工件的平面铣削与对刀及设置
- 格式:doc
- 大小:1.41 MB
- 文档页数:14
万方数据万方数据2.6百分表(或千分表)对刀法(一般用于圆形工件的对刀)1)并,Y向对刀。
将百分表的安装杆装在刀柄上,或将百分表的磁性座吸在主轴套筒上,移动工作台使主轴中心线(即刀具中心)大约移到工件中心,调节磁性座上伸缩杆的长度和角度,使百分表的触头接触工件的圆周面,(指针转动约0.1mill)用手慢慢转动主轴,使百分表的触头沿着工件的圆周面转动,观察百分表指针的便移情况,慢慢移动工作台的轴和轴,多次反复后,待转动主轴时百分表的指针基本在同一位置(表头转动一周时,其指针的跳动量在允许的对刀误差内,如0.02mm),这时可认为主轴的中心就是轴和轴的原点。
2)卸下百分表装上铣刀,用其他对刀方法如试切法、塞尺法等得到z轴坐标值。
2.6专用对刀器对刀法易撞坏)占用机时多(如试切需反复切量几次),人为带来的随机性误差大等缺点,已经适应不了数控加工的节奏,更不利于发挥数控机床的功能。
用专用对刀器对刀有对刀精度高、效率高、安全性好等优点,把繁琐的靠经验保证的对刀工作简单化了,保证了数控机床的高效高精度特点的发挥,已成为数控加工机上解决刀具对刀不可或缺的一种专用工具。
参考文献:[1]陈志雄.数控机床与数控编程技术[M].北京:电子工业出版社,2007.[2]华中数才全一操作说明书[z].武汉华中数控股份有限公司.[3]任国兴主编.数控铣床华中系统编程与操作实训[M].北京:中国劳动社会保障出版社,2007.传统对刀方法有安全性差(如塞尺对刀,硬碰硬刀尖收稿日期:2009一10—14(上接第38页)通过机床附带的后处理程序后即可得到控制机床运行的代码程序。
创建刀轨选择的加工参数及其他加工信息汇总列在表l中。
表I加工参数及其他加工信息加工设备加工工具直径/mm板料毛坯尺寸/mm3切削连接方式固定好板料,对好刀具后,将加工代码程序输入机床,既可实现壁板零件的自动加工成形。
2.2.4成形零件机床加工完成后,得到的实际零件如图5所示。
数控铣削加工的对刀操作数控铣削加工是一种高效、精密的加工方式。
其中,对刀操作是一项关键步骤,它直接影响到加工质量和效率。
本文将介绍数控铣削加工的对刀操作方法,帮助读者更好地了解和掌握该技巧。
一、对刀操作前的准备工作1. 准备好必要的工具和设备,例如对刀仪、铣刀、卡板、卡钳等。
2. 清洁加工平台和夹具,确保其表面干净、平整。
3. 检查数控铣削机床的零点和坐标系设置是否正确。
4. 安装好铣削主轴和夹具,确认其稳定可靠,没有松动和变形的情况。
二、对刀操作步骤1. 安装对刀仪将对刀仪插入铣削主轴中,使用卡板和卡钳将其固定在主轴上,确保其与夹具垂直,并调整好高度。
2. 定义坐标系使用数控系统的坐标系界面,定义好加工坐标系和工件坐标系,并确定它们之间的转换关系。
3. 加工零点设定将铣刀对准工件的初始切入点,使用数控系统的调试界面,设定加工零点,通常为工件坐标系原点或夹具中心。
4. 对刀点坐标计算根据铣削刀具的半径和加工路径,计算出铣削切入点的坐标位置,在数控系统的坐标系界面中设定对刀点坐标。
5. 夹紧工件将待加工的工件夹紧在夹具上,设计好铣削路径和深度,调整工件位置和夹紧力度。
6. 对刀操作启动数控系统,并按照设定好的路径和深度进行自动对刀操作,观察铣刀和工件的接触情况和相对位置,根据数控系统显示器上的对刀结果信息,调整铣削主轴高度和工件位置,直到达到精确的对刀效果。
7. 对刀结果确认对刀操作完成后,使用数控系统的测量功能,对加工后的工件进行测量和检查,确保其尺寸和形状符合要求。
三、注意事项1. 在对刀操作前,必须先进行加工准备工作,特别是检查加工平台和设备的状态和功能。
2. 在对刀操作中,必须使用专业的对刀仪和铣刀,并遵守安全操作规程,防止发生意外伤害。
3. 对刀操作中,必须准确计算和设定对刀点坐标和夹紧力度,确保加工精度和效率。
4. 对刀操作完成后,必须进行对刀结果确认和工件检查,确保其质量符合要求,避免浪费时间和材料资源。
FANUC数控铣床对刀操作步骤
1.准备工作
在进行对刀操作之前,需要准备好以下工具和材料:对刀仪、螺丝刀、日光灯、底座块、对刀块、校验块、刀柄和对刀块夹紧螺丝等。
2.将对刀仪安装在机床上
将对刀仪安装在机床的主轴上,并用螺丝刀固定好。
3.安装刀柄和刀具
将刀柄和刀具正确安装在主轴上,并用螺丝刀夹紧。
4.移动主轴至刀具测量点
根据加工程序要求,使用机床的手动模式将主轴移动至刀具测量点,
即刀具尖端的位置。
5.设置对刀块
将底座块和校验块放置在工件上,然后将对刀块放到刀具尖端上,并
用对刀块夹紧螺丝将其固定住。
6.开启对刀程序
在机床的控制面板上选择对刀程序,并按照提示操作,开始对刀操作。
7.确认对刀结果
对刀程序运行结束后,查看对刀仪的显示结果,确认刀具尖端与刀具
所在位置的偏差。
8.调整刀具偏差
根据对刀结果,调整刀具的位置,确保刀具尖端的位置准确无误。
9.完成对刀操作
当确认刀具尖端位置准确无误后,即完成了对刀操作。
10.完善记录
在对刀操作完成后,及时将对刀结果记录下来,并保存到相应的文件中,以备将来查阅。
总结起来,FANUC数控铣床对刀操作步骤包括准备工作、安装对刀仪、安装刀柄和刀具、移动主轴至刀具测量点、设置对刀块、开启对刀程序、
确认对刀结果、调整刀具偏差、完成对刀操作和完善记录。
通过严格按照
