07ANSYS求解
- 格式:ppt
- 大小:844.00 KB
- 文档页数:30
ANSYS中多载荷步求解的三种⽅法⼀.载荷步的含义⼀个载荷步是指边界条件和载荷选项的⼀次设置,⽤户可对此进⾏⼀次或多次求解。
⼀个分析过程可以包括:1.单⼀载荷步(常常这是⾜够的)2.多重载荷步有三种⽅法可以⽤来定义并求解多载荷步1.多次求解⽅法2.载荷步⽂件⽅法3.向量参数⽅法⼆.多次求解⽅法介绍多次求解⽅法是三种⽅法中最易理解的⽅法缺点:⽤户必须等到每⼀次求解完成后才能定义下⼀次载荷步(除⾮使⽤批处理⽅法)注意:只有在不离开求解过程时,此⽅法才有效。
否则,必须指⽰程序进⾏重启动为了使⽤多次求解⽅法:1.定义第⼀个载荷步并存盘2.进⾏求解3.不要退出求解器,按需要为第⼆次求解改变载荷步并存盘4.进⾏求解5.不要退出求解器,继续进⾏步骤3和步骤4直到所有的载荷步完成6.进⾏后处理三.载荷步⽂件⽅法介绍当⽤户想离开计算机时,使⽤此⽅法求解多重载荷步是很⽅便的程序将每个载荷步写到⼀个载荷步⽂件,此⽂件名为jobname.sxx(sxx 为载荷步号),然后使⽤⼀条命令,读进每个载荷步⽂件并开始求解为了使⽤载荷步⽂件⽅法:1.定义第⼀个载荷步2.将边界条件写进⽂件Main Menu: Solution >-Load Step Opts- Write LS File (jobname.sxx)…3.为了进⾏第⼆次求解按需要改变载荷条件4.将边界条件写到第⼆个⽂件5.利⽤载荷步⽂件进⾏求解Main Menu: Solution > -Solve- From LS Files (jobname.sxx)…四.向量参数⽅法介绍主要⽤于瞬态和⾮线性稳-静态分析。
使⽤向量参数和循环语句来定义⼀个载荷随时间变化的表*DO,FYVAL,1,10,1 *DIM,LOADVALS,,5F,1,FY,FYVAL LOADVALS(1)=1,2,3,5,7SOLVE *DO,II,1,5,1*ENDDO F,1,FY,LOADVALS(II)SOLVE*ENDDO五.使⽤重启动⽣成多重载荷步使⽤重启动可能不可靠,因此推荐使⽤多次求解⽅法来求解⼀个载荷步。
求解模块SOLUTION 前处理阶段完成建模以后,用户可以在求解阶段获得分析结果。
点击快捷工具区的SA VE_DB将前处理模块生成的模型存盘,退出Preprocessor,点击实用菜单项中的Solution,进入分析求解模块。
在该阶段,用户可以定义分析类型、分析选项、载荷数据和载荷步选项,然后开始有限元求解。
ANSYS软件提供的分析类型如下:1.结构静力分析用来求解外载荷引起的位移、应力和力。
静力分析很适合求解惯性和阻尼对结构的影响并不显著的问题。
ANSYS程序中的静力分析不仅可以进行线性分析,而且也可以进行非线性分析,如塑性、蠕变、膨胀、大变形、大应变及接触分析。
2.结构动力学分析结构动力学分析用来求解随时间变化的载荷对结构或部件的影响。
与静力分析不同,动力分析要考虑随时间变化的力载荷以及它对阻尼和惯性的影响。
ANSYS可进行的结构动力学分析类型包括:瞬态动力学分析、模态分析、谐波响应分析及随机振动响应分析。
3.结构非线性分析结构非线性导致结构或部件的响应随外载荷不成比例变化。
ANSYS程序可求解静态和瞬态非线性问题,包括材料非线性、几何非线性和单元非线性三种。
4.动力学分析ANSYS程序可以分析大型三维柔体运动。
当运动的积累影响起主要作用时,可使用这些功能分析复杂结构在空间中的运动特性,并确定结构中由此产生的应力、应变和变形。
5.热分析程序可处理热传递的三种基本类型:传导、对流和辐射。
热传递的三种类型均可进行稳态和瞬态、线性和非线性分析。
热分析还具有可以模拟材料固化和熔解过程的相变分析能力以及模拟热与结构应力之间的热-结构耦合分析能力。
6.电磁场分析主要用于电磁场问题的分析,如电感、电容、磁通量密度、涡流、电场分布、磁力线分布、力、运动效应、电路和能量损失等。
还可用于螺线管、调节器、发电机、变换器、磁体、加速器、电解槽及无损检测装置等的设计和分析领域。
7.流体动力学分析ANSYS流体单元能进行流体动力学分析,分析类型可以为瞬态或稳态。
ansys有限元求解基本方法-回复ANSYS有限元求解基本方法有限元法(Finite Element Method,FEM)是一种高效且广泛应用于工程领域的数值分析方法。
它将复杂的实际结构问题转化为计算机理解的离散化网格,然后应用数值方法对这个网格进行计算,以求解结构的行为和性能。
ANSYS是目前应用最广泛的有限元软件之一,本文将介绍ANSYS 中有限元求解的基本方法。
1. 网格划分(Meshing):在使用ANSYS进行有限元分析之前,首先需要将复杂的实际结构转化为有限元网格。
网格划分是有限元分析的第一步,它直接影响到后续的求解精度和计算效率。
ANSYS提供了多种网格划分工具,包括自动划分和手动划分。
