高考数学一轮复习(北师大版文科)课时作业5
- 格式:doc
- 大小:78.00 KB
- 文档页数:6
2015届高考数学(文)一轮复习质量检测:5 立体几何 北师大版测试内容:立体几何 (时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2012年大连期末)一几何体的三视图如图所示,已知这个几何体的体积为103,则h =( )A.32B. 3 C .2 3D .5 3解析:分析几何体的三视图,可知该几何体是底面为矩形的四棱锥,体积V =13×5×6×h =103,解得h = 3.答案:B2.设m ,n 是平面α内的两条不同直线;l 1,l 2是平面β内的两条相交直线,则α∥β的一个充分而不必要条件是( )A .m ∥β且l 1∥αB .m ∥l 1且n ∥l 2C .m ∥β且n ∥βD .m ∥β且n ∥l 2解析:⎭⎬⎫l 1∥m m ⊂α⇒l 1∥α,⎭⎬⎫同理l 2∥αl 1与l 2相交l 1,l 2⊂β⇒α∥β. 答案:B3.(2012年郑州质检)一个几何体的三视图及其尺寸如下图所示,其中正(主)视图是直角三角形,侧(左)视图是半圆,俯视图是等腰三角形,则这个几何体的体积是(单位:cm 3)( )A.π2B.π3C.π4D .π解析:依三视图可知,该几何体是半个圆锥,且底面半径为1,高为3,故V =12×⎝ ⎛⎭⎪⎫13×Sh =12×⎝ ⎛⎭⎪⎫13×π×12×3=π2,选A.答案:A4.(2012年杭州质检)将长方体截去一个四棱锥,得到的几何体如图所示,则该几何体的侧视图为()解析:由几何体的直观图可知,侧视图为一矩形(内有从左下到右上的对角线,因为该对角线看不到轮廓线,故用虚线).故选D.答案:D5.(2012年广州高三调研)在正四棱锥V -ABCD 中,底面正方形ABCD 的边长为1,侧棱长为2,则异面直线VA 与BD 所成角的大小为A.π6B.π4C.π3D.π2解析:取BD 的中点O ,则VO ⊥BD ,AC ⊥BD ,所以BD ⊥平面VAC ,则异面直线VA 与BD 所成角的大小为π2.答案:D6.给定下列四个命题:(1)若一个平面内的两条直线与另外一个平面都平行,那么这两个平面相互平行;(2)若一个平面经过另一个平面的垂线,那么这两个平面相互垂直; (3)垂直于同一直线的两条直线相互平行;(4)若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直.其中为真命题的是( )A .(1)和(2)B .(2)和(3)C .(3)和(4)D .(2)和(4)解析:对于(1),两条直线必须相交,否则不能证明面面平行,错误;对于(3),垂直于同一条直线的两条直线还可能异面,错误;(2)(4)正确.所以选D.答案:D7.如图是一个几何体的正视图、侧视图、俯视图,且正视图、侧视图都是矩形,则该几何体的体积是( )A .24B .12C .8D .4解析:依题意知,该几何体是从一个长方体中挖去一个三棱柱后剩下的几何体,因此其体积等于2×3×4-12×(2×3)×4=12,选B.答案:B8.如图是某一几何体的三视图,则这个几何体的侧面积和体积分别是( )A .82+25+6,8B .22+85+6,8C .42+85+12,16D .82+45+12,16解析:几何体的侧面积有四部分,左侧面面积S 1=12×2×25=25,右侧面面积S 2=12×2×42=42,后侧面面积S 3=12×6×4=12,前侧面面积S 4=12×6×25=65,所以侧面积为S =42+85+12,体积为V =13Sh =13×2×6×4=16,故选C.答案:C9.如图所示,直线P A 垂直于⊙O 所在的平面,△ABC 内接于⊙O ,且AB 为⊙O 的直径,点M 为线段PB 的中点.现有结论:①BC ⊥PC ;②OM ∥平面APC ;③点B 到平面P AC 的距离等于线段BC 的长.其中正确的是( )A .①②B .①②③C .①D .②③解析:对于①,∵P A ⊥平面ABC ,∴P A ⊥BC ,∵AB 为⊙O 的直径,∴BC ⊥AC ,∴BC ⊥平面P AC ,又PC ⊂平面P AC ,∴BC ⊥PC ;对于②,∵点M 为线段PB 的中点,∴OM ∥P A ,∵P A ⊂平面P AC ,∴OM ∥平面P AC ;对于③,由①知BC ⊥平面P AC ,∴线段BC 的长即是点B 到平面P AC 的距离,故①②③都正确.答案:B10.(2012年沈阳质检)如图,正方体AC 1的棱长为1,过点A 作平面A 1BD 的垂线,垂足为点H ,则以下命题中,错误的命题是( )A .点H 是△A 1BD 的垂心B .AH 的延长线经过点C 1 C .AH 垂直平面CB 1D 1D .直线AH 和BB 1所成角为45°解析:计算得AH =33,直线AH 和BB 1所成角为arccos 33,故D 项错误,选项A ,B ,C 是正确的.答案:D11.(2012年唐山模拟)把一个皮球放入如图所示的由8根长均为20 cm 的铁丝接成的四棱锥形骨架内,使皮球的表面与8根铁丝都有接触点,则皮球的半径为( )A .10 3 cmB .10 cmC .10 2 cmD .30 cm解析:该骨架为一个棱长为20 cm 的正四棱锥,设为G -ABCD ,与各棱均相切的球的球心记为O ,则O 在棱锥的高GT 上,如图示,设球半径为R ,与棱GB ,CD 分别交于点H ,M ,设OT =h ,由正四棱锥性质可知,|TM |=12|BC |=10,|BT |=12|BD |=102,|GT |=|GB |2-|BT |2=102,在△OTM 中,有R 2=h 2+102①,由△GHO ∽△GTB 可得|GO ||GB |=|OH ||BT |,即102-h 20=R 102②,联立①②可得R =10或R =30(舍),故选B.答案:B12.在正方形ABCD 中,AB =4,沿对角线AC 将正方形ABCD 折成一个直二面角B -AC -D ,则点B 到直线CD 的距离为( )A .2 2B .3 2C .2 3D .2+2 2解析:如图,取AC 中点E ,连接DE ,BE ,易知∠DEB 是二面角A -DC -B 的平面角,由于两平面垂直,故∠DEB =π2,即平面BE ⊥平面ADC ,过点E 作EF ⊥DC 于F ,连接BF ,则DC ⊥平面BEF ,所以BF ⊥DC ,故线段BF 即为点B 到DC 的距离,由于EF =12AD =2,BE =22,故BF =22+(22)2=2 3.