以上步骤进行对刀操作,可以确保刀具正确安装,提高加工效率和精度,
保证产品质量。
教案~ 学年第学期专业:铣工实习教材:铣工工艺与技能训练班级:教师:平面和连接面铣削一、组织教学1、整队,师生问候2、检查出勤和着装情况3、强调安全文明生产二、入门指导(一)相关工艺知识1、平面的铣削方法(1)圆周铣1)用分布在铣刀圆柱面上的刀刃来铣削并形成平面的铣削方法。
由于圆柱形铣刀是由若干个刀刃组成的,所以铣出的平面上会有微笑的波纹。
2)圆形铣刀的选择与安装如下表圆柱铣刀有正、反装之分。
无论铣刀旋向、装法如何,安装后主轴的旋转方向应保证铣刀刀齿在切入工件时,前刀面朝向工件方能正常切削。
为了使铣刀切削时所产生的轴向力朝向主轴,装刀时从挂架一端观察,使右旋铣刀按顺时针方向旋转切削,左旋铣刀按逆时针方向切削即为所谓的正装;反之,则为反装。
(2)端铣1)端铣端铣时,铣刀的旋转轴线与工件被加工表面相垂直。
在立式铣床上进行端铣平面,铣出的平面与铣床工作台台面平行;在卧式铣床上进行端铣平面,铣出的平面与铣床工作台台面垂直。
如图1。
铣床主轴的校正如下表用端铣方法铣出的平面,其平面度的好坏,主要决定于铣床主轴轴线与进给方向的垂直度。
如图2。
(3)圆周铣与端铣的优点圆周铣能一次除较大的铣削层深度,即铣刀在圆周上的进行在圆周上的进刀量很大在相同的铣削层深度、铣削层宽度和每齿进给量的条件下,用圆周铣加工的工件表面比用端铣加工的表面粗糙值要小端铣铣刀的刀杆短,刚性好,所以振动小,铣削平稳,效率高铣刀直径可以做得很大,能铣出较宽的工件表面铣刀刀片的装夹方便、刚性好,可进行高速铣削和强力铣削,并可有效提高加工的表面质量参与切削的刀齿较多,切削厚度变化较小,因此铣削变化较小2. 铣削方法有两种方式:如图3(1)顺铣:铣刀对工件的作用力在进给方向上的分力与工件进给方向相同的铣削方式。
(2)逆铣:铣刀对工件的作用力在进给方向上的分力与工件进给方向相反的铣削方式。
3.圆周铣时的顺铣和逆铣(1)对工作台运动的影响如图4工作台丝杠与丝杠螺母总是存有间隙的,顺铣时,工作台进给方向vf与其水平方向的铣削分力Ff 方向相同,Ff作用在丝杠和螺母的间隙处。
数控铣床面板操作与对刀知识点:1、数控铣床操作面板的功能与使用方法;2、数控铣床操作说明书;3、对刀的方法4、刀具补偿概念技能点:1、能按照操作规程启动和停止机床;2、正确使用操作面板上的常用功能键;3、通过各种途径输入加工程序;4.进行对刀并确定相关参数坐标;5.正确地设置刀具参数;一、任务引入数控铣床的操作面板是由系统操作面板(CRT/MDI操作面板)和机械操作面板(也称为用户操作面板)组成。
面板上的功能开关和按键都有特定的含义。
由于数控铣床配用的数控系统不同,其机床操作面板的形式也不相同,但其各种开关、按键的功能及操作方法大同小异。
结合本校实际情况,以JM-850M数控铣床/加工中心上的Fanuc-Oi MC系统为例介绍数控铣床的操作。
二、任务分析要掌握数控铣床的操作,机床的操作面板的操作是关键,熟悉数控铣床的控制面板是操作机床的的基础,掌握操作面板上的常用功能键的使用以及机床的加工控制,是后续任务的基础。
三、相关知识(一)、Fanuc-Oi MC数控系统简介图2-1 Fanuc-Oi MC数控系统CRT/MDI面板Fanuc Oi Mate-MC数控系统面板由系统操作面板和机床控制面板三部分组成。
1、系统操作面板系统操作面板包括CRT显示区、MDI编辑面板。
如图2-1。
(1)、CRT显示区:位于整个机床面板的左上方。
包括显示区和屏幕相对应的功能软键(图2-2)。
(2)、编辑操作面板(MDI面板):一般位于CRT显示区的右侧。
MDI面板上键的位置(如图:2-3)和各按键的名称及功能见表2-1和表2-2。
图2-2 Fanuc Oi Mate-MC数控系统CRT显示区1、功能软键2、扩展软键图2-3 MDI面板表2-1 Fanuc Oi MC系统MDI面板上主功能键与功能说明表2-2 Fanuc Oi MC系统MDI面板上其他按键与功能说明2、机床控制面板Fanuc Oi Mate-MC数控系统的控制面板通常在CRT显示区的下方(如图:2-3),各按键(旋钮)的名称及功能见表2-3。
铣工初级(五级)模拟试题+参考答案一、单选题(共92题,每题1分,共92分)1.进行孔类零件加工时,钻孔→扩孔→倒角→铰孔的方法适用于()。
A、孔位置精度不高的中小孔B、小孔径的盲孔C、高精度孔D、大孔径的盲孔正确答案:A2.开拓创新的本质是要有()。
A、胆大B、意志C、突破D、信心正确答案:C3.一个完整的测量过程应包括测量对象.测量方法.测量精度和()。
A、计量器具B、计量单位C、测量条件D、检验方法正确答案:B4.在数控机床上使用的夹具与在普通机床上使用夹具最大的区别是()。
A、夹具上有对刀基准B、夹具的刚性好C、没有区别D、夹具的精度高正确答案:B5.准备功能G90表示的功能是()。
A、固定循环B、增量尺寸C、绝对尺寸D、预置功能正确答案:C6.遵纪守法是()。
A、文明礼貌的具体要求B、办事公道的基本内容C、文明生产的行为准则D、文明职工的基本要求正确答案:D7.目前数控机床的加工精度和速度主要取决于()A、C.PUB、机床导轨C、检测元件D、伺服系统正确答案:D8.铣削凹球面时,铣刀刀尖回转半径应()球面半径A、等于B、小于C、大于D、/正确答案:B9.不能用来加工平键键槽的刀具是()。