自动划分是指ANSYS根据用户设定的参数自动生成网格,手动划分是指用户手动绘制网格。
2. 定义材料和边界条件:在进行有限元分析之前,需要定义材料的力学性质和边界条件。
材料的力学性质包括弹性模量、泊松比、屈服强度等,边界条件包括约束和外载荷等。
ANSYS提供了简单易用的界面,可以方便地输入这些参数。
3. 选择求解器和求解方法:在网格划分和参数定义完成后,需要选择适当的求解器和求解方法。
ANSYS提供了多种求解器和求解算法,用于求解不同类型的问题。
选择合适的求解器和求解方法可以提高计算效率和求解精度。
4. 求解并后处理:在进行有限元求解之前,可以进行预处理操作,如自适应网格划分、模型简化等,以提高求解效率。
然后,通过点击求解按钮,ANSYS将自动进行有限元求解。
求解完成后,可以进行后处理操作,如显示位移、应力、应变等结果,以及生成图形和报表等。
ANSYS在有限元求解过程中还提供了许多高级功能,如非线性分析、动力学分析、热传导分析等。
这些高级功能可以进一步扩展ANSYS的应用范围和分析能力。
综上所述,ANSYS有限元求解的基本方法包括网格划分、定义材料和边界条件、选择求解器和求解方法、求解并后处理。
通过这些步骤,可以对复杂的实际结构进行准确、可靠的分析和设计,为工程实践提供重要的支持和指导。
ansys约束方程求解算法ANSYS是一种常用的工程仿真软件,它可以用来求解各种不同类型的问题。
其中,约束方程是ANSYS求解算法的关键部分之一。
本文将介绍ANSYS中约束方程的求解算法,并探讨其在工程仿真中的应用。
在ANSYS中,约束方程用于描述物体之间的力学关系,以及边界条件和约束条件。
在求解过程中,需要将这些约束方程纳入计算模型中,以确保模拟结果的准确性和可靠性。
ANSYS中的约束方程求解算法主要包括两个步骤:建立方程和求解方程。
建立方程。
在ANSYS中,可以通过几何约束、材料性质、边界条件等来建立约束方程。
几何约束包括距离、角度、平行等几何关系,材料性质包括弹性模量、泊松比等材料性质参数,边界条件包括固定边界、载荷边界等约束条件。
通过将这些约束条件转化为数学方程,可以建立起模型的约束方程。
求解方程。
ANSYS利用数值计算方法求解约束方程,通常采用有限元法。
有限元法将模拟区域分割为有限个小单元,每个小单元内部的约束方程可以表示为一个线性或非线性方程组。
通过求解这些方程组,可以得到每个小单元内的位移、应力等物理量。
然后,通过将这些物理量进行组合,可以得到整个模拟区域的位移、应力分布情况。
在工程仿真中,约束方程的求解算法在各个领域有着广泛的应用。
以结构分析为例,通过建立约束方程,可以模拟材料在不同载荷下的应力分布情况,从而评估结构的强度和刚度。
在流体力学中,约束方程可以用于描述流体的运动和压力分布,从而分析流体的流动特性。
在电磁场分析中,约束方程可以用于求解电磁场的分布情况,从而评估电磁设备的性能。
除了求解约束方程,ANSYS还提供了丰富的后处理功能。
通过后处理,可以对求解结果进行可视化展示,如绘制变形图、应力云图等,帮助工程师更直观地理解模拟结果。
同时,还可以对模拟结果进行进一步的分析和优化,以满足设计要求。
约束方程的求解算法是ANSYS仿真软件的核心功能之一。
通过建立和求解约束方程,可以模拟各种不同类型的工程问题,并得到准确可靠的仿真结果。
ANSYS计算结果与分析一、有限元原理:有限元的解题思路可简述为:从结构的位移出发,通过寻找位移和应变,应变与应力,应力与内力,内力与外力的关系,建立相应的方程组,从而由已知的外力求出结构的内应力和位移。
有限元分析过程由其基本代数方程组成:[K]{V}={Q},[K]为整个结构的刚变矩阵,{V}为未知位移量,{Q}为载荷向量。
这些量是不确定的,依靠所需解决的问题进行定量描述。
上述结构方程是通过应用边界条件,将结构离散化成小单元,从综合平衡方程中获得。
有限元是通过单元划分,在某种程度上模拟真实结构,并由数字对结构诸方面进行描述。
其描述的准确性依赖于单元细划的程度,载荷的真实性,材料力学参数的可信度,边界条件处理的正确程度。
本算例采用三角形六结点来划分单元。
二、有限元解题步骤:有限元的解题步骤为:①连续体的离散化;②选择单元位移函数;③建立单元刚度矩阵;④求解代数方程组,得到所有节点位移分量;⑤由节点位移求出内力或应力。
三、工程实例分析现已知一混凝土截面梁,长为L=2.4m,梁高为h=0.3m,梁宽设为单位宽度。
混凝土材料的各项属性为:容重γ=25KN/m3,E=2.4E10Pa,λ=0.2。
若该混凝土梁分别受到以下两种不同约束和不同受力的作用:(1)两端受固定约束作用,中间作用一个集中荷载P=10KN作用,如图A所示。
(2)一端受固定约束作用悬臂梁,梁上作用一均布荷载q=5KN/m作用,如图B 所示。