答案:C二、填空题(本大题共4小题,每小题5分,共20分.将答案填在题中的横线上)13.已知正三棱锥的底面边长为2,侧棱长为433,则它的体积为________.解析:如图,在正三棱锥P -ABC 中,由于P A =433,AO =233,在直角三角形P AO 中可得PO =2,故V P -ABC =13×34×22×2=233.答案:23314.如图,已知△ABC 和△BCD 所在平面互相垂直,∠ABC =∠BCD =90°,AB =a ,BC =b ,CD =c ,且a 2+b 2+c 2=1,则三棱锥A -BCD 的外接球的表面积为________.解析:如图所示,可将该三棱锥补体为一个长方体,该长方体的体对角线长即为AD ,由AB =a ,BC =b ,CD =c ,且a 2+b 2+c 2=1,可得该三棱锥外接球即为长方体的外接球的直径为1,其外接球的表面积为S =4π×⎝ ⎛⎭⎪⎫122=π.答案:π15.如果一个几何体的正视图、侧视图、俯视图均为如图所示的面积为2的等腰直角三角形,那么该几何体的表面积等于________.解析:由题可得几何体如图所示,其中AP ⊥PC ,PC ⊥CB ,并且AP =PC =CB =2,PB =AC =22,△PBC ,△P AC 的面积都是2;CB ⊥面P AC ,所以CB ⊥AC ,又AP ⊥面PBC ,所以AP ⊥PB ,进而可求得△P AB ,△ABC 的面积都是22,所以该几何体的表面积等于4+4 2.答案:4+4 216.在三棱锥P -ABC 中,三条侧棱P A ,PB ,PC 两两互相垂直,且P A =PB =PC ,M 为AB 的中点,则PM 与平面ABC 所成角的正弦值为________.解析:如图,将三棱锥补为正方体,由于三棱锥P -ABC 为正三棱锥,故点P 在底面ABC 的射影为其中心N ,连接MN ,则∠PMN 即为直线PM 与平面ABC 所成角,设P A =PB =PC =a ,则PM =22a ,PN =33a ,故sin ∠PMN =PN PM =63.答案:63三、解答题(本大题共6小题,共70分,17题10分,18~22题,每题12分.解答应写出文字说明,证明过程或演算步骤.)17.如图,在直四棱柱ABCD -A 1B 1C 1D 1中,四边形ABCD 是梯形,AD ∥BC ,AC ⊥CD ,E 是AA 1上的一点.(1)求证:CD ⊥平面ACE ;(2)若平面CBE 交DD 1于点F ,求证:EF ∥AD .证明:(1)因为ABCD -A 1B 1C 1D 1为直四棱柱,所以AA 1⊥平面ABCD . 因为CD ⊂平面ABCD ,所以AA 1⊥CD ,即AE ⊥CD .因为AC ⊥CD ,AE ⊂平面AEC ,AC ⊂平面AEC ,AE ∩AC =A ,所以CD ⊥平面AEC .(2)因为AD ∥BC ,AD ⊂平面ADD 1A 1,BC ⊄平面ADD 1A 1,所以BC ∥平面ADD 1A 1.因为BC ⊂平面BCE ,平面BCE ∩平面ADD 1A 1=EF ,所以EF ∥BC . 因为AD ∥BC ,所以EF ∥AD .18.如图,在四棱锥P -ABCD 中,P A ⊥平面ABCD ,底面ABCD 为平行四边形,且AB =1,BC =2,∠ABC =π3,E ,F 分别为AD ,BC 的中点.(1)求证:EF ∥平面PCD ; (2)求证:AC ⊥平面P AB .证明:(1)如图,因为在平行四边形ABCD 中,E ,F 分别为AD ,BC 的中点,所以ED =FC ,ED ∥FC ,可得EFCD 为平行四边形,所以EF ∥CD .又因为EF⊄平面PCD,CD⊂平面PCD,所以EF∥平面PCD.(2)因为P A⊥平面ABCD,AC⊂平面ABCD,故P A⊥AC.在△ABC中,AB=1,BC=2,∠ABC=π3,由余弦定理得AC=AB2+BC2-2AB·BC·cos∠ABC=1+4-2×1×2cos π3= 3.故AB2+AC2=BC2,所以AB⊥AC.而P A∩AB=A,且AB,P A⊂平面P AB,所以AC⊥平面P AB.19.一个多面体的三视图和直观图分别如图(1)(2)所示,其中M、N分别为AB、AC的中点,G是DF上的一动点.(1)求证:GN⊥AC;(2)当FG=GD时,在棱AB上确定一点P,使得GP∥平面FMC,并给出证明.证明:(1)如图,连接DB,可知B,N,D共线,且AC⊥DN.又∵FD⊥AD,FD⊥CD,AD∩CD=D,∴FD⊥平面ABCD.又∵AC⊂平面ABCD,∴FD⊥AC.又∵DN∩FD=D,∴AC⊥平面FDN.又GN⊂平面FDN,∴GN⊥AC.(2)点P与点A重合时,GP∥平面FMC.证明:取FC中点H,连接GH,GA,MH.∵G是DF的中点,∴GH綊12CD.∵M是AB的中点,∴AM綊12CD.∴GH綊AM,∴四边形GHMA是平行四边形.∴GA∥MH.又∵MH⊂平面FMC,GA⊄平面FMC,∴GA∥平面FMC,即GP∥平面FMC.20.(2013年西安质检)如图,在四棱锥P-ABCD中,P A⊥平面ABCD,底面ABCD是菱形,AB=2,∠BAD=60°.(1)求证:BD⊥平面P AC;(2)若P A=PB,求PB与AC所成角的余弦值.解:证明:(1)因为四边形ABCD是菱形,所以AC⊥BD.又因为P A⊥平面ABCD,所以P A⊥BD,而P A∩AC=A,所以BD⊥平面P AC.(2)设AC∩BD=O.因为∠BAD=60°,P A=PB=2,所以BO=1,AO=CO= 3.如图,以O为坐标原点,OB为x轴正方向,OC为y轴正方向,与AP平行的方向为z 轴正方向,建立空间直角坐标系O -xyz ,则点P (0,-3,2),A (0,-3,0),B (1,0,0),C (0,3,0).所以PB →=(1,3,-2),AC →=(0,23,0).设PB 与AC 所成角为θ,则cos θ=⎪⎪⎪⎪⎪⎪PB →·AC →|PB →|·|AC →|=622×23=64.21.(2012年长沙联考)如图,在直三棱柱ABC -A 1B 1C 1中,AC =3,BC =4,AB =5,AA 1=4,点D 是AB 的中点.