A、立铣刀B、三面刃铣刀C、圆柱铣刀D、键槽铣刀正确答案:B10.对切削加工性有害的夹杂物是()。
A、SB、PC、WCD、Ca正确答案:C11.如果要用数控钻削5mm,深40mm的孔时,钻孔循环指令应选择()。
A、G83B、G81C、G82D、G84正确答案:A12.计算机辅助设计的英文缩写是()。
A、CAPPB、CAEC、CADD、CAM正确答案:C13.下列关于子程序的叙述,正确的是()。
A、子程序可以调用其它的主程序B、子程序可以调用其它同层级的子程序C、子程序可以调用自己的上级子程序D、子程序可以调用自己本身子程序正确答案:B14.钨钴类硬质合金中,含TiC越多,Co越少,则合金的(),而抗弯强度及韧性就越差。
数控车床对刀原理及对刀方法对刀是数控加工中的主要操作和重要技能。
在一定条件下,对刀的精度可以决定零件的加工精度,同时,对刀效率还直接影响数控加工效率。
仅仅知道对刀方法是不够的,还要知道数控系统的各种对刀设置方式,以及这些方式在加工程序中的调用方法,同时要知道各种对刀方式的优缺点、使用条件(下面的论述是以FANUC OiMate数控系统为例)等. 1 为什么要对刀一般来说,零件的数控加工编程和上机床加工是分开进行的。
数控编程员根据零件的设计图纸,选定一个方便编程的坐标系及其原点,我们称之为程序坐标系和程序原点。
程序原点一般与零件的工艺基准或设计基准重合,因此又称作工件原点。
数控车床通电后,须进行回零(参考点)操作,其目的是建立数控车床进行位置测量、控制、显示的统一基准,该点就是所谓的机床原点,它的位置由机床位置传感器决定.由于机床回零后,刀具(刀尖)的位置距离机床原点是固定不变的,因此,为便于对刀和加工,可将机床回零后刀尖的位置看作机床原点.在图1中,O是程序原点,O’是机床回零后以刀尖位置为参照的机床原点。
编程员按程序坐标系中的坐标数据编制刀具(刀尖)的运行轨迹。
由于刀尖的初始位置(机床原点)与程序原点存在X向偏移距离和Z向偏移距离,使得实际的刀尖位置与程序指令的位置有同样的偏移距离,因此,须将该距离测量出来并设置进数控系统,使系统据此调整刀尖的运动轨迹。
所谓对刀,其实质就是侧量程序原点与机床原点之间的偏移距离并设置程序原点在以刀尖为参照的机床坐标系里的坐标。
2 试切对刀原理对刀的方法有很多种,按对刀的精度可分为粗略对刀和精确对刀;按是否采用对刀仪可分为手动对刀和自动对刀;按是否采用基准刀,又可分为绝对对刀和相对对刀等。
但无论采用哪种对刀方式,都离不开试切对刀,试切对刀是最根本的对刀方法。
以图2为例,试切对刀步骤如下:①在手动操作方式下,用所选刀具在加工余量范围内试切工件外圆,记下此时显示屏中的X坐标值,记为Xa。
组织教学:1.学生按时整队,进入实习教室,师生互相问候。
2.检查出勤情况。
3.检查学生学习用具是否带齐(课本、笔记本、笔等)。
4.检查学生劳保用品是否穿戴整齐(工作服、安全帽)。
5.检查学生仪容仪表是否符合学校规定(发型,饰品等)。
6.宣布本课题的内容及任务复习旧课:用端铣刀铣平面端铣刀一般用于立式铣床上铣平面,有时也用于卧式铣床上铣侧面。
端铣刀一般中间带有圆孔。
通常先将铣刀装在短刀轴上,再将刀轴装入机床的主轴上,并用拉杆螺丝拉紧。
用端铣刀铣平面与用圆柱铣刀铣平面相比,其特点是:切削厚度变化较小,同时切削的刀齿较多,因此切削比较平稳:再则端铣刀的主切削刃担负着主要的切削工作,而副切削刃又有修光作用,所以表面光整;此外,端铣刀的刀齿易于镶装硬质合金刀片,可进行高速铣削,且其刀杆比圆柱铣刀的刀杆短些,刚性较好,能减少加工中的振动,有利于提高铣削用量。
因此,端铣既捉高了生产率,又提高了表面质量,所以在成批大量生产中,端铣已成为加工平面的主要方式之一。
讲授新课:平面的铣削一、平面连接面的铣削1.平面的铣削1、使用设备和刀具的选择选用XW5032型立式铣床,使用刀具为直径120mm端铣刀。
如图1-1所示。
教学方法及授课要点随记复习前次讲过的工件的装夹和铣削2、顺铣和逆铣顺逆铣是铣削加工的两种常见方式。
铣刀对工件的作用力在进给方向上的分力与工件进给方向相同的铣削方式,称为顺铣。
顺铣切削时,切屑厚度开始最大,刀具切入工件中没有挤压。
顺铣刀齿切削距离短,切屑变形小,顺铣可以采用较高主轴转速和进给量,加工效率高。
如图1-2(a)所示。
采用顺铣时;1)机床应具有间隙消除机构,以防止铣削中产生振动。
2)工件表面无硬化层。
3)工艺系统应有足够刚性。
难加工材料应采用顺铣,可以减小切削变形降低切削力和功率消耗,还可以提高刀具寿命。
铣刀对工件的作用力在进给方向上的分力与工件进给方向相反的铣削方式,称为逆铣。
逆铣切削时,切屑由薄变厚,刀具从已加工表面切入。
数控加工中的对刀原理工件在机床上定位装夹后, 必须确定工件在机床上的正确位置, 以便与机床原有的坐标系联系起来。
确定工件具体位置的过程就是通过对刀来实现的, 而这个过程的确定也就是在确定工件的编程坐标系( 即工件坐标系) , 编程加工都是参照这个坐标系来进行的。
在零件图纸上建立工件坐标系,使零件上的所有几何元素都有确定的位置, 而工件坐标系原点是以零件图上的某一特征点为原点建立坐标系, 使得编程坐标系与工件坐标系重合。
对刀操作实质包含三方面内容: 第一方面是刀具上的刀位点与对刀点重合; 第二方面是编程原点与机床参考点之间建立某种联系; 第三方面是通过数控代码指令确定刀位点与工件坐标系位置。