现要求使用有限元中的三角形六节点单元来计算两种情况下梁的位移与应力,并与力学计算结果进行比较和分析ANSYS分析过程(1)两端固定有限元模型Y方向位移图X方向应力图具体节点位移如下表:x应力表(单位:pa)NODE SX SY SZ SXY SYZ SXZ 1 -0.47117E+06 -94234. 0.0000 -71939. 0.00000.0000 2 -0.44824E+06 -43524. 0.0000 36804. 0.0000 0.0000 4 -0.26659E+06 24017.0.0000 11756. 0.0000 0.0000 6 -0.11092E+06 -1675.1 0.0000 -1416.0 0.0000 0.0000 8 26454. -287.29 0.0000 -529.21 0.0000 0.0000 10 0.14396E+06 -296.19 0.0000 -428.64 0.0000 0.0000 12 0.24665E+06 -154.80 0.0000 -931.20 0.0000 0.0000 14 0.31294E+06 -651.06 0.0000 1868.1 0.0000 0.0000 16 0.25514E+06 777.86 0.0000 2607.3 0.0000 0.0000 18 0.15259E+06 421.23 0.0000 955.79 0.0000 0.0000 20 36815. 350.40 0.0000 1367.3 0.0000 0.0000 22 -99169. 406.51 0.0000 1539.1 0.0000 0.0000 24 -0.25029E+06 709.47 0.0000 469.07 0.0000 0.0000 26 0.47021E+06 94043. 0.0000 71822. 0.0000 0.0000 28 -0.26849E+06 -41899. 0.0000 46711. 0.0000 0.0000 30 -0.12480E+06 -20589. 0.0000 44463. 0.0000 0.0000 32 2346.1 1441.3 0.0000 44301. 0.0000 0.0000 34 0.13084E+06 23544. 0.0000 46007. 0.0000 0.0000 36 0.27890E+06 44622. 0.0000 49721. 0.0000 0.0000 38 0.44740E+06 43435. 0.0000 -36738. 0.0000 0.000040 0.26576E+06 -23958. 0.0000 -11724. 0.0000 0.0000 42 0.11006E+06 1672.9 0.0000 1413.1 0.0000 0.0000 44 -27364. 285.26 0.0000 538.86 0.0000 0.0000 46 -0.14505E+06 297.97 0.0000 455.70 0.0000 0.0000 48 -0.23089E+06 828.18 0.0000 -2277.4 0.0000 0.0000 50 -0.35045E+06 -94932. 0.0000 4506.0 0.0000 0.0000 52 -0.23867E+06 40010. 0.0000 13774. 0.0000 0.0000 54 -0.15354E+06 -1579.2 0.0000 -2170.7 0.0000 0.0000 56 -37694. -287.51 0.0000 -1318.8 0.0000 0.0000 58 98366. -412.70 0.0000 -1539.9 0.0000 0.0000 60 0.24952E+06 -708.11 0.0000 -474.61 0.0000 0.0000 63 0.26768E+06 41770. 0.0000 -46653. 0.0000 0.0000 65 0.12400E+06 20454.0.0000 -44435. 0.0000 0.0000 67 -3155.0 -1579.4 0.0000 -44304. 0.0000 0.0000 69 -0.13167E+06 -23682. 0.0000 -46041. 0.0000 0.0000 71 -0.27977E+06 -44758. 0.0000 -49784. 0.0000 0.0000 151 0.18243E+06 -5692.4 0.0000 37694. 0.0000 0.0000 153 93763. -895.44 0.0000 60650. 0.0000 0.0000 155 2906.0 1964.2 0.0000 67290. 0.0000 0.0000 157 -87037. 5292.4 0.0000 58490. 0.0000 0.0000 159 -0.17211E+06 11178. 0.0000 31663. 