(1)求证:AC ⊥BC 1;(2)求二面角D -CB 1-B 的平面角的正切值.解:(1)证明:在直三棱柱ABC -A 1B 1C 1中,底面三边长AC =3,BC =4,AB =5.因为AC 2+BC 2=AB 2,所以AC ⊥BC .又AC ⊥C 1C ,且BC ∩C 1C =C ,所以AC ⊥平面BCC 1.又BC 1⊂平面BCC 1,所以AC ⊥BC 1.(2)解法一:取BC 中点E ,过点D 作DF ⊥B 1C 于点F ,连接EF ,ED . 因为D 是AB 中点,所以DE ∥AC ,又AC ⊥平面BB 1C 1C ,所以DE ⊥平面BB 1C 1C .又因为BC 1⊂平面BB 1C 1C ,所以B 1C ⊥DE .而DF ⊥B 1C 且DE ∩DF =D ,所以B 1C ⊥平面DEF ,EF ⊂平面DEF ,所以B 1C ⊥EF ,所以∠EFD 是二面角D -CB 1-B 的平面角.因为AC =3,BC =4,AA 1=4,所以在△DEF 中,DE ⊥EF ,DE =32,EF =2,所以tan ∠EFD =DE EF =322=324. 所以二面角D -CB 1-B 的正切值为324.解法二:以CA ,CB ,CC 1分别为x ,y ,z 轴建立如图所示空间直角坐标系.因为AC =3,BC =4,AA 1=4,所以点A (3,0,0),B (0,4,0),C (0,0,0),D ⎝ ⎛⎭⎪⎫32,2,0,B 1(0,4,4),所以CD →=⎝ ⎛⎭⎪⎫32,2,0,CB 1→=(0,4,4). 平面CBB 1C 1的法向量n 1=(1,0,0),设平面DB 1C 的法向量n 2=(x 0,y 0,z 0),则n 1,n 2的夹角(或其补角)的大小就是二面角D -CB 1-B 的大小.则由⎩⎨⎧ n 2·CD →=0,n 2·CB 1→=0,即⎩⎪⎨⎪⎧ 32x 0+2y 0=0,4y 0+4z 0=0.令x 0=4,则y 0=-3,z 0=3,所以n 2=(4,-3,3).cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=434,则tan 〈n 1,n 2〉=324. 因为二面角D -CB 1-B 是锐二面角,所以二面角D -CB 1-B 的正切值为324.22.将两块全等的三角板的一对直角边拼接在一起,使得一块三角板的直角边与另一块三角板所在平面垂直,如图,AB =BC =CD =2,∠ABC =∠BCD =90°,E ,F ,G 分别为AB ,BC ,AC 的中点,P 为BD 上的点.(1)当点P 为BD 的中点时,求证:BG ⊥PF ;(2)线段BD 上是否存在点P ,使得二面角B -EF -P 的大小为2π3?若存在,求出BP PD 的值;若不存在,说明理由.解:(1)证明:如图,以B 为坐标原点,以BC ,BA 所在直线为y 轴,z 轴,以过B 作DC 的平行线为x 轴,建立空间直角坐标系,则B (0,0,0),E (0,0,1),F (0,1,0),G (0,1,1),C (0,2,0),D (2,2,0),当点P 为BD 的中点时,P (1,1,0),∴BG →=(0,1,1),FP →=(1,0,0),∴BG →·FP →=0,∴BG ⊥PF .(2)假设线段BD 上存在点P (t ,t,0)(0≤t ≤2),使得二面角B -EF -P 的大小为2π3,由(1)得EF →=(0,1,-1),FP →=(t ,t -1,0).设平面EFP 的一个法向量为n =(x ,y,1),则⎩⎨⎧ n ·EF →=0,n ·FP →=0,即⎩⎨⎧0+y -1=0,tx +(t -1)y =0,解方程组得⎩⎪⎨⎪⎧ x =1-t t ,y =1,从而n =⎝ ⎛⎭⎪⎫1-t t ,1,1, 又取平面BEF 的一个法向量为m =(1,0,0),∴cos 〈m ,n 〉=m ·n |m |·|n |=1-t 3t 2-2t +1;又二面角B -EF -P 的大小为2π3,∴〈m ,n 〉=2π3,故-12=1-t 3t 2-2t +1, 解得t =3±6,经检验不符合题意. 故线段BD 上不存在点P ,使得二面角B -EF -P 的大小为2π3.。
课时作业(一)A [第1讲 集合及其运算](时间:35分钟 分值:80分)基础热身1.[2012·江西八校模拟] 设集合A ={4,5,7,9},B ={3,4,7,8,9},全集U =A ∪B ,则集合∁U (A ∩B )的真子集共有( )A .3个B .6个C .7个D .8个2.[2012·商丘模拟] 设全集U ={1,2,3,4,5,6,7,8},集合A ={1,2,3,5},B ={2,4,6},则图K1-1中的阴影部分表示的集合为( )图K1-1A .{2}B .{4,6}C .{1,3,5}D .{4,6,7,8}3.设非空集合M ,N 满足:M ={x |f (x )=0},N ={x |g (x )=0},P ={x |f (x )g (x )=0},则集合P 恒满足的关系为( )A .P =M ∪NB .P ⊆(M ∪N )C .P ≠∅D .P =∅4.[2012·上海卷] 若集合A ={x |2x -1>0},B ={x ||x |<1},则A ∩B =________.能力提升5.已知集合A ={x |x 2-4x -12<0},B ={x |x <2},则A ∪(∁R B )=( ) A .{x |x <6} B .{x |-2<x <2} C .{x |x >-2} D .{x |2≤x <6}6.设集合A ={1,2},则满足A ∪B ={1,2,3}的集合B 的个数为( ) A .1 B .3 C .4 D .87.[2012·高安中学模拟] 已知全集U =R ,函数y =1x +1的定义域为集合A ,函数y =log 2(x +2)的定义域为集合B ,则集合(∁U A )∩B =( )A .(-2,-1)B .(-2,-1]C .(-∞,-2)D .(-1,+∞)8.[2012·北京卷] 已知集合A ={x ∈R |3x +2>0},B ={x ∈R |(x +1)(x -3)>0},则A ∩B =( )A .(-∞,-1) B.⎝⎛⎭⎪⎫-1,-23 C.⎝ ⎛⎭⎪⎫-23,3 D .(3,+∞) 9.