos ⎝⎛⎭⎪⎫5π6+α-sin 2⎝ ⎛⎭⎪⎫α-π6=-33-23=-2+33.金版点睛解决条件求值问题的策略(1)解决条件求值问题,首先要仔细观察条件与所求式之间的角、函数名称及有关运算之间的差异及联系.(2)可以将已知式进行变形向所求式转化,或将所求式进行变形向已知式转化. [跟踪训练2] (1)已知sin β=13,cos(α+β)=-1,则sin(α+2β)的值为( )A .1B .-1 C.13D .-13(2)已知cos(α-55°)=-13,且α为第四象限角,则sin(α+125°)的值为________;(3)已知tan(π+α)=3,求2cos (π-α)-3sin (π+α)4cos (-α)+sin (2π-α)的值.答案 (1)D (2)223(3)见解析解析 (1)∵cos(α+β)=-1,∴α+β=π+2k π,k ∈Z , ∴sin(α+2β)=sin[(α+β)+β]=sin(π+β)=-sin β=-13.(2)∵cos(α-55°)=-13<0,且α是第四象限角.∴α-55°是第三象限角.∴sin(α-55°)=-1-cos 2(α-55°)=-223.∵α+125°=180°+(α-55°), ∴sin(α+125°)=sin[180°+(α-55°)]=-sin(α-55°)=223.(3)因为tan(π+α)=3,所以tan α=3. 故2cos (π-α)-3sin (π+α)4cos (-α)+sin (2π-α)=-2cos α+3sin α4cos α-sin α=-2+3tan α4-tan α=-2+3×34-3=7.题型三三角函数式的化简 例3 化简下列各式:(1)tan (2π-α)sin (-2π-α)cos (6π-α)cos (α-π)sin (5π-α);(2)1+2sin290°cos430°sin250°+cos790°;(3)sin ⎝ ⎛⎭⎪⎫2k π+2π3cos ⎝ ⎛⎭⎪⎫k π+4π3(k ∈Z ). [解] (1)原式=sin (2π-α)cos (2π-α)·sin (-α)cos (-α)cos (π-α)sin (π-α)=-sin α(-sin α)(-cos α)sin α=-sin αcos α=-tan α.(2)原式=1+2sin (360°-70°)cos (360°+70°)sin (180°+70°)+cos (720°+70°)=1-2sin70°cos70°-sin70°+cos70°=|cos70°-sin70°|cos70°-sin70°=sin70°-cos70°cos70°-sin70°=-1.(3)当k 为偶数时,原式=sin 2π3cos 4π3=sin ⎝ ⎛⎭⎪⎫π-π3cos ⎝ ⎛⎭⎪⎫π+π3 =-sin π3cos π3=-34.当k 为奇数时,原式=sin 2π3cos ⎝ ⎛⎭⎪⎫π+4π3=sin ⎝ ⎛⎭⎪⎫π-π3cos ⎝ ⎛⎭⎪⎫2π+π3=sin π3cos π3=34.金版点睛三角函数式化简的常用方法(1)依据所给式子合理选用诱导公式将所给角的三角函数转化为另一个角的三角函数. (2)切化弦:一般需将表达式中的切函数转化为弦函数. (3)注意“1”的应用:1=sin 2α+cos 2α=tan π4.(4)用诱导公式进行化简时,若遇到k π±α的形式,需对k 进行分类讨论,然后再运用诱导公式进行化简.[跟踪训练3] 化简:(1)cos (-α)tan (7π+α)sin (π-α);(2)sin (1440°+α)cos (α-1080°)cos (-180°-α)sin (-α-180°). 解 (1)cos (-α)tan (7π+α)sin (π-α)=cos αtan (π+α)sin α=cos αtan αsin α=sin αsin α=1.(2)原式=sin (4×360°+α)cos (3×360°-α)cos (180°+α)·[-sin (180°+α)]=sin αcos (-α)(-cos α)sin α=cos α-cos α=-1.1.若n 为整数,则化简sin (n π+α)cos (n π+α)所得的结果是( )A .tan nαB .-tan nαC .tan αD .-tan α答案 C解析 原式=tan(n π+α),无论n 是奇数还是偶数,tan(n π+α)都等于tan α.2.已知tan ⎝ ⎛⎭⎪⎫π3-α=13,则tan ⎝ ⎛⎭⎪⎫2π3+α=( ) A.13 B .-13C.233D .-233答案 B解析 因为tan ⎝ ⎛⎭⎪⎫2π3+α=tan ⎣⎢⎡⎦⎥⎤π-⎝ ⎛⎭⎪⎫π3-α=-tan ⎝ ⎛⎭⎪⎫π3-α,所以tan ⎝ ⎛⎭⎪⎫2π3+α=-13. 3.cos (-585°)sin495°+sin (-570°)的值等于________.答案2-2解析 原式=cos (360°+225°)sin (360°+135°)-sin (210°+360°)=cos225°sin135°-sin210°=cos (180°+45°)sin (180°-45°)-sin (180°+30°)=-cos45°sin45°+sin30°=-2222+12=2-2.4.已知sin(45°+α)=513,则sin(225°+α)=________.答案 -513解析 sin(225°+α)=sin[(45°+α)+180°] =-sin(45°+α)=-513.5.化简:sin (α+n π)+sin (α-n π)sin (α+n π)cos (α-n π)(n ∈Z ).解 当n =2k ,k ∈Z 时,原式=sin (α+2k π)+sin (α-2k π)sin (α+2k π)cos (α-2k π)=2cos α.当n =2k +1,k ∈Z 时,原式=sin[α+(2k +1)π]+sin[α-(2k +1)π]sin[α+(2k +1)π]cos[α-(2k +1)π]=-2cos α.所以原式=⎩⎪⎨⎪⎧2cos α(n 为偶数),-2cos α(n 为奇数).。