其中刀位点是刀具上的一个基准点(车刀的刀位点为刀尖,平头立铣刀的刀位点为端面中心,球头刀的刀位点通常为球心), 刀位点相对运动的轨迹就是编程轨迹, 而对刀点就是加工零件时,刀具上的刀位点相对于工件运动的起点。
一般来说,对刀点应选在工件坐标系的原点上,这样有利于保证对刀精度, 也可以将对刀点或对刀基准设在夹具定位元件上,这样有利于零件的批量加工。
在数控立式铣加工中心加工操作中, 对刀的方法比较多,本文介绍常用的几种机内对刀操作方法。
对刀方法及其特点立式铣加工中心XY 方向对刀和Z 方向对刀的方法以及对刀仪器是不相同的, 下面把它们区分开来进行描述。
在实际对刀之前, 要确保机床已经返回了机床参考点( 机床参考点是数控机床上的一个固定基准点) , 各坐标轴回零, 这样才能建立起机床坐标系, 对刀以后才能将机床坐标系和编程坐标系有机的结合起来。
寻边器对刀精度较高, 操作简便﹑直观﹑应用广泛。
采用寻边器对刀要求定位基准面应有较好的表面粗糙度和直线度, 确保对刀精度。
常用的寻边器有标准棒(结构简单、成本低、校正精度不高)﹑机械寻边器(要求主轴转速设定在500 左右)( 精度高、无需维护、成本适中)和光电寻边器(主轴要求不转)( 精度高, 需维护, 成本较高)等。
题目:数控车床的对刀、坐标系确定及数控加工编程技巧毕业论文(设计)任务书论文题目:数控车床的对刀、坐标系确定及数控加工编程巧学号:姓名:专业:数控技术指导教师:系主任:一、主要内容及基本要求:数控车床对刀基本方法,建立合理工件坐标系,要求数控加工可获得精度高、质量德定的产品,因而在机械制造领城得到了越来越广泛的应角,数控编程是应用数控机床进行零件加工的前提,因而如何合理地编制数控程序成为数控加工的关健。
二.重点研究的问题:数控车床虽然加工柔性比普通车床优越,但单就某一种零件的生产效率而言,与普通车床还存在一定的差距。
因此,提高数控车床的效率便成为关键,而合理运用编程技巧,编制高效率的加工程序,对提高机床效率往往具有意想不到的效果。
三、进度安排序号各阶段完成的内容完成时间1 论文名称 09年2月23日2 摘要及关键词 09年2月23日3 正文 09年2月28日4 参考文献 09年3月1日5 封面 09年3月2日6 毕业论文任务书 09年3月3日7 学生登记表 09年3月3日四、应收集的资料及主要参考文献资料: 1.车床与车削运动2.刀具材料和切削用量3.数控编程的方法主要参考文献: 1车工工艺与技能训练2 数控机床的编程3 机械制造工艺基础五、文献综述1.车工工艺与技能训练车工工艺是根据技术上先进、经济上合理的原则,研究将毛坯车削合成格工件的加工方法和过程的一门学科,是广大车工人员和科技作者在长期的车削实践中不断总结、长期积累、逐渐升华而成的专业理论知识。
本课程的任务是使学生获得中级车工应具备的专业理论,具体要求如下:(1)了解常用车床的结构、性能和传统,掌握常用车厂的调整方法,掌握车削的有关计算。
(2)了解车工常用工具和量具的结构,熟练掌握其使用方法。
掌握常用刀具的使用方法,能合理地选择切削用量和切削液。
(3)能合理地选择工件饿定位基准和中等复杂工件的装夹方法,掌握常用车床夹具的结构原理。
能独立制定中等复杂工件的车削工艺,并能根据实际情况采用先进工艺。
数控铣削加工的对刀操作1.对刀的概念对刀操作就是设定刀具上某一点在工件坐标系中坐标值的过程,对于圆柱形铣刀,一般是指刀刃底平面的中心,对于球头铣刀,也可以指球头的中心.实际上,对刀的过程就是在机床坐标系中建立工件坐标系的过程.(1)程序起始点指程序开始时,刀尖(刀位点)的初始停留点.采用G92(SIEMENS数控系统)对刀时一般也将其作为对刀点.(2)程序返回点指一把刀程序执行完毕后,刀尖返回后的停留点.一般将其作为换刀点.(3)切入点(进刀点)指在曲面的初始切削位置上,刀具与曲面的接触点.(4)切出点(退刀点)指曲面切削完毕后,刀具与曲面的接触点.(5)起始点,返回点确定原则在同一个程序中起始点和返回点最好为同一点,如果一个零件的加工需要几个程序来完成,那么这几个程序的起始点和返回点也为同一点,以免引起加工操作上的麻烦.起始点和返回点的坐标值也最好使X和Y值均为零,这样能使操作方便.因为起刀点生成G码指令为G92,G92的含义为只进行坐标变换,而不能使机床产生运动.为了确保加工后零件表面位置的准确性,对刀后必须人工使刀具的刀位点在G92指令后面规定的X,Y,Z坐标值上.如果X,Y值均为零,按工件坐标系原点对刀后不必进行X,Y方向移动,只需Z方向移到G92指令后面的Z坐标位置.起始点和返回点应定义在高出被加工零件的最高点50~100mm左右的某一位置上,即始平面,退刀平面所在的位置.这主要为了数控加工的安全性,防止碰刀,同时也考虑到数控加工的效率,使得非切削时间控制在一定的范围内.(6)切入点选择的原则在进刀或切削曲面的过程中,要使刀具不受损坏.一般来说,对粗加工而言,选择曲面内的最高角点作为曲面的切入点(初始切削点).因为该点的切削余量较小,进刀时不易损坏刀具.对精加工而言,选择曲面内某个曲率比较平缓的角点作为曲面的切入点.因为在该点处,刀具所受的弯矩较小,不易折断刀具.总之,要避免将铣刀当钻头使用,否则会因受力大,排屑不便而使刀具受损.(7)切出点选择的原则主要考虑能能够连续完整地进行曲面的加工或曲面加工时的非切削加工时间尽可能减短,换刀方便,以提高机床的有效工作时间.