已知集合A ={(x ,y )|x ,y 为实数,且x 2+y 2=1},B ={(x ,y )|x ,y 为实数,且y =x },则A ∩B 的元素个数为________.10.集合A ={x |ax -1=0},B ={x |x 2-3x +2=0},且A ∪B =B ,则实数a 的值为________.11.[2011·江苏卷] 设集合A =⎩⎨⎧(x ,y )⎪⎪⎪⎭⎬⎫m 2≤(x -2)2+y 2≤m 2,x ,y ∈R , B ={(x ,y )|2m ≤x +y ≤2m +1,x ,y ∈R }, 若A ∩B ≠∅, 则实数m 的取值范围是________.12.(13分)集合A={x|x2-ax+a2-19=0},B={x|x2-5x+6=0},C={x|x2+2x-8=0},满足A∩B≠∅,A∩C=∅,求实数a的值.难点突破13.(12分)集合A={x|-2≤x≤5},B={x|m+1≤x≤2m-1}.(1)若B⊆A,求实数m的取值范围;(2)当x∈Z时,求A的非空真子集的个数;(3)当x∈R时,若A∩B=∅,求实数m的取值范围.课时作业(一)B [第1讲 集合及其运算](时间:35分钟 分值:80分)基础热身1.[2012·临川一中模拟] 已知集合M =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪2x ≥14,N ={x ︱x 2+y 2=4,x ∈R ,y ∈R },则M ∩N =( )A .{-2,1}B .{(-2,0),(1,3)}C .∅D .N2.[2012·浙江卷] 设全集U ={1,2,3,4,5,6},集合P ={1,2,3,4},Q ={3,4,5},则P ∩(∁U Q )=( )A .{1,2,3,4,6}B .{1,2,3,4,5}C .{1,2,5}D .{1,2}3.若集合A =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪log 12x ≥12,则∁R A =( )A.⎣⎢⎡⎭⎪⎫22,+∞ B.⎝⎛⎭⎪⎫22,+∞ C .(-∞,0]∪⎣⎢⎡⎭⎪⎫22,+∞ D .(-∞,0]∪⎝⎛⎭⎪⎫22,+∞ 4.[2012·淮阴模拟] 已知全集U ={1,2,3,4,5},集合A ={x |x 2-3x +2=0},B ={x |x =2a ,a ∈A },则集合∁U (A ∪B )=________.能力提升5.[2012·驻马店模拟] 集合A ={x |x 2-2x +a >0},1∉A ,则实数a 的取值范围是( ) A .(-∞,0] B .[0,+∞) C .[1,+∞) D .(-∞,1]6.定义集合运算:A ⊙B ={z |z =xy (x +y ),x ∈A ,y ∈B },设集合A ={0,1},B ={2,3},则集合A ⊙B 的所有元素之和为( )A .0B .6C .12D .187.已知A ,B 均为集合U ={1,3,5,7,9}的子集,且A ∩B ={3},(∁U B )∩A ={9},则A等于( )A.{1,3} B.{3,7,9}C.{3,5,9} D.{3,9}8.已知集合A,B,A={x|-2≤x<2},A∪B=A,则集合B不可能...为( ) A.∅ B.{x|0≤x≤2}C.{x|0<x<2} D.{x|0≤x<2}9.已知集合M={(x,y)|x+y=1},N={(x,y)|x-y=1},则M∩N=________.10.[2012·南昌模拟] 若非空集合X={x|a+1≤x≤3a-5},Y={x|1≤x≤16},则使得X⊆X∩Y成立的所有的a的集合是________.11.集合A={(x,y)|y=1-x2},B={(x,y)|y=x+b},若A∩B的子集有4个,则b 的取值范围是________.12.(13分)设关于x的不等式x(x-a-1)<0(a∈R)的解集为M,不等式x2-2x-3≤0的解集为N.(1)当a=1时,求集合M;(2)若M⊆N,求实数a的取值范围.难点突破13.(1)(6分)[2012·北京西城区模拟] 已知集合A={a1,a2,…,a20},其中a k>0(k=1,2,…,20),集合B={(a,b)|a∈A,b∈A,a-b∈A},则集合B中的元素至多有( ) A.210个 B.200个C.190个 D.180个(2)(6分)[2012·北京朝阳区模拟] 已知集合A={(x,y)|x2+y2≤4},集合B={(x,y)|y≥m|x|,m为正常数}.若O为坐标原点,M,N为集合A所表示的平面区域与集合B所表示的平面区域的边界的交点,则△MON的面积S与m的关系式为________.课时作业(二) [第2讲 命题及其关系、充分条件、必要条件](时间:35分钟 分值:80分)基础热身1.[2012·重庆卷] 命题“若p ,则q ”的逆命题是( ) A .若q ,则p B .若綈p ,则綈q C .若綈q ,则綈p D .若p ,则綈q 2.下列有关命题的说法正确的是( )A .命题“若x 2=1,则x =1”的否命题为:“若x 2=1,则x ≠1”B .“x =-1”是“x 2-5x -6=0”的必要不充分条件C .命题“存在x ∈R ,使得x 2+x -1<0”的否定是:“任x ∈R ,均有x 2+x -1>0” D .命题“若x =y ,则sin x =sin y ”的逆否命题为真命题 3.下列命题中为真命题的是( ) A .命题“若x >y ,则x >|y |”的逆命题B .命题“若x >1,则x 2>1”的否命题C .命题“若x =1,则x 2+x -2=0”的否命题D .命题“若x 2>0,则x >1”的逆否命题4.已知:A =⎩⎨⎧⎭⎬⎫x ∈R ⎪⎪⎪12<2x <8,B ={x |-1<x <m +1},若x ∈B 成立的一个充分不必要条件是x ∈A ,则实数m 的取值范围是________.能力提升5.[2012·宜春模拟] 已知函数f (x )=⎩⎪⎨⎪⎧x 2+ax ,x ≤1,ax 2+x ,x >1,则“a ≤-2”是“f (x )在R 上单调递减”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件6.下列有关命题的说法中,正确的是( )A .命题“若x 2>1,则x >1”的否命题为“若x 2>1,则x ≤1”B .