1.3三角函数的诱导公式(第1课时)抚松六中 唐 玲一.教材的地位和作用本节教学内容是4组三角函数诱导公式的推导过程及其简单应用。
承上,有任意角三角函数正弦、余弦和正切的比值定义、三角函数线、同角三角函数关系等;启下,学生将学习利用诱导公式进行任意角三角函数的求值化简,以及三角函数的图象与性质(包括三角函数的周期性)等内容。
同时,学生在初中就接触过对称等知识,对几何图形的对称等知识相当熟悉。
这些构成了学生的知识基础。
诱导公式的作用主要在于把任意角的三角函数化归成锐角的三角函数,体现了把一般化特殊、复杂化简单、未知化已知的数学思想。
二.教学目标1.知识与技能(1)能够借助三角函数的定义及单位圆中的三角函数线推导三角函数的诱导公式。
(2)能够运用诱导公式,把任意角的三角函数的化简、求值问题转化为锐角三角函数的化简、求值问题。
2.过程与方法(1)经历由几何直观探讨数量关系式的过程,培养学生数学发现能力和概括能力。
(2)通过对诱导公式的探求和运用,培养化归能力,提高学生分析问题和解决问题的能力。
3.情感、态度、价值观(1)通过对诱导公式的探求,培养学生的探索能力、钻研精神和科学态度。
(2)在诱导公式的探求过程中,运用合作学习的方式进行,培养学生团结协作的精神。
三.教学重点与难点教学重点:探求π-α的诱导公式。
π+α与-α的诱导公式在小结π-α的诱导公式发现过程的基础上,教师引导学生推出。
教学难点:π+α,-α与角α终边位置的几何关系,发现由终边位置关系导致(与单位圆交点)的坐标关系,运用任意角三角函数的定义导出诱导公式的“研究路线图”。
四.教学方法与教学手段问题教学法、合作学习法,结合多媒体课件五.教学过程导入新课思路1.①利用单位圆表示任意角的正弦值和余弦值.②复习诱导公式一及其用途. sin(α+2k π) = sin α,cos(α+2k π) = cos α, (k ∈Z ) (公式一)tan(α+2k π) = tan α。
授课课题:§4.3-2诱导公式(一) 授课内容:五组诱导公式 授课课时:1课时 授课方式:新授
教学目标: 1、掌握三角函数的诱导公式;2、学会利用口诀法记忆三角函数的诱导公式.
3、会利用诱导公式计算三角函数式的值及化简.
教学重点:诱导公式. 教学难点:诱导公式的应用. §4.3-2诱导公式(一) 一、诱导公式 公式1: 公式2: 公式3: 公式4: 公式5: 口诀:
例1、 例2、 练习
教学过程:
复习引入
1、 复习任意角三角函数在各个象限内的符号
(口诀:一全正,二正弦,三正切,四余弦) 2、复习三角函数线
有向线段MP :正弦线 MP =αsin 有向线段OM :余弦线 OM =αcos 有向线段AT :正切线 AT =αtan
新授
1、思考: α与k 360︒+α的终边有什么关系?(终边重合,可推出下列结论)
公式1:
2、 思考:α与-α的终边有什么关系?
(从三角函数线的关系中,我们可以推导出以下结论)
sin(2k π+α) = sin α cos(2k π+α) = cos α. tan(2k π+α) = tan α
sin(k 360︒+α)=sin α cos(k 360︒+α)=cos α tan(k 360︒+α)=tan α
公式2:
3、 思考:α与180︒+α的终边有什么关系?
(从三角函数线之间的关系,我们同样可以推导出以下结论) 公式3:
4、
利用“符号看象限,函数名不变”这一句话我们同样可以有以下结论: 公式4:
公式5:
典型例题
例1、求下列三角函数值 (1)sin 225o
;(2)26cos 3π⎛⎫- ⎪⎝⎭;(3)11tan 6π
⎛⎫-
⎪⎝⎭;(4)()
cot 1024-o
;(5)13sec 4
π⎛⎫
-
⎪⎝⎭
;(6)()csc 1165-o
注:利用诱导公式求三角函数值得基本步骤:
负角变正角,大角变小角,一直变到0~90o 之间的角 目标检测1:
P’( y )
求下列三角函数值
(1)()
sin 420-o ;(2)()tan 945-o
;(3)17cos 6π⎛⎫
-
⎪⎝⎭
;
(4)37cot 3π⎛⎫-
⎪⎝⎭;(5)21sec 4
π
⎛⎫
-
⎪⎝⎭
; 6)()csc 1525-o ; 例2、化简:
()()
()()
cos sin sin cos παπααππα+⋅+--⋅--
目标检测2:化简:()()
()()
cos sin sin cos παπααππα--⋅--+⋅+.
课堂小结
一般程序:负角变正角,大角变小角,一直变到0~90o 之间的角.
布置作业:
学习指导用书:P/89 A 组.4,7。