规划求解 - 最短路径问题 - TSP问题
- 格式:xls
- 大小:59.00 KB
- 文档页数:6
《算法设计与分析》实验报告一学号:姓名:日期: 20161230 得分:一、实验内容:TSP问题二、所用算法的基本思想及复杂度分析:1、蛮力法1)基本思想借助矩阵把问题转换为矩阵中点的求解。
首先构造距离矩阵,任意节点到自身节点的距离为无穷大。
在第一行找到最小项a[1][j],从而跳转到第j行,再找到最小值a[j][k],再到第k行进行查找。
..然后构造各行允许数组row[n]={1,1…1},各列允许数组colable[n]={0,1,1….1},其中1表示允许访问,即该节点未被访问;0表示不允许访问,即该节点已经被访问。
如果改行或该列不允许访问,跳过该点访问下一节点。
程序再发问最后一个节点前,所访问的行中至少有1个允许访问的节点,依次访问这些节点找到最小的即可;在访问最后一个节点后,再次访问,会返回k=0,即实现访问源节点,得出一条简单回路。
2)复杂度分析基本语句是访问下一个行列中最小的点,主要操作是求平方,假设有n 个点,则计算的次数为n^2—n.T(n)=n*(n-1)=O(n^2)。
2、动态规划法1)基本思想假设从顶点s出发,令d(i,V’)表示从顶点i出发经过V’(是一个点的集合)中各个顶点一次且仅一次,最后回到出发点s的最短路径长度.推导:(分情况来讨论)①当V’为空集,那么d(i, V’),表示从i不经过任何点就回到s了,如上图的城市3—>城市0(0为起点城市)。
此时d(i, V’)=Cis(就是城市i 到城市s 的距离)、②如果V’不为空,那么就是对子问题的最优求解。
你必须在V’这个城市集合中,尝试每一个,并求出最优解。
d(i, V’)=min{Cik + d(k,V’—{k})}注:Cik表示你选择的城市和城市i的距离,d(k,V’—{k})是一个子问题。
综上所述,TSP问题的动态规划方程就出来了:2)复杂度分析和蛮力法相比,动态规划求解tsp问题,把原来时间复杂性O(n!)的排列转化为组合问题,从而降低了时间复杂度,但仍需要指数时间。
TSP问题的算法研究简介旅行商问题(Traveling Salesman Problem,简称TSP)是指在旅行商(salesman)需要依次拜访多个城市,并最终返回起点城市的问题。
TSP是一个著名的NP-hard问题,在实际应用中有着广泛的应用。
本文将对TSP问题的算法研究进行探讨。
问题描述给定n个城市之间的距离矩阵D(n*n),以及起点城市,要求找到一条最短的路径,使得旅行商能够依次经过每个城市,并最终回到起点城市。
传统方法基于暴力搜索的穷举算法最简单直观的解决TSP问题的方法是穷举法。
即尝试遍历所有可能的路径,计算每条路径的总长度,并找出最短路径。
但这种方法的时间复杂度为O(n!),随着城市数量的增加,计算量呈指数级增长,不适用于大规模问题。
动态规划算法动态规划算法可以用于求解TSP问题的近似解。
其基本思想是将问题划分为子问题,并利用子问题的最优解求解原问题的最优解。
但是由于TSP问题的子问题形态特殊,采用动态规划算法时需要引入状态压缩技巧,以减小问题规模,提高求解效率。
进化算法遗传算法遗传算法是一种基于进化和遗传机制的优化算法,常用于解决TSP问题。
其基本思想是模拟生物进化中的遗传、突变、选择等过程,通过不断迭代优化求解策略,最终找到最优解。
遗传算法的步骤如下:1.初始化一组随机的路径作为初始种群。
2.计算每个路径的适应度评估值,即路径长度。
3.使用选择操作选取一部分适应度较高的个体作为父代。
4.使用交叉操作生成子代,在子代中引入新的解,并避免陷入局部最优解。
5.使用变异操作对子代进行突变,增加种群的多样性。
6.计算新种群中每个路径的适应度评估值。
7.重复步骤3-6,直到满足停止条件。
蚁群算法蚁群算法是基于蚁群觅食行为的启发式算法,常用于求解TSP问题。