“x >1”是“x 2+x -2>0”的充分不必要条件C .命题“存在x ∈R ,使得x 2+x +1<0”的否定是“任意x ∈R ,都有x 2+x +1>0” D .命题“若α>β,则tan α>tan β”的逆命题为真命题 7.下列命题中,真命题的个数是( )①x,y∈R,“若x2+y2=0,则x,y全为0”的逆命题;②“若a+b是偶数,则a,b都是偶数”的否命题;③“若x=3或x=7,则(x-3)(x-7)=0”的逆否命题.A.0 B.1C.2 D.38.[2012·郑州模拟] 设p:|2x+1|>a,q:x-12x-1>0,使p是q的必要不充分条件的实数a的取值范围是( )A.(-∞,0) B.(-∞,-2]C.[-2,3] D.(-∞,3]9.[2012·焦作质检] 写出一个使不等式x2-x<0成立的充分不必要条件________.10.已知命题“若a>b,则ac2>bc2”,则命题的原命题、逆命题、否命题和逆否命题中正确命题的个数是________.11.“x=2”是“向量a=(x+2,1)与向量b=(2,2-x)共线”的________条件.12.(13分)π为圆周率,a,b,c,d∈Q,已知命题p:若aπ+b=cπ+d,则a=c且b=d.(1)写出命题p的否定并判断真假;(2)写出命题p的逆命题、否命题、逆否命题并判断真假;(3)“a=c且b=d”是“aπ+b=cπ+d”的什么条件?并证明你的结论.难点突破13.(12分)已知集合A=y错误!y=x2-错误!x+1,x∈错误!,2,B={x|x+m2≥1}.条件p:x∈A,条件q:x∈B,并且p是q的充分条件,求实数m的取值范围.课时作业(三) [第3讲简单的逻辑联结词、全称量词与存在量词](时间:35分钟分值:80分)基础热身1.已知命题p:任意x∈R,x>sin x,则命题p的否定形式为( )A.存在x∈R,x<sin x B.任意x∈R,x≤sin xC.存在x∈R,x≤sin x D.任意x∈R,x<sin x2.[2012·乌鲁木齐模拟] 已知α,β是两个不重合的平面,l是空间一条直线,命题p:若α∥l,β∥l,则α∥β;命题q:若α⊥l,β⊥l,则α∥β.对以上两个命题,下列结论中正确的是( )A.命题“p且q”为真B.命题“p或q”为假C.命题“p或q”为真D.命题“(綈p)且(綈q)”为真3.[2012·鹰潭一中模拟] 给出如下四个命题,其中不正确...的命题的个数是( )①若“p且q”为假命题,则p,q均为假命题;②命题“若a>b,则2a>2b-1”的否命题为“若a≤b,则2a≤2b-1”;③“任意x∈R,x2+1≥1”的否定是“存在x∈R,x2+1≤1”;④在△ABC中,“A>B”是“sin A>sin B”的充要条件.A.4 B.3 C.2 D.14.[2012·河南四校联考] 命题“任意x∈R,都有|x-1|-|x+1|≤3”的否定是________________________________________________________________________.能力提升5.[2012·黄冈中学月考] 命题“任意x∈[1,2],x2-a≤0”为真命题的一个充分不必....要条件...是( )A.a≥4 B.a≤4 C.a≥5 D.a≤56.[2013·德州重点中学月考] 下列有关命题的说法正确的是( )A.命题“若xy=0,则x=0”的否命题为:“若xy=0,则x≠0”B.“若x+y=0,则x,y互为相反数”的逆命题为真命题C.命题“存在x∈R,使得2x2-1<0”的否定是:“任意x∈R,均有2x2-1<0”D.命题“若cos x=cos y,则x=y”的逆否命题为真命题7.[2012·东北三校联考] 已知命题p:存在x0∈0,π2,sin x0=12,则綈p为( )A .任意x ∈0,π2,sin x ≠12B .任意x ∈0,π2,sin x =12C .存在x ∈0,π2,sin x ≠12D .存在x ∈0,π2,sin x >128.[2012·南昌二中模拟] 有四个关于三角函数的命题:p 1:存在x ∈R ,sin 2x 2+cos 2x 2=12;p 2:存在x ,y ∈R ,sin(x -y )=sin x -sin y ;p 3:任意x ∈[0,π],1-cos2x2=sin x ;p 4:sin x =cos y ⇒x +y =π2.其中假命题的是( )A .p 1,p 4B .p 2,p 4C .p 1,p 3D .p 2,p 39.在“綈p ”“p 且q ”“p 或q ”形式的命题中,“p 或q ”为真,“p 且q ”为假,“綈p ”为真,那么p ,q 的真假为p ________,q ________.10.[2012·宁德质检] 若“任意x ∈R ,(a -2)x +1>0”是真命题,则实数a 的取值集合是________.11.下列四个命题:①任意x ∈R ,x 2+x +1≥0;②任意x ∈Q ,12x 2+x -13是有理数;③存在α,β∈R ,使sin(α+β)=sin α+sin β; ④存在x ,y ∈Z ,使3x -2y =10. 所有真命题的序号是________.12.(13分)[2012·吉林模拟] 已知p :f (x )=x 3-ax 在(2,+∞)上为增函数,q :g (x )=x 2-ax +3在(1,2)上为减函数,若p 或q 为真命题,p 且q 为假命题,求a 的取值范围.难点突破13.(12分)已知p :方程a 2x 2+ax -2=0在[-1,1]上有解;q :只有一个实数x 满足不等式x 2+2ax +2a ≤0,若“p 或q ”是假命题,求实数a 的取值范围.课时作业(四)A [第4讲 函数的概念及其表示](时间:35分钟 分值:80分)基础热身1.[2012·石家庄质检] 下列函数中与函数y =x 相同的是( )A .y =|x |B .y =1xC .y =x 2D .y =3x 32.[2012·郑州质检] 函数f (x )=2x -1log 2x的定义域为( )A .(0,+∞)B .(1,+∞)C .(0,1)D .(0,1)∪(1,+∞)3.下列函数中,值域为[0,3]的函数是( ) A .y =-2x +1(-1≤x ≤0) B .y =3sin xC .y =x 2+2x (0≤x ≤1) D .y =x +34.