高中数学必修二——平面与平面平行的判定
- 格式:ppt
- 大小:2.97 MB
- 文档页数:19
专题2:平面与平面平行的判定与性质平面与平面的位置关系:平行——没有公共点:符号α∥β相交——有一条公共直线: 符号α∩β=a1.平面与平面平行的判定(1)定义:两个平面没有公共点,称这两个平面平行;(2)判定定理:一个平面内的两条相交直线与另一个平面平行,则这两个平面平行。
简记为:线面平行,则面面平行.符号:,,a ba b Aa bαααβββ⊂⊂⎫⎪=⇒⎬⎪⎭1.如图所示,四棱锥P ABCD-中,底面ABCD为平行四边形,E、F分别为PD、PA的中点,AC、BD交于点O.(1)求证:平面//PBC平面EFO;2.如图,正方体1111ABCD A B C D-中,E,F,P,Q分别是BC,11C D,1AD,BD的中点.(1)求证:平面PQB //平面11CB D ;3.如图,在棱长为2的正方体1111ABCD A B C D 中,E ,F 分别为11A D ,11B C 的中点.(1)求证:平面1//AB E 平面1BD F ;4.如图所示,在三棱柱ABC -A 1B 1C 1中,E ,F ,G ,H 分别是AB ,AC ,A 1B 1,A 1C 1的中点,求证:(1)平面EF A 1∥平面BCHG .(2)5.如图,三棱锥P ABC -中,,,PC AC BC 两两垂直,1BC PC ==,2AC =,,,E F G 分别是,,AB AC AP 的中点.(1)证明:平面//GEF 面PCB ;6.如图,在四棱锥P ABCD -中,底面ABCD 为平行四边形,点M ,N ,Q 分别在PA ,BD ,PD 上(不与端点重合),且:::PM MA BN ND PQ QD ==.求证:平面//MNQ 平面PBC .7.如图所示,在正三棱柱ABC-A 1B 1C 1中,E ,F ,G 是侧面对角线上的点,且BE=CF=AG ,平面与平面平行的性质定理:如果两个平行的平面同时与第三个平面相交,那么它们的交线平行。
数学高中必修二知识点总结必看各个科目都有自己的学习方法,但其实都是万变不离其中的,基本离不开背、记,练,数学作为最烧脑的科目之一,也是一样的。
下面是小编给大家整理的一些数学高中必修二知识点的学习资料,希望对大家有所帮助。
高一年级数学必修二知识点总结【两个平面的位置关系】(1)两个平面互相平行的定义:空间两平面没有公共点(2)两个平面的位置关系:两个平面平行-----没有公共点;两个平面相交-----有一条公共直线。
a、平行两个平面平行的判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行。
两个平面平行的性质定理:如果两个平行平面同时和第三个平面相交,那么交线平行。
b、相交二面角(1)半平面:平面内的一条直线把这个平面分成两个部分,其中每一个部分叫做半平面。
(2)二面角:从一条直线出发的两个半平面所组成的图形叫做二面角。
二面角的取值范围为[0°,180°](3)二面角的棱:这一条直线叫做二面角的棱。
(4)二面角的面:这两个半平面叫做二面角的面。
(5)二面角的平面角:以二面角的棱上任意一点为端点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角。
(6)直二面角:平面角是直角的二面角叫做直二面角。
【两平面垂直】两平面垂直的定义:两平面相交,如果所成的角是直二面角,就说这两个平面互相垂直。
记为⊥两平面垂直的判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直两个平面垂直的性质定理:如果两个平面互相垂直,那么在一个平二面角求法:直接法(作出平面角)、三垂线定理及逆定理、面积射影定理、空间向量之法向量法(注意求出的角与所需要求的角之间的等补关系)。
高二数学必修二知识点归纳一、直线与圆:1、直线的倾斜角的范围是在平面直角坐标系中,对于一条与轴相交的直线,如果把轴绕着交点按逆时针方向转到和直线重合时所转的最小正角记为,就叫做直线的倾斜角。