0.0000 0.0000 167 73372. -851.10 0.0000 31158. 0.0000 0.0000 169 39292. -840.75 0.0000 49441. 0.0000 0.0000 171 3787.8 -337.99 0.0000 55813. 0.0000 0.0000 173 -32101. 100.68 0.0000 50074. 0.0000 0.0000 175 -67944. 717.92 0.0000 32029. 0.0000 0.0000 183 -17938. -922.76 0.0000 27092. 0.0000 0.0000 185 -6795.5 -612.85 0.0000 42946. 0.0000 0.0000 187 3071.2 18.206 0.0000 48306. 0.0000 0.0000 189 12803. 565.23 0.0000 43126. 0.0000 0.0000 191 22747. 538.90 0.0000 27571.0.0000 0.0000 199 -96298. -717.39 0.0000 22710. 0.0000 0.0000 201 -46228. -1019.6 0.0000 36320. 0.0000 0.0000 203 2626.4 121.91 0.0000 40665. 0.0000 0.0000 205 51239. 880.36 0.0000 36356. 0.0000 0.0000 207 0.10012E+06 736.28 0.0000 23263.0.0000 0.0000 215 -0.15923E+06 18494. 0.0000 11061. 0.0000 0.0000 217 -83947. 9075.8 0.0000 29103. 0.0000 0.0000 219 -2385.6 4224.8 0.0000 35294. 0.0000 0.0000 221 80991. 2496.3 0.0000 32516. 0.0000 0.0000 223 0.16576E+06 1612.2 0.0000 21754. 0.0000 0.0000 231 -0.20646E+06 -75438. 0.0000 -1738.1 0.0000 0.0000 233 -93006. -51133. 0.0000 -1579.6 0.0000 0.0000 235 6530.2 -30687. 0.0000 -666.930.0000 0.0000237 0.10345E+06 -14749. 0.0000 125.67 0.0000 0.0000 239 0.20441E+06 -4119.40.0000 970.85 0.0000 0.0000 247 -0.16755E+06 9862.5 0.0000 -17509. 0.0000 0.0000 249 -87809. 3440.9 0.0000 -31319. 0.0000 0.0000 251 -5584.0 978.66 0.0000 -35737.0.0000 0.0000 253 77562. 806.61 0.0000 -31968. 0.0000 0.0000 255 0.16243E+06 1086.9 0.0000 -20148. 0.0000 0.0000 263 -0.10061E+06 -689.88 0.0000 -23108.0.0000 0.0000 265 -51874. -100.28 0.0000 -35992. 0.0000 0.0000 267 -3478.2 629.38 0.0000 -40521. 0.0000 0.0000 269 45225. 1049.3 0.0000 -36167. 0.0000 0.0000 271 95246. 1060.4 0.0000 -22892. 0.0000 0.0000 279 -23597. -576.87 0.0000 -27627.0.0000 0.0000 281 -13606. -652.21 0.0000 -43170. 0.0000 0.0000 283 -3857.7 -89.957 0.0000 -48308. 0.0000 0.0000 285 5980.8 542.38 0.0000 -42912. 0.0000 0.0000 287 17073. 893.21 0.0000 -27066. 0.0000 0.0000 295 67130. -714.95 0.0000 -32028.0.0000 0.0000 297 31274. -97.707 0.0000 -50075. 0.0000 0.0000 299 -4624.8 340.23 0.0000 -55817. 0.0000 0.0000 301 -40137. 