[2012·陕西卷] 设函数f (x )=⎩⎨⎧x ,x ≥0,⎝ ⎛⎭⎪⎫12x ,x <0,则f (f (-4))=________.能力提升5.[2013·浙江重点中学联考] 已知f (x +1)=-f (x ),且f (x )=⎩⎪⎨⎪⎧1(-1<x <0),0(0≤x ≤1),则f (3)=( )A .-1B .0C .1D .1或0 6.若一系列函数的解析式相同,值域相同,但定义域不同,则称这些函数为“孪生函数”,例如解析式为y =2x 2+1,值域为{9}的“孪生函数”三个:(1)y =2x 2+1,x ∈{-2};(2)y=2x 2+1,x ∈{2};(3)y =2x 2+1,x ∈{-2,2}.那么函数解析式为y =2x 2-1,值域为{-1,5}的“孪生函数”共有( )A .5个B .4个C .3个D .2个7.[2012·唐山模拟] 函数y =1-lg (x +2)的定义域为( ) A .(0,8] B .(-2,8]C .(2,8]D .[8,+∞)8.已知f ⎝ ⎛⎭⎪⎫12x -1=2x +3,f (m )=6,则m 等于( ) A.14 B .-14 C.32 D .-329.[2012·江西八所高中模拟] 设函数f (x )=⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫13x-8(x <0),x 2+x -1(x ≥0),若f (a )>1,则实数a 的取值范围是________.10.已知f (x )=⎩⎪⎨⎪⎧1,x ≥0,0,x <0,则不等式xf (x )+x ≤2的解集是________.11.已知g (x )=1-2x ,f (g (x ))=1-x 2x 2(x ≠0),那么f ⎝ ⎛⎭⎪⎫12=________. 12.(13分)图K4-1是一个电子元件在处理数据时的流程图:(1)试确定y =f (x )的函数关系式;(2)求f (-3),f (1)的值; (3)若f (x )=16,求x 的值.难点突破13.(12分)已知二次函数f (x )有两个零点0和-2,且f (x )的最小值是-1,函数g (x )与f (x )的图像关于原点对称.(1)求f (x )和g (x )的解析式;(2)若h (x )=f (x )-λg (x )在区间[-1,1]上是增函数,求实数λ的取值范围.课时作业(四)B [第4讲 函数的概念及其表示](时间:35分钟 分值:80分)基础热身1.下列是映射的是(图 2A .(1)(2)(3)B .(1)(2)(5)C .(1)(3)(5)D .(1)(2)(3)(5)2.[2012·江西师大附中月考] 已知函数f (x )=⎩⎪⎨⎪⎧1-x ,x ≤0a x ,x >0,若f (1)=f (-1),则实数a 的值等于( )A .1B .2C .3D .43.[2012·马鞍山二模] 已知函数f (x )=⎩⎪⎨⎪⎧2x ,x >0,x +1,x ≤0,若f (a )+f (1)=0,则实数a 的值等于( )A .-3B .-1C .1D .34.函数y =x -x 的值域是________.能力提升5.已知f (x )的图像恒过点(1,2),则f (x +3)的图像恒过点( ) A .(-3,1) B .(2,-2) C .(-2,2) D .(3,5)6.[2012·肇庆一模] 已知函数f (x )=lg x 的定义域为M ,函数y =⎩⎪⎨⎪⎧2x ,x >2,-3x +1,x <1的定义域为N ,则M ∩N =( )A .(0,1)B .(2,+∞)C .(0,+∞)D .(0,1)∪(2,+∞)7.已知函数y =⎩⎪⎨⎪⎧x 2+1,x ≤0,-2x ,x >0,则使函数值为5的x 的值是( )A .-2B .2或-52C .2或-2D .2或-2或-528.[2012·石家庄质检] 设集合A =⎣⎢⎡⎭⎪⎫0,12,B =⎣⎢⎡⎦⎥⎤12,1,函数f (x )=⎩⎪⎨⎪⎧x +12,x ∈A ,2(1-x ),x ∈B ,若x 0∈A 且f (f (x 0))∈A ,则x 0的取值范围是( )A.⎝ ⎛⎦⎥⎤0,14B.⎝ ⎛⎭⎪⎫14,12C.⎝ ⎛⎦⎥⎤14,12D.⎣⎢⎡⎦⎥⎤0,38 9.[2012·四川卷] 函数f (x )=11-2x的定义域是________.(用区间表示)10.已知f (x )=⎩⎪⎨⎪⎧ln 1x,x >0,1x ,x <0,则f (x )>-1的解集为____________________.11.函数f (x )=⎩⎪⎨⎪⎧x 2-x +1,x <1,1x,x >1的值域是________.12.(13分)(1)求函数f (x )=lg (x 2-2x )9-x2的定义域; (2)已知函数f (x )的定义域为[0,1],求下列函数的定义域:①f (x 2),②f (x -1);(3)已知函数f (lg(x +1))的定义域是[0,9],求函数f (2x)的定义域.难点突破13.(12分)已知f (x )是定义在[-6,6]上的奇函数,它在[0,3]上是一次函数,在[3,6]上是二次函数,且当x ∈[3,6]时,f (x )≤f (5)=3,f (6)=2,求f (x )的解析式.课时作业(五) [第5讲 函数的单调性与最值](时间:45分钟 分值:100分)基础热身 1.下列函数中,满足“对任意x 1,x 2∈(0,+∞),当x 1<x 2时,都有f (x 1)>f (x 2)”的是( )A .f (x )=1xB .f (x )=(x -1)2C .f (x )=e xD .f (x )=ln(x +1)2.函数f (x )=1-1x在[3,4)上( )A .有最小值无最大值B .有最大值无最小值C .既有最大值又有最小值D .最大值和最小值皆不存在3.[2012·天津卷] 下列函数中,既是偶函数,又在区间(1,2)内是增函数的为( ) A .y =cos2x ,x ∈RB .y =log 2|x |,x ∈R 且x ≠0C .y =e x -e -x 2,x ∈RD .y =x 3+1,x ∈R 4.函数f (x )=xx +1的最大值为________.能力提升5.[2012·宁波模拟] 已知函数f (x )为R 上的减函数,则满足f (|x |)<f (1)的实数x 的取值范围是( )A .(-1,1)B .