其基本思想是通过模拟蚂蚁在寻找食物过程中的行为,不断更新路径信息素,从而实现解的优化。
蚁群算法的步骤如下:1.初始化一群蚂蚁,每只蚂蚁在一个城市开始。
最短路径求最值12个模型详解最短路径求最值是指要在最小的距离内求出最优的结果。
最短路径求最值的12个模型如下:1. 旅行商问题(TSP):旅行商问题是求解对给定城市进行最佳巡回路径的一种最优化问题。
2. 最大流最小割:最大流最小割是一种最优化问题,它是用最小的割点将一个连通图分割成两部分,使得最大的流量在这两部分之间流动的最优化问题。
3. 关键路径算法:关键路径算法是一种运用于解决项目计划问题的最优化算法,它寻找出在所有可能路径中,最短的项目路径作为最终的项目安排。
4. 迪杰斯特拉算法:迪杰斯特拉算法是一种最短路径搜索算法,它通过控制向图中每个点的距离,来求出从指定点出发到达目的地最短的距离。
5. 弗洛伊德算法:弗洛伊德算法是一种求解最短路径的算法,通过使用动态规划的方法,它可以在网络中快速求出最短路径。
6. 贝尔曼-福德算法:贝尔曼-福德算法是一种求解最短路径的算法,它利用宽度优先和深度优先搜索结合的方法,求出网络中任意两点之间的最短路径。
7. 克鲁斯卡尔算法:克鲁斯卡尔算法是一种解决最短路径问题的算法,它通过比较每条边的权值来求解8.斐波那契堆:斐波那契堆是一种运用斐波那契算法实现最小堆和最大堆结构的数据结构,可以帮助快速查找最大和最小值。
9. A*算法:A*算法是一种运用heuristics函数的最优化搜索算法,它可以快速的找到最短的路径。
10. Dijkstra–Scholten算法:Dijkstra–Scholten算法是一种在复杂网络环境中求解最短路径的算法,它采用端到端的方法求出最适合的路径。
11. Bellman-Ford算法:Bellman-Ford算法是一种最短路径算法,它将路径最优化的目标写成一个系统的线性方程,并利用动态规划技术解决这类问题。
12. Johnson算法:Johnson算法是一种运用反向算法实现最短路径搜索的方法,它由索引器和搜索器两部分组成,索引器会根据输入的起点和终点,快速计算出最短路径并输出。
TSP的几种求解方法及其优缺点旅行商问题(Traveling Salesman Problem,TSP)是一种典型的组合优化问题,在计算机科学和运筹学中具有重要的研究意义和应用价值。
TSP常用来描述一个旅行商在给定的一系列城市之间寻找最短路径的问题,即如何选择最短路径经过所有城市并回到起始城市。
针对TSP问题,有多种求解方法可供选择,下面将介绍一些常用的方法及其优缺点。
1.穷举法穷举法是一种非常简单和直观的方法,它会列举出所有可能路径并计算它们的总长度,然后从中选择最短的路径作为最优解。
穷举法的优点是能够保证找到最优解,但当城市数量较多时,计算量呈指数级增长,很难在合理的时间内得到结果。
2.贪婪算法贪婪算法是一种基于局部最优策略的求解方法。
它从一些城市出发,在每一步选择离当前城市最近的未访问过的城市作为下一步访问的城市,直到所有城市都访问过并回到起始城市。
贪婪算法的优点是简单、易于实现,计算速度较快。
然而,贪婪算法并不能保证得到最优解,可能会陷入局部最优解。
3.动态规划动态规划是一种通过将原问题分解为更小的子问题,并利用子问题的解来求解原问题的方法。
对于TSP问题,可以使用动态规划求解。
动态规划的优点是能够在较短的时间内找到最优解,但由于需要存储大量的中间结果,空间复杂度较高。
4.遗传算法遗传算法是一种模拟生物进化过程的求解方法。
它通过对候选解进行遗传操作(交叉、变异等),然后根据适应度函数来评估和选择较好的解进行下一轮进化,直到满足停止条件为止。
遗传算法的优点是适用于大规模问题,能够得到较优解,但其需要调整一些参数,并且收敛速度较慢。
5. Lin-Kernighan启发式算法Lin-Kernighan启发式算法是一种基于局部优化的TSP求解方法。
它采用迭代的方式,在每一步通过反转局部路径来优化当前解,直到达到停止条件。