841.32 0.0000 -49444. 0.0000 0.0000 303 -74225. 850.89 0.0000 -31160. 0.0000 0.0000 311 0.17131E+06 -11152. 0.0000 -31681.0.0000 0.0000 313 86204. -5274.6 0.0000 -58500. 0.0000 0.0000 315 -3755.8 -1950.0 0.0000 -67295. 0.0000 0.0000 317 -94623. 911.23 0.0000 -60649. 0.0000 0.0000 319 -0.18330E+06 5714.3 0.0000 -37686. 0.0000 0.0000由以上分析结果可以得出:跨中最大挠度为:2.95E-05m 梁端上截面应力为:-0.35Mpa 跨中上截面应力: 0.47Mpa 跨中下截面应力为:-0.471Mpa 用材料力学进行校核:Wz=bh6222,左右杆端弯矩为:=ql12ql2,跨中弯矩为:2ql24 左右杆端截面正应力为:σ跨中截面正应力为:σ=ql2bh6ql=22ql222bh=0.32MPa 242bh6=4bh=0.47MPa由图乘法求跨中截面的挠度,具体的计算公式如下:W===1EI11EI(412⨯1112-ql2⨯l2⨯1l2⨯)23-12⨯124ql2⨯l2⨯l2⨯13-23⨯l2⨯132ql2⨯l2⨯12)ql(ql41576144-384374EI=2.95E-05m(2)一端固定一端自由Y方向位移图X方向应力图具体节点位移如下表:x应力表(单位:pa)NODE SX SY SZ SXY SYZ SXZ 1 -0.25013E+07-0.50026E+06 0.0000 -0.23536E+06 0.0000 0.0000 2 2344.3 55.551 0.0000 1381.4 0.0000 0.0000 4 -0.20145E+070.13137E+06 0.0000 42962. 0.0000 0.0000 6 -0.16765E+07 -5697.0 0.0000 -4238.2 0.0000 0.0000 8 -0.13587E+07 -602.67 0.0000 -1529.1 0.0000 0.0000 10 -0.10740E+07 -762.28 0.0000 -1374.8 0.0000 0.0000 12 -0.82262E+06 -655.05 0.0000 -1117.5 0.0000 0.0000 14 -0.60460E+06 -562.14 0.0000 -863.89 0.0000 0.0000 16 -0.41991E+06 -468.62 0.0000 -610.04 0.0000 0.0000 18 -0.26856E+06 -375.13 0.0000 -356.22 0.0000 0.0000 20 -0.15053E+06 -281.65 0.0000 -102.36 0.0000 0.0000 22 -65843. -187.66 0.0000 150.44 0.0000 0.0000 24 -14504. -102.05 0.0000 417.31 0.0000 0.0000 26 -3100.4 -5193.8 0.0000 775.10 0.0000 0.0000 28 742.77 684.07 0.0000 633.96 0.0000 0.0000 30 -17.938 -317.56 0.0000 -285.27 0.0000 0.0000 32 -477.64 -2424.3 0.0000 -770.67 0.0000 0.000034 -781.28 -4602.3 0.0000 -570.42 0.0000 0.0000 36 -1125.5 -5696.4 0.0000 -174.96 0.0000 0.0000 38 0.24391E+07 0.24437E+06 0.0000 -0.11805E+06 0.0000 0.0000 40 11812. -4996.7 0.0000 -1071.1 0.0000 0.0000 42 60425. -5175.6 0.0000 -1154.9 0.0000 0.0000 44 0.14240E+06 -5280.4 0.0000 -1421.3 0.0000 0.0000 46 0.25771E+06 -5372.8 0.0000 -1674.3 0.0000 0.0000 48 0.40636E+06 -5466.3 0.0000 -1928.2 0.0000 0.0000 50 0.58834E+06 -5559.8 0.0000 -2182.0 0.0000 0.0000 52 0.80365E+06 -5653.3 0.0000 -2435.9 