(0,1)C .(-1,0)∪(0,1)D .(-∞,-1)∪(1,+∞)6.[2012·商丘三模] 设f (x )=x 2-2x -3(x ∈R ),则在区间[-π,π]上随机取一个实数x ,使f (x )<0的概率为( )A.1π B.2π C.3π D.32π7.[2012·哈尔滨师范大学附中期中] 函数y =⎝ ⎛⎭⎪⎫121x 2+1的值域为( )A .(-∞,1) B.⎝ ⎛⎭⎪⎫12,1 C.⎣⎢⎡⎭⎪⎫12,1 D.⎣⎢⎡⎭⎪⎫12,+∞ 8.[2013·惠州二调] 已知函数f (x )=e x -1,g (x )=-x 2+4x -3,若有f (a )=g (b ),则b 的取值范围为( )A .(2-2,2+2)B .[2-2,2+2]C .[1,3]D .(1,3)9.[2012·长春外国语学校月考] 已知函数f (x )=⎩⎪⎨⎪⎧a x (x <0),(a -3)x +4a (x ≥0)满足对任意的实数x 1≠x 2都有f (x 1)-f (x 2)x 1-x 2<0成立,则实数a 的取值范围是( )A .(3,+∞)B .(0,1) C.⎝ ⎛⎦⎥⎤0,14 D .(1,3) 10.若函数y =f (x )的值域是⎣⎢⎡⎦⎥⎤12,3,则函数F (x )=f (x )+1f (x )的值域是________. 11.若在区间⎣⎢⎡⎦⎥⎤12,2上,函数f (x )=x 2+px +q 与g (x )=x +1x 在同一点取得相同的最小值,则f (x )在该区间上的最大值是________.12.函数y =xx +a在(-2,+∞)上为增函数,则a 的取值范围是________.13.函数y =ln 1+x1-x 的单调递增区间是________.14.(10分)试讨论函数f (x )=xx 2+1的单调性.15.(13分)已知函数f (x )=a -1|x |.(1)求证:函数y =f (x )在(0,+∞)上是增函数;(2)若f (x )<2x 在(1,+∞)上恒成立,求实数a 的取值范围.难点突破16.(12分)已知函数f(x)=x2x-2(x∈R,且x≠2).(1)求f(x)的单调区间;(2)若函数g(x)=x2-2ax与函数f(x)在x∈[0,1]上有相同的值域,求a的值.课时作业(六)A [第6讲 函数的奇偶性与周期性](时间:35分钟 分值:80分)基础热身1.[2012·九江模拟] 已知函数f (x )=⎩⎪⎨⎪⎧1-2-x(x ≥0),2x -1(x <0),则该函数是( )A .偶函数,且单调递增B .偶函数,且单调递减C .奇函数,且单调递增D .奇函数,且单调递减2.函数f (x )=a 2x -1ax (a >0,a ≠1)的图像( )A .关于原点对称B .关于直线y =x 对称C .关于x 轴对称D .关于y 轴对称3.[2012·哈尔滨师范大学附中月考] 设f (x )是定义在R 上的奇函数,当x ≤0时,f (x )=2x 2-x ,则f (1)=( )A .-3B .-1C .1D .34.[2012·上海卷] 已知y =f (x )是奇函数,若g (x )=f (x )+2且g (1)=1,则g (-1)=________.能力提升5.设f (x )是周期为2的奇函数,当0≤x ≤1时,f (x )=x ,则f ⎝ ⎛⎭⎪⎫-134=( ) A.32 B .-32 C.12 D .-126.[2012·长春外国语学校月考] 已知函数f (x )是定义在R 上的奇函数,且f (x +2)=-f (x ),若f (1)=1,则f (3)-f (4)=( )A .-1B .1C .-2D .27.[2013·保定摸底] 若函数f (x )=|x -2|+a 4-x 2的图像关于原点对称,则f a2=( ) A.33 B .-33C .1D .-1 8.[2012·鹰潭模拟] 设函数f (x )=x 3+log 2(x +x 2+1),则对任意实数a ,b ,a +b ≥0是f (a )+f (b )≥0的( )A .充分必要条件B .充分不必要条件C .必要不充分条件D .既不充分又不必要条件9.[2013·银川一中月考] 已知f (x )是定义在R 上的函数,且满足f (x +1)+f (x )=3,当x ∈[0,1]时,f (x )=2-x ,则f (-2 005.5)=________.10.[2013·南昌一中、十中联考] 函数f (x )是定义在R 上的奇函数,下列结论中,正确结论的序号是________.①f (-x )+f (x )=0;②f (-x )-f (x )=-2f (x );③f (x )f (-x )≤0;④f (x )f (-x )=-1.11.[2012·南京三模] 若函数f (x )=⎩⎪⎨⎪⎧x 2-2x ,x ≥0,-x 2+ax ,x <0是奇函数,则满足f (x )>a 的x 的取值范围是________.12.(13分)[2012·衡水中学一调] 已知函数f (x )=x m-2x 且f (4)=72.(1)求m 的值;(2)判定f (x )的奇偶性;(3)判断f (x )在(0,+∞)上的单调性,并给予证明.难点突破13.(12分)已知定义域为R 的函数f (x )=-2x+b2x +1+a是奇函数.(1)求a ,b 的值;(2)若对任意的t ∈R ,不等式f (t 2-2t )+f (2t 2-k )<0恒成立,求k 的取值范围.课时作业(六)B [第6讲 函数的奇偶性与周期性](时间:35分钟 分值:80分)基础热身1.[2012·佛山质检] 下列函数中既是奇函数,又在区间(-1,1)上是增函数的为( ) A .y =|x | B .y =sin xC .y =e x +e -xD .y =-x 32.已知f (x )=ax 2+bx 是定义在[a -1,2a ]上的偶函数,那么a +b 的值是( )A .-13 B.13 C.12 D .-123.已知f (x )=⎩⎪⎨⎪⎧x 2-x +1(x >0),-x 2-x -1(x <0),则f (x )为( ) A .奇函数 B .偶函数C .非奇非偶函数D .不能确定奇偶性4.[2012·浙江卷] 设函数f (x )是定义在R 上的周期为2的偶函数,当x ∈[0,1]时,f (x )=x +1,则f ⎝ ⎛⎭⎪⎫32=________.