对被加工曲面为开放型曲面时,可选取曲面的两个角点作为切出点,按上述原则其一;若被加工曲面为封闭型曲面,则只有曲面的一个角点可作为切出点.自动编程时数控系统一般自动确定.2. 进刀,退刀方式及进刀,退刀路线的确定(1)进刀,退刀方式及进刀(引入),退刀(引出)线的概念进刀方式是指加工零件前,刀具接近工件表面的运动方式;退刀方式是指零件(或零件区域)加工结束后,刀具离开工件表面的运动方式.这两个概念对复杂表面的高精度加工来说是非常重要的.进刀,退刀线是为了防止过切,碰撞和飞边在切入前和切入后设置的引入到切入点和从切出点引出的线段.(2) 进刀,退刀方式及进刀,退刀线的确定进刀,退刀方式有如下几种:1)沿坐标轴的Z轴方向直接进行进刀,退刀该方式是数控加工中最常用的进,退刀方式.其优点是定义简单;缺点是在工件表面的进刀,退刀处会留下微观的驻刀痕迹,影响工件表面的加工精度.在铣削平面轮廓零件时,应避免在垂直工件表面的方向进行进刀和退刀.2) 沿给定的矢量方向进行进刀或退刀使用该方式要先定义一个矢量方向来确定刀具进刀和退刀运动的方向.该方式是以直线段的运动方式,切入或切出工件表面,切入或切出的直线段一般为加工轨迹的前延线或后延线,即将被加工轨迹线段向前和向后加长.3) 沿曲面的切线方向以直线进刀或退刀该方式是从被加工曲面的切线方向切入或切出工件表面.其优点是在工件表面的进刀和退刀处,不会留下驻刀痕迹,工件表面的加工精度高.4) 沿曲面的法线方向进刀或退刀该方式是以被加工曲面切入点或切出点的法线量方向切入或切出工件表面.特点与方式(1)类似.5) 沿圆孤段方向进刀或退刀该方式是刀具以圆孤段的运动方式切入或切出工件表面,引入,引出线为圆孤并且圆孤使刀具与曲面相切.6) 沿螺旋线或斜线进刀方式即在两个切削层之间,刀具从上一层的高度沿螺旋线或斜线以渐进的方式切入工件,直到下一层高度,然后开始正式切削.对于加工精度要求很高的型面加工来说,应选择沿曲面的切线方向或沿圆弧方向进刀和退刀的方式,这样不会在工件的进刀或退刀处留下驻刀痕迹而影响工件的表面加工质量.刀具或铣头与被加工表面如果在加工中发生相碰(碰撞会使得破坏被加工表面,严重时造成零件报废;损坏刀具或铣头;损坏机床精度),为防止这种现象的发生,在起始点和进刀线,返回点和退刀线之间,应该增加刀具定位运行指令.在起始点,应使刀具先运行到引入线上方某个位置上;同理,在曲面切削完毕后,在引出线的位置上应给刀具一个增量运动,使刀具在Z轴方向向上提升一个增量距离,运动后刀具位置的Z值应在安全高度或与起始点Z值一致.3. 起始平面,返回平面,进刀平面,退刀平面和安全平面的确定(1) 起始平面程序开始时刀具的初始位置所在的Z平面,叫做起始平面.如前所述,一般定义在被加工零件的最高点之上50~100mm左右的某一位置上,一般高于安全平面.其对应的高度称为起始高度.在此平面上刀具以G00速度进行.(2)返回平面是指程序结束时,刀具尖点(不是刀具中心)所在的Z平面,它也定义在高出被加工表面最高点50~100mm左右的某个位置上,一般与起始平面重合.因此,刀具处于返回平面上时是非常安全的.其对应的高度称为返回高度.刀具在此平面上也以G00速度行进.(3)进刀平面刀具以高速运行(G00)下刀至接近被切削材料时变成以进刀速度运行,这样进行可以避免撞刀.此速度转折点的位置即为进刀平面,其高度为进刀高度,也有称为接近高度的,其转折速度称为进刀速度或接近速度.此高度一般在加工面和安全平面之间,离加工面5~10mm(指刀尖点到加工面间的距离),加工面为毛坯面时取大值,加工面为已加工面时取小值.(4) 退刀平面零件(或零件区域)加工结束后,刀具以切削进给速度离开工件表面一般距离(5~10mm)后转为以高速返回安全平面,此转折位置即为退刀平面,其高度为退刀高度.(5) 安全平面指当一个曲面切削完毕后,刀具沿刀轴方向返回运行一段距离后,刀尖所在的Z平面.它一般被定义在高出被加工零件最高点10~50mm左右的某个位置上,刀具处于安全平面时是安全的,在此平面上也以G00速度运行.这样设定安全平面既能防止刀具碰伤工件,又能使非切削加工时间控制在一定的范围内.其对应的高度称为安全高度.刀具在一个位置加工完成后,退回至安全高度,然后沿安全高度移动到下一个位置再下刀进行另一个表面的加工.常用的对刀方法是手工对刀法,一般使用刀具,标准芯棒或百分表( 千分表)等工具,更方便的方法是使用光电对刀仪.4. 用G92指令(SIEMENS数控系统)建立工件坐标系的对刀方法G92指令的功能是设定工件坐标系,执行G92指令时,系统将该指令后的x,y,z的直设定为刀具当前位置在工件坐标系中的坐标,即通过设定刀具相对于工件坐标系原点的值来确定工件坐标系的原点.(1)方形工件的对刀步骤如下图所示,通过对刀将图中所示方形工件的X,Y,Z的零点设定成工件坐标系的原点.其步骤如下:1)安装工件,将工件毛坯装夹在工作台上.用手动方式分别回X轴Y轴和Z轴到机床参考点. 采用点动进给方式,手轮进给方式戓快速进给方式,分别移动X轴Y轴和Z轴,将主轴刀具先移到靠近工件的X方向的对刀基准面一工件毛坯的右侧面.2)启动主轴,在手轮进给方式转动手摇脉冲发生器慢慢移动机床X轴,使刀具侧面接触工件X方向的基准面,使工件上出现一极微小的切痕,即刀具正好碰到工件侧面.