推荐一个理想气体的宏观定义
- 格式:pdf
- 大小:198.57 KB
- 文档页数:3
第四章 理想气体的性质第一节 理想气体的概念热能转变为机械能通常是借助于工质在热动力设备中的吸热、膨胀作功等状态变化过程而实现的。
为了分析研究和计算工质进行这些过程时的吸热量和作功量,除了以热力学第一定律为主要的基础和工具外,还需具备工质热力性质方面的知识。
热能转变为机械能只能通过工质膨胀作功实现,采用的工质应具有显著的涨缩能力,即其体积随温度、压力能有较大的变化。
物质的三态中只有气态具有这一特性,因而热机工质一般采用气态物质,且视其距液态的远近又分为气体和蒸气。
气态物质的分子持续不断地做无规则的热运动,分子数目又如此的巨大,因而运动在任何一个方向上都没有显著的优势,宏观上表现为各向同性,压力各处各向相同,密度一致。
自然界中的气体分子本身有一定的体积,分子相互间存在作用力,分子在两次碰撞之间进行的是非直线运动,很难精确描述和确定其复杂的运动,为了方便分析、简化计算,引出了理想气体的概念。
理想气体是一种实际上不存在的假想气体,其分子是些弹性的、不具体积的质点,分子间相互没有作用力。
在这两点假设条件下,气体分子的运动规律极大地简化了,分子两次碰撞之间为直线运动,且弹性碰撞无动能损失。
对此简化了的物理模型,不但可定性地分析气体某些热力学现象,而且可定量地导出状态参数间存在的简单函数关系。
众所周知,高温、低压的气体密度小、比体积大,若大到分子本身体积远小于其活动空间,分子间平均距离远到作用力极其微弱的状态就很接近理想气体。
因此,理想气体是气体压力趋近于零(p →0)、比体积趋近于无穷大(v →∞)时的极限状态。
一般来说,氩、氖、氦、氢、氧、氮、一氧化碳等临界温度低(参见附表2)的单原子或双原子气体,在温度不太低、压力不太高时均远离液态,接近理想气体假设条件。
因而,工程中常用的氧气、氮气、氢气、一氧化碳等及其混合空气、燃气、烟气等工质,在通常使用的温度、压力下都可作为理想气体处理,误差一般都在工程计算允许的精度范围之内。
理想气体的热力学性质1. 引言理想气体是一个重要的物理模型,用于描述宏观气体现象。
在理想气体模型中,气体分子被假设为没有体积、相互之间没有相互作用力,并且遵循分子运动论的统计规律。
理想气体的热力学性质是描述其在不同温度、压强等条件下的宏观行为。
本章将介绍理想气体的热力学性质,包括状态方程、等温过程、绝热过程、等压过程和热力学第一定律等。
2. 状态方程理想气体的状态方程是描述其状态(温度、压强、体积)之间关系的方程。
最常用的状态方程是范德瓦尔斯方程,它修正了理想气体状态方程中未考虑分子间相互作用力的缺陷。
范德瓦尔斯方程为:( p + )(V_m - b) = RT其中,( p ) 是气体的压强,( V_m ) 是气体的摩尔体积,( R ) 是理想气体常数,( T ) 是气体的绝对温度,( a ) 和 ( b ) 是范德瓦尔斯方程的参数,分别表示气体分子间的吸引力和分子的体积。
3. 等温过程等温过程是指气体在过程中温度保持不变的过程。
在等温过程中,气体的压强和体积之间遵循玻意耳-马略特定律:其中,( k ) 是一个常数。
等温过程的特点是气体分子平均动能不变,因此等温过程是可逆的。
4. 绝热过程绝热过程是指气体在过程中没有热量交换的过程。
在绝热过程中,气体的内能保持不变。
根据热力学第一定律,绝热过程中的功等于内能的变化。
当气体经历等压绝热过程(如等压膨胀或等压压缩)时,其温度发生变化,遵循盖-吕萨克定律:=其中,( V_1 ) 和 ( V_2 ) 是气体在两个状态下的体积,( T_1 ) 和 ( T_2 ) 是气体在两个状态下的绝对温度。
当气体经历等容绝热过程(如等容膨胀或等容压缩)时,其温度变化遵循查理定律:=其中,( p_1 ) 和 ( p_2 ) 是气体在两个状态下的压强,( T_1 ) 和 ( T_2 ) 是气体在两个状态下的绝对温度。
5. 等压过程等压过程是指气体在过程中压强保持不变的过程。