8.5.3平面与平面平行学习目标核心素养1.掌握空间平面与平面平行的判定定理和性质定理,并能应用这两个定理解决问题.( 重点)2.平面与平面平行的判定定理和性质定理的应用.( 难点)1.通过平面与平面平行的判定定理和性质定理的学习,培养直观想象的核心素养.2.借助平行关系的综合问题,提升逻辑推理的核心素养.1.平面与平面平行的判定( 1)文字语言:如果一个平面内的两条相交直线与另一个平面平行,那么这两个平面平行.( 2)符号语言:a⊂β,b⊂β,a∩b=P,a∥α,b∥α⇒β∥α.( 3)图形语言:如图所示.2.平面与平面平行的性质定理( 1)文字语言:两个平面平行,如果另一个平面与这两个平面相交,那么两条交线平行.( 2)符号语言:α∥β,α∩γ=a,β∩γ=b⇒a∥b.( 3)图形语言:如图所示.( 4)作用:证明两直线平行.思考:如果两个平面平行,那么这两个平面内的所有直线都相互平行吗?[提示]不一定.它们可能异面.1.已知平面α内的两条直线a,b,a∥β,b∥β,若要得出平面α∥平面β, 则直线a,b的位置关系是( )A.相交B.平行C.异面D.垂直A[根据面面平行的判定定理可知a,b相交.]2.平面α与圆台的上、下底面分别相交于直线m,n,则m,n的位置关系是( )A.平行B.相交C.异面D.平行或异面A[因为圆台的上、下底面互相平行,所以由平面与平面平行的性质定理可知m∥n.]3.已知平面α∥平面β,直线l∥α,则( )A. l∥βB. l⊂βC. l∥β或l⊂βD. l, β相交C[假设l与β相交,又α∥β,则l与α相交,与l∥α矛盾,则假设不成立,则l∥β或l⊂β.]4.已知长方体ABCD-A′B′C′D′,平面α∩平面ABCD=EF,平面α∩平面A′B′C′D′=E′F′,则EF与E′F′的位置关系是( ) A.平行B.相交C.异面D.不确定A[由面面平行的性质定理易得.]平面与平面平行的判定【例11111A1B1、B1C1、C1D1、D1A1的中点.求证:( 1)E、F、B、D四点共面;( 2)平面MAN∥平面EFDB.[思路探究]( 1)欲证E、F、B、D四点共面,需证BD∥EF即可.( 2)要证平面MAN∥平面EFDB,只需证MN∥平面EFDB,AN∥平面BDFE即可.[详解]( 1)连接B1D1,∵E、F分别是边B1C1、C1D1的中点,∴EF∥B1D1.而BD∥B1D1,∴BD∥EF.∴E、F、B、D四点共面.( 2)易知MN∥B1D1,B1D1∥BD,∴MN∥BD.又MN⊄平面EFDB,BD⊂平面EFDB.∴MN∥平面EFDB.连接MF.∵M、F分别是A1B1、C1D1的中点,∴MF∥A1D1,MF=A1D1.∴MF∥AD且MF=AD.∴四边形ADFM是平行四边形,∴AM∥DF.又AM⊄平面BDFE,DF⊄平面BDFE,∴AM∥平面BDFE.又∵AM∩MN=M,∴平面MAN∥平面EFDB.平面与平面平行的判定方法:( 1)定义法:两个平面没有公共点.( 2)判定定理:一个平面内的两条相交直线分别平行于另一个平面.( 3)转化为线线平行:平面α内的两条相交直线与平面β内的两条相交直线分别平行,则α∥β.( 4)利用平行平面的传递性:若α∥β,β∥γ,则α∥γ.1.如图所示,在四棱锥P-ABCD中,底面ABCD为平行四边形.点M,N,Q分别在P A,BD,PD上,且PM∶MA=BN∶ND=PQ∶QD.求证:平面MNQ∥平面PBC.[证明]∵PM∶MA=BN∶ND=PQ∶QD,∴MQ∥AD,NQ∥BP.又∵BP⊂平面PBC,NQ⊄平面PBC,∴NQ∥平面PBC.∵四边形ABCD为平行四边形.∴BC∥AD,∴MQ∥BC.又∵BC⊂平面PBC,MQ⊄平面PBC,∴MQ∥平面PBC.又∵MQ∩NQ=Q,∴平面MNQ∥平面PBC.平面与平面平行的性质[探究问题]1.平面与平面平行性质定理的条件有哪些?[提示]必须具备三个条件:①平面α和平面β平行,即α∥β;②平面γ和α相交,即α∩γ=a;③平面γ和β相交,即β∩γ=b.以上三个条件缺一不可.2.线线、线面、面面平行之间有什么联系?[提示]联系如下:【例2】如图,已知平面α∥平面β,P∉α且P∉β,过点P的直线m与α、β分别交于A、C,过点P的直线n与α、β分别交于B、D,且P A=6,AC=9,PD=8,求BD的长.[详解]因为AC∩BD=P,所以经过直线AC与BD可确定平面PCD,因为α∥β,α∩平面PCD =AB ,β∩平面PCD =CD ,所以AB ∥CD .所以P A AC =PBBD ,即69=8-BD BD .所以BD =245.1. 