设工件长宽的实际尺寸为80 mm×100 mm ,使用的刀具直径为8 mm ,这时刀具中心坐标相对于工件X方向的位置可以计算得到:80/2十8/2=44( mm).3)停止主轴,将机床工作方式转换成手动数据输入方式,按"程序"键,进入手动数据输入方式下的程序输入状态,输入G92,按"输入"键,再输入此时刀具中心的X坐标值X44,按"输入"键.此时己将刀具中心相对于工件坐标系原点的X坐标值输入.按"循环启动"按钮执行G92 X44这一程序,这时X坐标已设定好,如果按"位置"键,屏幕上显示的X坐标值为输入的坐标值,即当前刀具中心在工件坐标系内的坐标值.4)按照上述步骤同样再对Y轴进行操作,这时刀具中心相对于工件Y轴零点的坐标为:-100/2+(-8/2)=-54(mm).在手动数据输入方式下输入G92和Y-54,并按"输入"键,这时刀具的Y坐标己设定好.5)然后对Z轴同样操作,此时刀具中心相对于工件坐标系原点的Z坐标值为Z=0 mm,输入G92和Z0,按"输入"键,这时Z坐标也已设定好.实际上工件坐标系的零点已设定到图3-58所示的位置上.(2) 圆形工件的对刀操作如果工件为圆形,以圆周作为对刀基准,用上述对刀的方法找基准面比较困难,一般使用百分表来进行对刀.如下图所示,通过对刀设定图中所示工件的工件坐标系原点.其步骤如下:1)安装工件,将工件毛坯装夹在工作台夹具上.用手动方式分别回X轴, Y轴和Z轴到机床参考点.2)对X轴和Y轴的原点.将百分表安装杆装在刀柄上,或卸下刀柄,将百分表的磁性座吸在主轴套筒上,移动工作台使主轴中心轴线(即刀具中心)大约移到工件的中心,调节磁性座上伸缩杆的长度和角度,使百分表的触头接触工件的外圆周,用手慢慢转动主轴,使百分表触头沿着工件的外圆周面移动,观察百分表指针的偏移情况,慢慢移动工作台的X轴和Y轴,反复多次后,待转动主轴时百分表的指针基本指在同一个位置,这时主轴的中心就是X轴和Y轴的原点.3)将机床工作方式转换成手动数据输入方式,输入并执行程序G92 X0 Y0 , 这时刀具中心(主轴中心) X轴坐标和Y轴坐标已设定好,此时都为零.也可以采用下列方法进行对正X轴和Y轴的原点,将标准圆柱棒替代铣刀(直径与圆柱铣刀相同)装在刀柄上,再采用手轮进给方式手摇脉冲发生器慢慢移动机床X轴,使刀具侧面在工件90°的象限点的切线方向上接近工件的外圆顶点,再沿X向运行大于R工+R刀,使圆柱棒退出后,沿YX向运行大于R工+R刀,此时,即使得圆柱棒中心在工件中心X轴的轴线是,完成了X轴方向的对正.此方法比使用百分表方式的精度略低,但此方法简单,快捷,实用.4)卸下百分表座,装上铣刀,用上述方法设定z轴的坐标值.5.用G54~G59建立工件坐标系的对刀方法。
任务二、垂直面和平行面的铣削图9-11 平面、平行面零件图相关知识点一、平面和垂直面铣削工艺准备根据图9-11平面与垂直面零件图进行工艺准备1、分析图样(1)加工基准和精度分析1)平面的尺寸为(50×100)mm、(40×100)mm,平面度公差为0.1mm。
2)平行面之间的尺寸为5001.0-mm、4001.0-mm,垂直面垂直度公差为0.05mm。
3)毛坯件为100mm×60mm×50mm的矩形毛坯。
(2)表面粗糙度分析工件各表面粗糙度值均为Ra3.2μm,铣削加工能达到要求。
(3)材料分析HT200,切削性能好,加工时可选用高速钢铣刀,也可选用硬质合金铣刀。
(4)形体分析矩形工件,外形尺寸不大,宜采用机用虎钳装夹。
2、制定加工工艺与工艺准备(1)制定平面、垂直面加工工序过程根据图样的精度要求,可在立式或万能铣床上用套式或机夹端铣刀加工。
平面和垂直面加工工序过程为:毛坯检验→安装机用虎钳→装夹工件→安装套式面铣刀→粗铣四面→精铣50mm×100mm基准平面→预检平面度→精铣5001.0-mm两垂直面→精铣4001.0-mm平行面→平面、垂直面铣削工序检验。
(2)选用X5032型立式铣床、X6132型卧式万能铣床或类似的铣床。
(3)选择刀具根据图样给定的平面宽度尺寸选择套式面铣刀规格。
现选用外径为80mm、宽度为45mm、孔径为32mm、齿数为10的套式面铣刀。
(4)选择工件装夹方式选用机用虎钳装夹工件。
(5)选择检验测量方法1)平面度采用刀口形直尺检验;2)平行面之间的尺寸和平行度用外径千分尺测量;3)垂直度用90°角尺检验;3)表面粗糙度采用目测样板类比检验。
二、工件加工1、加工准备(1)毛坯件检验1)用钢直尺检验毛坯件的尺寸,并结合各表面的垂直度、平行度情况,检验毛坯件是否有加工余量。
2)综合考虑平面的粗糙度、平面度以及相邻面的垂直度,在两个50mm ×100mm 的平面中选择一个作为基准平面。
数控铣削对刀的基本过程
数控铣削对刀是指通过特定的工具进行刀具的调整,以达到准确切削的目的。
其基本过程如下:
第一步:安装刀具
首先,需要将所需的刀具安装到铣床主轴上,并使用扳手将其固定。
同时,还需要安装夹紧工具,以确保刀具与主轴的连接牢固。
第二步:确定参考面
在进行刀具对刀之前,需要确定参考面。
通常情况下,参考面是铣床上的工作台面。
因此,在对刀之前,需要确保工作台面已经清理干净,并平整无损。
第三步:定位刀具
将铣床主轴下降,使刀具接触到参考面。
然后,使用手动或自动控制系统,将刀具移动到所需位置。
在这个过程中,需要使用专用的对刀仪器来确保刀具的位置准确无误。
第四步:调整刀具
根据实际情况,通过调整刀具的位置来确保其与参考面的距离和角度达到预定要求。