Lin-Kernighan算法的优点是计算速度较快,对于大规模问题也有较好的效果。
求解TSP问题算法综述一、本文概述本文旨在全面综述求解旅行商问题(Traveling Salesman Problem, TSP)的各种算法。
TSP问题是一个经典的组合优化问题,自提出以来就引起了广泛的关注和研究。
该问题可以描述为:给定一系列城市和每对城市之间的距离,求解一条最短的可能路线,使得一个旅行商从某个城市出发,经过每个城市恰好一次,最后返回出发城市。
本文将首先介绍TSP问题的基本定义、性质及其在实际应用中的重要性。
接着,我们将综述传统的精确算法,如动态规划、分支定界法等,以及它们在求解TSP问题中的优缺点。
然后,我们将重点介绍启发式算法和元启发式算法,包括模拟退火、遗传算法、蚁群算法等,这些算法在求解大规模TSP问题时表现出良好的性能和效率。
本文还将探讨近年来新兴的机器学习算法在TSP问题求解中的应用,如深度学习、强化学习等。
我们将对各类算法进行总结和评价,分析它们在不同场景下的适用性和性能表现。
我们也将展望TSP问题求解算法的未来发展方向,以期为相关领域的研究和实践提供有益的参考和指导。
二、经典算法求解旅行商问题(TSP)的经典算法多种多样,每种算法都有其独特的优缺点和适用场景。
本节将对一些代表性的经典算法进行综述。
暴力穷举法(Brute-Force):暴力穷举法是最简单直观的TSP求解算法。
其基本思想是生成所有可能的旅行路径,计算每条路径的总距离,然后选择最短的那条。
虽然这种方法在理论上可以找到最优解,但由于其时间复杂度为O(n!),对于大规模问题来说计算量极大,因此并不实用。
动态规划(Dynamic Programming, DP):动态规划是一种通过将问题分解为更小的子问题来求解的优化方法。
对于TSP问题,DP算法可以将一个大循环中的多个子问题合并成一个子问题,从而减少重复计算。
然而,TSP的DP算法仍面临“维度灾难”的问题,即当城市数量增多时,所需存储空间和计算时间呈指数级增长。
TSP问题的动态规划解法第十七组:3103038028 郑少斌3103038029 王瑞锋3103038035 江飞鸿3103038043 韩鑫3103055004 唐万强1.TSP问题简介旅行商问题(Traveling Salesman Problem,简称TSP, 亦称为货单郎问题)可以描述为:对于N 个城市,它们之间的距离已知,有一旅行商要从某一城市走遍所有的城市,且每一城市只能经过一次,最后回到出发的城市,问如何选择路线可使他走过的路径最短。
这是一个典型的组合优化问题。
它有很强的现实意义,可以应用于交通运输,物资调配,旅游线路设置。
对于了解某个国家地理分布也有一定的现实意义。
这个问题的解法有很多种,在这里我们尝试使用最优控制中的动态规划的相关知识来进行求解。
2.TSP问题分析对于这个问题,我们首先想到的是应用穷举法进行解答,但是这个方法时间和空间的复杂度很高。
从表面上看,TSP 问题很简单,其实则不然。
对于N 个城市的TSP,存在的可能路径为(N-1)!/2条,当N较大时,其数量是惊人的。
计算每条路经都需求出N 个距离之和,这样各种路径及其距离之和的计算量正比与N!/2.用搜索法要求就规模大的TSP是不现实的。
例如使用1GFLOPs 次的计算机搜索TSP 所需的时间如下表所示 城市数7152050100200加法量 3105.2⨯ 11105.6⨯ 18102.1⨯ 64105.1⨯ 157105⨯ 37410搜索时间s 5105.2-⨯1.8h350yy 48105⨯ y 14210y 35810由上可知,对于这个问题采用穷举法进行解答是不现实的,这就要求我们采用其他的方法进行解答。
3. 其他求解TSP 问题的方法*贪心法a. 所谓贪心法,就是在组合算法中,将每一步都取局部最优的求解方法。
b. 下表表示用贪心法求解TSP 的过程。