将本例改为:已知平面α∥β∥γ,两条直线l 、m 分别与平面α、β、γ相交于点A 、B 、C 与D 、E 、F .已知AB =6,DE DF =25,则AC = .15 [由题可知DE DF =ABAC ⇒AC =DF DE ·AB =52×6=15.]2.将本例改为:若点P 在平面α,β之间( 如图所示),其他条件不变,试求BD 的长.[详解] 与本例同理,可证AB ∥CD . 所以P A PC =PB PD ,即63=BD -88,所以BD =24.3.将本例改为:已知三个平面α、β、γ满足α∥β∥γ,直线a 与这三个平面依次交于点A、B、C,直线b与这三个平面依次交于点E、F、G. 求证:ABBC=EFFG.[证明]连接AG交β于H,连BH、FH、AE、CG.因为β∥γ,平面ACG∩β=BH,平面ACG∩γ=CG,所以BH∥CG.同理AE∥HF,所以ABBC =AHHG=EFFG.应用平面与平面平行性质定理的基本步骤:平行关系的综合应用【例3】如图所示,四边形ABCD是平行四边形,点P是平面ABCD外一点,M 是PC的中点,在DM上取一点G,过G和AP作平面交平面BDM于GH.求证:GH∥平面P AD.[证明]如图所示,连接AC交BD于点O,连接MO.∵ABCD是平行四边形,∴O是AC的中点,又M是PC的中点,∴P A∥MO,而AP⊄平面BDM,OM⊂平面BDM,∴P A∥平面BMD,又∵P A⊂平面P AHG,平面P AHG∩平面BMD=GH,∴P A∥GH.又P A⊂平面P AD,GH⊄平面P AD,∴GH∥平面P AD.1.证明直线与直线平行的方法( 1)平面几何中证明直线平行的方法.如同位角相等,两直线平行;三角形中位线的性质;平面内垂直于同一直线的两条直线互相平行等.( 2)基本事实4.( 3)线面平行的性质定理.( 4)面面平行的性质定理.2. 证明直线与平面平行的方法:( 1)线面平行的判定定理.( 2)两个平面平行,其中一个平面内的任意一条直线平行于另一个平面.2.如图,三棱锥A-BCD被一平面所截,截面为平行四边形EFGH.求证:CD∥平面EFGH.[证明]由于四边形EFGH是平行四边形,∴EF∥GH.∵EF⊄平面BCD,GH⊂平面BCD,∴EF∥平面BCD.又∵EF⊂平面ACD,平面ACD∩平面BCD=CD,∴EF∥CD.又∵EF⊂平面EFGH,CD⊄平面EFGH,∴CD∥平面EFGH.1.三种平行关系的转化.2.常用的面面平行的其他几个性质( 1)两个平面平行,其中一个平面内的任意一条直线平行于另一个平面.( 2)夹在两个平行平面之间的平行线段长度相等.( 3)经过平面外一点有且只有一个平面与已知平面平行.( 4)两条直线被三个平行平面所截,截得的对应线段成比例.( 5)如果两个平面分别平行于第三个平面,那么这两个平面互相平行.1.判断正误( 1)α内有无数多条直线与β平行,则α∥β.( )( 2)直线a∥α,a∥β.则α∥β.( )( 3)直线a⊂α,直线b⊂β,且a∥β,b∥α,则α∥β.( )( 3)α内的任何直线都与β平行,则α∥β.( )[答案]( 1)×( 2)×( 3)×( 4)√2.a∥α,b∥β,α∥β,则a与b位置关系是( )A.平行B.异面C.相交D.平行或异面或相交D[如图①②③所示,a与b的关系分别是平行、异面或相交.]①②③3.若平面α∥平面β,直线a⊂α,点M∈β,过点M的所有直线中( )A.不一定存在与a平行的直线B.只有两条与a平行的直线C.存在无数条与a平行的直线D.有且只有一条与a平行的直线D[由于α∥β,a⊂α,M∈β,过M有且只有一条直线与a平行,故D项正确.] 4.用一个平面去截三棱柱ABC-A1B1C1,交A1C1,B1C1,BC,AC分别于点E,F,G,H.若A1A>A1C1,则截面的形状可以为.( 填序号)①一般的平行四边形;②矩形;③菱形;④正方形;⑤梯形.②⑤[当FG∥B1B时,四边形EFGH为矩形;当FG不与B1B平行时,四边形EFGH为梯形.]5.如图,在四面体ABCD中,点E,F分别为棱AB,AC上的点,点G为棱AD的中点,且平面EFG∥平面BCD .求证:BC=2EF.[证明]因为平面EFG∥平面BCD,平面ABD∩平面EFG=EG,平面ABD∩平面BCD=BD,所以EG∥BD,又G为AD的中点,故E为AB的中点,同理可得,F为AC的中点,所以BC=2EF.11。