0.0000 0.0000 54 0.10523E+07 -5746.8 0.0000 -2689.9 0.0000 0.0000 56 0.13342E+07 -5842.7 0.0000 -2932.1 0.0000 0.0000 58 0.16503E+07 -5879.4 0.0000 -3376.0 0.0000 0.0000 60 0.19778E+07 -7803.0 0.0000 2914.3 0.0000 0.0000 63 0.15354E+07 0.22889E+06 0.0000 -0.10713E+06 0.0000 0.0000 650.73975E+06 0.11355E+06 0.0000 -70967. 0.0000 0.0000 67 -7600.7 -6004.9 0.0000 -61499. 0.0000 0.0000 69 -0.75765E+06-0.12447E+06 0.0000 -78773. 0.0000 0.0000 71 -0.15608E+07-0.23582E+06 0.0000 -0.12284E+06 0.0000 0.0000 151 9798.9 -5221.2 0.0000 -7608.6 0.0000 0.0000 153 4996.1 -4256.1 0.0000 -11467. 0.0000 0.0000 155 -911.85 -2609.3 0.0000 -12699. 0.0000 0.0000 157 -6764.9 -887.12 0.0000 -11142.0.0000 0.0000 159 -11230. 312.08 0.0000 -6755.7 0.0000 0.0000 167 42347. -5311.7 0.0000 -14833. 0.0000 0.0000 169 20742. -4334.3 0.0000 -22836. 0.0000 0.0000 171 -1834.5 -2501.8 0.0000 -25426. 0.0000 0.0000 173 -24341. -653.58 0.0000 -22464.0.0000 0.0000 175 -45318. 505.18 0.0000 -13939. 0.0000 0.0000 183 97163. -5261.6 0.0000 -22022. 0.0000 0.0000 185 47621. -4327.6 0.0000 -34159. 0.0000 0.0000 187 -2750.4 -2507.1 0.0000 -38140. 0.0000 0.0000 189 -53018. -662.65 0.0000 -33786.0.0000 0.0000 191 -0.10162E+06 539.25 0.0000 -21132. 0.0000 0.0000 1990.17420E+06 -5215.6 0.0000 -29214. 0.0000 0.0000 201 85610. -4326.4 0.0000 -45483.0.0000 0.0000 203 -3667.2 -2509.3 0.0000 -50853. 0.0000 0.0000 205 -92806. -660.75 0.0000 -45110. 0.0000 0.0000 207 -0.18014E+06 586.11 0.0000 -28324. 0.0000 0.0000 215 0.27346E+06 -5169.3 0.0000 -36406. 0.0000 0.0000 217 0.13471E+06 -4324.80.0000 -56807. 0.0000 0.0000 219 -4584.1 -2511.7 0.0000 -63566. 0.0000 0.0000 221 -0.14371E+06 -659.14 0.0000 -56434. 0.0000 0.0000 223 -0.28088E+06 632.39 0.0000 -35517. 0.0000 0.0000231 0.39494E+06 -5123.0 0.0000 -43599. 0.0000 0.0000 233 0.19492E+06 -4323.20.0000 -68131. 0.0000 0.0000 235 -5500.9 -2514.0 0.0000 -76279. 0.0000 0.0000 237 -0.20572E+06 -657.53 0.0000 -67758. 0.0000 0.0000 239 -0.40384E+06 678.71 0.0000 -42709. 0.0000 0.0000 247 0.53864E+06 -5076.5 0.0000 -50791. 0.0000 0.0000 249 0.26624E+06 -4321.2 0.0000 -79456. 