先将各城市间的距离用行列式形式表示,主对角线上用∞表示。
TSP问题的动态规划解法第十七组:3103038028 郑少斌3103038029 王瑞锋3103038035 江飞鸿3103038043 韩鑫3103055004 唐万强1.TSP问题简介旅行商问题(Traveling Salesman Problem,简称TSP, 亦称为货单郎问题)可以描述为:对于N 个城市,它们之间的距离已知,有一旅行商要从某一城市走遍所有的城市,且每一城市只能经过一次,最后回到出发的城市,问如何选择路线可使他走过的路径最短。
这是一个典型的组合优化问题。
它有很强的现实意义,可以应用于交通运输,物资调配,旅游线路设置。
对于了解某个国家地理分布也有一定的现实意义。
这个问题的解法有很多种,在这里我们尝试使用最优控制中的动态规划的相关知识来进行求解。
2.TSP问题分析对于这个问题,我们首先想到的是应用穷举法进行解答,但是这个方法时间和空间的复杂度很高。
从表面上看,TSP 问题很简单,其实则不然。
对于N 个城市的TSP,存在的可能路径为(N-1)!/2条,当N较大时,其数量是惊人的。
计算每条路经都需求出N 个距离之和,这样各种路径及其距离之和的计算量正比与N!/2.用搜索法要求就规模大的TSP是不现实的。
例如使用1GFLOPs 次的计算机搜索TSP 所需的时间如下表所示 城市数7152050100200加法量 3105.2⨯ 11105.6⨯ 18102.1⨯ 64105.1⨯ 157105⨯ 37410搜索时间s 5105.2-⨯1.8h350yy 48105⨯ y 14210y 35810由上可知,对于这个问题采用穷举法进行解答是不现实的,这就要求我们采用其他的方法进行解答。
3. 其他求解TSP 问题的方法*贪心法a. 所谓贪心法,就是在组合算法中,将每一步都取局部最优的求解方法。
b. 下表表示用贪心法求解TSP 的过程。
先将各城市间的距离用行列式形式表示,主对角线上用∞表示。
TSP问题有几种方案引言TSP(Traveling Salesman Problem,旅行商问题)是指给定一系列城市和每对城市之间的距离,找出一条最短路径,使得旅行商可以从起始城市出发,经过每个城市恰好一次,最后回到起始城市。
TSP问题是一个经典的组合优化问题,在计算机科学和运筹学领域被广泛研究。
本文将介绍TSP问题的几种解决方案。
1. 暴力法暴力法是最简单直接的解决TSP问题的方法。
该方法通过枚举所有可能的路径,并计算每个路径的总距离,最后找出最短路径。
但是,由于TSP问题的解空间随着城市数量的增加呈指数级增长,因此暴力法的时间复杂度非常高,不适用于大规模的问题。
2. 穷举法穷举法是改进的暴力法,通过剪枝操作减少了暴力法的时间复杂度。
穷举法一般使用深度优先搜索(DFS)或广度优先搜索(BFS)算法来遍历解空间,并在搜索过程中记录当前路径的总距离。
当搜索到目标节点时,更新最短路径。
穷举法的时间复杂度仍然很高,但相比暴力法有所改善。
3. 动态规划动态规划是一种常用的解决TSP问题的方法。
动态规划通过将原问题划分为若干子问题,并记录每个子问题的最优解,从而通过计算较小规模的问题得到整体问题的最优解。
具体来说,动态规划中的状态转移方程可以表示为:dp[S][i] = min(dp[S-{i}][j] + d[j][i]),其中 S 表示已经访问过的城市集合,i 表示当前城市,j 表示 i 的上一个访问的城市。
通过迭代计算出 dp[S][i],最后找出使得 dp[S][i] + d[i][0] 最小的 i 值作为最优路径的终点。
4. 贪心算法贪心算法是一种启发式算法,它通过贪心地选择当前最优解来逐步构建整体问题的解。
在TSP问题中,贪心算法每一步都选择离当前城市最近的未访问过的城市,直到遍历完所有城市。
然而,贪心算法并不能保证得到最优解,因为局部最优解并不一定是全局最优解。
5. 遗传算法遗传算法是一种演化算法,模拟生物进化的过程来寻找最优解。