通常情况下,刀具的调整可以通过手动或自动调整系统来完成。
第五步:测试切削
最后,进行测试切削,以确保刀具调整正确,能够准确地切削工件。
在测试过程中,需要注意切削深度、切削速度等参数,确保切削效果良好。
总的来说,数控铣削对刀是一项重要的工艺过程,需要严格按照操作规程进行操作,确保刀具的精度和稳定性,从而获得良好的加工效果。
实训项目三工件的平面铣削与对刀、刀具补偿及工件坐标系设置实训目的与要求:1.掌握用面铣刀在MDI(A)方法下对工件进行水平面的铣削加工;2.了解各种对刀方法,掌握用试切法进行对刀操纵;3.掌握刀具补偿及工件坐标系的设置。
课题一工件的平面铣削模块一水平平面的铣削一、教学目标通过学习能对大平面进行数控铣削。
二、终极学习目标1.会制定大平面加工方案;2.会选用大平面加工刀具。
三、工作任务编制如图3-1所示大平面铣削程序,并进行铣削加工。
四、相关实践知识(一)填写加工工艺卡片图3-1 平面铣削练习1.分析零件工艺性能图3-1所示零件,外形尺寸长×宽×高=100×80×20,属于小零件。
高度尺寸为自由公差,大平面表面粗超度为Ra3.2。
2.选用毛坯或明确来料状况 所用材料:45半成品外形尺寸:101×81×21,六面全部进行粗加工。
3.确定装夹方案选用机用平口虎钳装夹工件。
底面朝下垫平,工件毛坯面高出钳口12mm ,夹80两侧面;100任一侧面与虎钳侧面取平夹紧,实际上限制六个自由度,工件处于完全定位状态。
4.确定加工方案由于该零件已进行粗加工,因此采用端面铣刀直接进行精加工。
加工方案及选用刀具见表3-1。
表3-1 加工方案与刀具选择5.填写工艺卡片 工艺卡片见表3-2。
表3-2 凸块数控加工工序卡片高速钢面铣刀一般用于加工中等宽度的平面,标准铣刀直径范围为mm 250~80φφ,硬质合金面铣刀的切削效率及加工质量均比高速钢铣刀高,故目前广泛使用硬质合金面铣刀加工平面。
图3-2所示为整体焊接式面铣刀。
该刀结构紧凑,较易制造。
但刀齿磨损后整把刀将报废,故已较少使用。
图3-3为机夹焊接式面铣刀。
该铣刀是将硬质合金刀片焊接在小刀头上,再采用机械夹固的方法将刀装夹在刀体槽中。
刀头报废后可换上新刀头,因此延长了刀体的使用寿命。
图2-38a 为可转位面铣刀。
该铣刀将刀片直接装夹在刀体槽中。
切削刃用钝后,将刀片转位或更换刀片即可继续使用。
可转位铣刀与可转位车刀一样且有效率高、寿命长、使用方便、加工质量稳定等优点。
这种铣刀是目前平面加工中应用最广泛的刀具之一。
可转位面铣刀已形成系列标准,可查阅刀具标准等有关资料。
图3-2 整体焊接式面铣刀图3-3 机夹焊接式面铣刀(三)操作过程在对水平面铣削前,一般还没有进行工件坐标系的设定(即还没有进行“对刀”),因此水平面的铣削加工在MDI(A)方式下进行。
其操作过程为:1.工件装夹完毕后,把面铣刀刀柄装入数控机床主轴。
2.选择MDI(A)方式,进入图1-20、图1-51、图1-76操作界面,输入“M3S600”后,按“启动”。
3.转到手动方式,利用手持单元选择X、Y轴移动,使面铣刀处在图3-4中A上方的位置;选择Z轴使面铣刀下降(图3-5所示),当面铣刀接近工件表面时,把手持单元的进给倍率调到“×10”,然后继续下降,a,一般取0.3~0.5mm)。
当进入切削后,根据工件上表面平整及粗糙度情况确定切深(背吃刀量p4.再次进入MDI(A)方式,输入加工程序后按“启动”进行切削加工。
a 图3-4 铣平面刀具移动轨迹图3-5 铣平面时的下刀与背吃刀量p (四)程序编制G54G91M3S600;G1X150F120;Y40;X-160G0Z200;M30;说明:在华中系统中,只能一段一段输入执行。
模块二侧平面的铣削一、教学目标通过学习能进行侧平面的数控铣削。
二、终极学习目标1.会制定侧平面加工方案;2.会选用侧平面加工刀具。
三、工作任务编制如图3-1中100×80×8的侧平面铣削程序,并进行铣削加工。
四、相关实践知识(一)填写数控工艺卡片1.分析零件工艺性能如图3-1中长度尺寸和宽度尺寸为自由公差,侧平面表面粗糙度为Ra3.2。
2.选用毛坯或明确来料状况所用材料:45半成品外形尺寸:101×81×21,六面全部已进行粗加工。
3.确定装夹方案同上。
4.确定加工方案由于单边的切削用量为0.5mm,所以直接采用立铣刀进行精加工。
加工方案及选用刀具见表3-3。
表3-3 加工方案与刀具选择5.填写工艺卡片工艺卡片见表3-4。
表3-4 凸块数控加工工序卡片(二)选用刀具立铣刀(图2-38b )主要用在立式数控机床上加工凹槽、阶台面。
立铣刀圆周上的切削刃是主切削刃,端面上的切削刃是副切削刃,故切削时一般不宜沿铣刀轴线方向进给。
(三)操作过程对于侧平面的铣削加工,在进行“对刀”、刀具半径补偿和工件坐标系设置的情况下是很方便的。
我们这儿介绍的方法,是在没有任何设置的情况下所进行的操作,同样在MDI (A )方式下进行。
其操作过程为:1.工件装夹完毕后,把mm 16 立铣刀刀柄装入数控机床主轴。
2.选择MDI (A )方式,输入“M3S400”后,按“启动”。
3.转到手动方式,利用手持单元选择X 、Y 轴移动,使立铣刀处在图3-6中A 上方的位置;选择Z 轴使立铣刀下降到工件上表面以下约5mm 处;选择Y 轴,沿“-Y ”移动刀具,使刀具逐渐靠近工件,当立铣刀接近工件侧面时把手持单元的进给倍率调到“×10”,然后继续移动,当出现微量切屑时停止移动;选择Z 轴,沿“+Z ”抬刀,并记下当前的Y 轴机床坐标值。