0.0000 0.0000 251 -6417.7 -2516.1 0.0000 -88993. 0.0000 0.0000 253 -0.27884E+06 -655.95 0.0000 -79083. 0.0000 0.0000 255 -0.54903E+06 724.90 0.0000 -49901. 0.0000 0.0000 263 0.70456E+06 -5031.3 0.0000 -57983. 0.0000 0.0000 265 0.34868E+06 -4322.8 0.0000 -90782. 0.0000 0.0000 267 -7336.1 -2519.0 0.0000 -0.10171E+06 0.0000 0.0000 269 -0.36307E+06 -649.67 0.0000 -90406. 0.0000 0.0000 271 -0.71644E+06 772.81 0.0000 -57090. 0.0000 0.0000 279 0.89269E+06 -5018.3 0.0000 -65150. 0.0000 0.0000 281 0.44225E+06 -4346.5 0.0000 -0.10206E+06 0.0000 0.0000 283 -8193.7 -2657.9 0.0000 -0.11441E+06 0.0000 0.0000 285 -0.45838E+06 -751.50 0.0000 -0.10180E+06 0.0000 0.0000 287 -0.90611E+06 819.40 0.0000 -64358. 0.0000 0.0000 295 0.11033E+07 -4700.3 0.0000 -72715. 0.0000 0.0000 297 0.54631E+06 -1332.2 0.0000 -0.11431E+06 0.0000 0.0000 299 -10032. -610.15 0.0000 -0.12657E+06 0.0000 0.0000 301 -0.56488E+06 156.41 0.0000 -0.11184E+06 0.0000 0.0000由以上分析结果可一得出:梁端最大挠度为:9.72E-04m 梁端截面最大应力为:-2.5Mpa 用材料力学进行校核:Wz=bh62,杆端弯矩为:FL =ql22左右杆端截面正应力为:σ固端截面正应力为:σ=6bh==ql222bh=0.32MPa FLbh26FL2bh2226=2.4MPa 左右杆端截面正应力为:σ=ql6bh=ql222bh=0.32MPa由图乘法可知自由端的挠度为:W=1EI(12⨯FL⨯L⨯23L)=1FL3EI3=9.60E-04m结论在对本工程进行ANSYS有限元数值分析过程中,作者采用的单元形式为三角形六节点单元PLANE2单元,因其为平面单元,ANSYS计算过程中没有输入梁的宽度,其计算默认的梁宽为一个单位。
ANSYS接触问题的求解方法接触问题的关键在于接触体间的相互关系,此关系又可分为在接触前后的法向关系与切向关系。
法向关系在法向,必须实现两点:接触力的传递;两接触面间没有穿透。
ANSYS 通过两种算法来实现此法向接触关系:罚函数法和拉格朗日乘子法。
1.罚函数法通过接触接触问题的关键在于接触体间的相互关系,此关系又可分为在接触前后的法向关系与切向关系。
法向关系在法向,必须实现两点:1.接触力的传递;2.两接触面间没有穿透。
ANSYS通过两种算法来实现此法向接触关系:罚函数法和拉格朗日乘子法。
1.罚函数法通过接触刚度在接触力与接触面间的穿透值(接触位移)间建立力与位移的线性关系:接触刚度*接触位移=法向接触力对面面接触单元17*,接触刚度由实常数FKN来定义。
穿透值在程序中通过分离的接触体上节点间的距离来计算。
接触刚度越大,则穿透就越小,理论上在接触刚度为无穷大时,可以实现完全的接触状态,使穿透值等于零。
但是显而易见,在程序计算中,接触刚度不可能为无穷大(否则病态),穿透也就不可能真实达到零,而只能是个接近于零的有限值。
以上力与位移的接触关系可以很容易地合并入整个结构的平衡方程组K*X=F中去。
并不改变总刚K的大小。
这种罚函数法有以下几个问题必须解决:1.接触刚度FKN应该取多大?接触刚度FKN取大些可以减少虚假穿透,但是会使刚度矩阵成为病态。
2.既然与实际情况不符合的虚假穿透既然是不可避免的,那么可以允许有多大为合适?因此,在ANSYS程序里,通常输入FKN实常数不是直接定义接触刚度的数值,而是接触体下单元刚度的一个因子,这使得用户可以方便地定义接触刚度了,一般FKN取0.1到1中间的值。
当然,在需要时,也可以把接触刚度直接定义,FKN 输入为负数,则程序将其值理解为直接输入的接触刚度值。
对于接近病态的刚度阵,不要使用迭代求解器,例如PCG等。
它们会需要更多的迭代次数,并有可能不收敛。
可以使用直接法求解器,例如稀疏求解器等。