4.选择X 、Y 轴移动,使立铣刀处在图3-6中B 上方的位置;选择Z 轴使立铣刀下降到工件上表面以下约5mm 处;选择X 轴,沿“+X ”移动刀具,使刀具逐渐靠近工件,当立铣刀接近工件侧面时把手持单元的进给倍率调到“×10”,然后继续移动,当出现微量切屑时停止移动;并记下当前的X 轴机床坐标值。
5.选择X 、Y 轴移动,使立铣刀处在图3-6中C 上方的位置;选择Z 轴使立铣刀下降,当立铣刀接近工件表面时,把手持单元的进给倍率调到“×10”,然后继续移动,当出现微量切屑时停止移动,并记下当前的Z 轴机床坐标值。
6.选择Z 轴,沿“+Z ”抬刀后选择X 、Y 轴,使刀具移动到前面所记的X 、Y 轴机床坐标值位置(图3-6中D 的上方);选择Z 轴,同样使Z 轴到前面所记的机床坐标位置。
7.再次进入MDI (A )方式,输入加工程序后按“启动”进行切削加工,其切削轨迹见图3-7。
图3-6 侧平面铣削确定起刀位置 图3-7 侧平面铣削走刀轨迹(四)程序编制 G54G91M3S400;G00Z-8;G1X0.5Y-0.5F100;X116;Y-96;X-116;Y110;G0Z200;M30;说明:在华中系统中,只能一段一段输入执行。
课题二对刀、刀具补偿及工件坐标系设置模块一对刀操作通过一定的方法把工件坐标系原点(实际上是工件坐标系原点所在的机床坐标值)体现出来,这个过程称为“对刀”。
在对刀前首先要把工件六个平面铣好(起码夹住的侧面应铣平);其次按工件定位基准面与机床运动方向一致的要求把工件定位装夹好;再次(如果工件表面没有精加工)用面铣刀把工件上表面铣平。
一、用铣刀直接对刀用铣刀直接对刀,就是在工件已装夹完成并在主轴上装入刀具后,通过手持单元操作移动工作台及主轴,使旋转的刀具与工件的前(后)、左(右)侧面及工件的上表面(图308中1~5这五个位置)作极微量的接触切削(产生切削或摩擦声),分别记下刀具在作极微量切削时所处的机床坐标值,对这些坐标值作一定的数值处理后就可以设定工件坐标系了。
图3-8 用铣刀直接对刀图3-9 用铣刀直接对刀时的刀具移动图操作过程为(针对图3-8中1的位置):1.工件装夹并校正平行后夹紧。
2.在主轴上装入已装好刀具的刀柄。
3.在MDI(A)方式下,输入M3S300,按<循环启动>,使主轴的旋转。
4.换到手动方式,使主轴停转。
手持盒上选择Z轴(倍率可以选择×100),转动手摇脉冲发生器,使主轴上升的一定的位置(在水平面移动时不会与工件及夹具碰撞即可);分别选择X、Y轴,移动工作台使主轴处于工件上方适当的位置(如图3-9中A)。
5.手持盒上选择X轴,移动工作台(图3-9中①),使刀具处在工件的外侧(图3-9中B);手持盒上选择Z轴,使主轴下降(图3-9中②),刀具到达图3-9中C;手持盒上重新选择X轴,移动工作台(图3-9中③),当刀具接近工件侧面时用手转动主轴使刀具的刀刃与工件侧面相对,感觉刀刃很接近工件时,启动主轴使主轴转动,倍率选择×10或×1,此时应一格一格地转动手摇脉冲发生器,应注意观察有无切屑(一旦发现有切屑应马上停止脉冲进给)或注意听声(一般刀具与工件微量接触切削时会发出“嚓”、“嚓”、“嚓”…的响声,一旦听到声音应马上停止脉冲进给),即到达了图3-9中D的位置。
6.手持盒上选择Z轴(避免在后面的操作中不小心碰到脉冲发生器而出现意外)。
记下此时X轴的机床坐标或把X的相对坐标清零。
7.转动手摇脉冲发生器(倍率重新选择为×100),使主轴上升(图3-9中④);移动到一定高度后,选择X轴,作水平移动(图3-9中⑤),再停止主轴的转动。
图3-8中2、3、4三个位置的操作参考上面的方法进行。
在用刀具进行Z轴对刀时,刀具应处在今后切除部位的上方(如图3-9中A),转动手摇脉冲发生器,使主轴下降,待刀具比较接近工件表面时,启动主轴转动,倍率选小,一格一格地转动手摇脉冲发生器,当发现切屑或观察到工件表面切出一个圆圈时(也可以在刀具正下方的工件上贴一小片浸了切削液或油的薄纸片,纸片厚度可以用千分尺测量,当刀具把纸片转飞时)停止手摇脉冲发生器的进给,记下此时的Z 轴机床坐标值(用薄纸片时应在此坐标值的基础上减去一个纸片厚度);反向转动手摇脉冲发生器,待确认主轴是上升的,把倍率选大,继续主轴上升。
用铣刀直接对刀时,由于每个操作者对微量切削的感觉程度不同,所以对刀精度并不高。
这种方法主要应用在要求不高或没有寻边器的场合。
图3-10 光电式寻边器对刀图3-11 偏心式寻边器对刀二、用寻边器对刀用寻边器(图1-113a 、b )对刀只能确定X 、Y 方向的机床坐标值,而Z 方向只能通过刀具或刀具与Z 轴设定器(图1-113c )配合来确定。
图3-10为使用光电式寻边器在1~4这四个位置确定X 、Y 方向的机床坐标值;在5这个位置用刀具确定Z 方向的机床坐标值。
图3-11为使用偏心式寻边器在1~4这四个位置确定X 、Y 方向的机床坐标值;在5这个位置用刀具确定Z 方向的机床坐标值。
使用光电式寻边器时(主轴作50~100r/min 的转动),当寻边器S mm 10 球头与工件侧面的距离较小时,手摇脉冲发生器的倍率旋钮应选择×10或×1,且一个脉冲、一个脉冲地移动;到出现发光或蜂鸣时应停止移动(此时光电寻边器与工件正好接触。