能力提升5.[2012·郑州模拟] 设函数f (x )=⎩⎪⎨⎪⎧2x,x <0,0,x =0,g (x ),x >0,且f (x )为奇函数,则g (3)=( )A .8 B.18 C .-8 D .-186.已知y =f (x )是定义在R 上的偶函数,且f (x )在(0,+∞)上是增函数,如果x 1<0,x 2>0,且|x 1|<|x 2|,则有( )A .f (-x 1)+f (-x 2)>0B .f (x 1)+f (x 2)<0C .f (-x 1)-f (-x 2)>0D .f (x 1)-f (x 2)<07.[2012·石嘴山二联] 已知函数f (x )是(-∞,+∞)上的偶函数,若对于x ≥0,都有f (x +2)=f (x ),且当x ∈[0,2)时,f (x )=log 2(x +1),则f (-2 012)+f (2 011)的值为( )A .1B .2C .-2D .-18.[2013·忻州一中月考] 命题p :任意x ∈R ,3x>x ;命题q :若函数y =f (x -1)为奇函数,则函数y =f (x )的图像关于点(1,0)成中心对称.以下说法正确的是( ) A .p 或q 真 B .p 且q 真 C .綈p 真 D .綈q 假9.函数f (x )对于任意实数x 满足条件f (x +2)f (x )=1,若f (1)=-5,则f (-5)=________.10.[2011·广东卷] 设函数f (x )=x 3cos x +1.若f (a )=11,则f (-a )=________.11.[2012·临川模拟] 设函数f (x )=2 011x +1+2 0102 011x+1+2 012sin x ,x ∈⎣⎢⎡⎦⎥⎤-π2,π2的最大值为M ,最小值为N ,那么M +N =__________.12.(13分)已知函数f (x )=lg 1+x1-x.(1)求证:对于f (x )的定义域内的任意两个实数a ,b ,都有f (a )+f (b )=f ⎝ ⎛⎭⎪⎫a +b 1+ab ;(2)判断f (x )的奇偶性,并予以证明.难点突破13.(12分)函数f (x )的定义域为D ={x |x ≠0},且满足对于任意x 1,x 2∈D ,有f (x 1·x 2)=f (x 1)+f (x 2).(1)求f (1)的值;(2)判断f (x )的奇偶性并证明你的结论;(3)如果f (4)=1,f (3x +1)+f (2x -6)≤3,且f (x )在(0,+∞)上是增函数,求x 的取值范围.课时作业(七) [第7讲 二次函数](时间:45分钟 分值:100分)基础热身1.已知二次函数y =x 2-2ax +1在区间(2,3)内是单调函数,则实数a 的取值范围是( ) A .a ≤2或a ≥3 B .2≤a ≤3C .a ≤-3或a ≥-2D .-3≤a ≤-22.函数y =(cos x -a )2+1,当cos x =a 时有最小值,当cos x =-1时有最大值,则a 的取值范围是( )A .[-1,0]B .[-1,1]C .(-∞,0]D .[0,1]3.[2012·长春外国语学校月考] 若函数f (x )=(m -1)x 2+(m 2-1)x +1是偶函数,则f (x )在区间(-∞,0]上是( )A .增函数B .减函数C .常数D .增函数或常数4.[2011·陕西卷] 设n ∈N +,一元二次方程x 2-4x +n =0有整数..根的充要条件是n =________.能力提升5.函数f (x )=4x 2-mx +5在区间[-2,+∞)上是增函数,则f (1)的取值范围是( ) A .f (1)≥25 B .f (1)=25 C .f (1)≤25 D .f (1)>256.已知函数f (x )=-x 2+4x +a ,x ∈[0,1],若f (x )有最小值-2,则f (x )的最大值为( )A .-1B .0C .1D .27.[2012·鹰潭模拟] 已知函数f (x )=x 2+|x |-2,则满足f (2x -1)<f ⎝ ⎛⎭⎪⎫13的实数x 的取值范围是( )A.⎝ ⎛⎭⎪⎫13,23B.⎣⎢⎡⎦⎥⎤13,23C.⎝ ⎛⎭⎪⎫12,23D.⎣⎢⎡⎭⎪⎫12,238.若f (x )=x 2-x +a ,f (-m )<0,则f (m +1)的值为( ) A .正数 B .负数C .非负数D .与m 有关9.[2012·牡丹江一中期中] 如图K7-1是二次函数f (x )=x 2-bx +a 的图像,其函数f (x )的导函数为f ′(x ),则函数g (x )=ln x +f ′(x )的零点所在的区间是( )A.⎝ ⎛⎭⎪⎫14,12B.⎝ ⎛⎭⎪⎫12,1 C .(1,2) D .(2,3)10.函数f (x )=⎩⎪⎨⎪⎧x 2+2x -3(-2≤x <0),x 2-2x -3(0≤x ≤3)的值域是________.11.方程|x 2-2x |=a 2+1(a ∈(0,+∞))的解的个数是________.12.若x ≥0,y ≥0,且x +2y =1,那么2x +3y 2的最小值为________. 13.[2012·北京卷] 已知f (x )=m (x -2m )(x +m +3),g (x )=2x -2,若任意x ∈R ,f (x )<0或g (x )<0,则m 的取值范围是________.14.(10分)[2012·正定中学月考] 已知f (x )=2x 2+bx +c ,不等式f (x )<0的解集是(0,5).(1)求f (x )的解析式;(2)对于任意x ∈[-1,1],不等式f (x )+t ≤2恒成立,求t 的范围.15.(13分)设f (x )是定义在R 上的偶函数,当0≤x ≤2时,y =x ,当x >2时,y =f (x )的图像是顶点为P (3,4),且过点A (2,2)的抛物线的一部分.(1)求函数f (x )在(-∞,-2)上的解析式;(2)在下面的直角坐标系中直接画出函数f (x )的草图; (3)写出函数f (x )的值域.难点突破16.(12分)[2013·衡水中学一调] 已知对于函数f(x),若存在x0∈R,使f(x0)=x0,则称x0是f(x)的一个不动点,已知函数f(x)=ax2+(b+1)x+(b-1)(a≠0).(1)当a=1,b=-2时,求函数f(x)的不动点;(2)对任意实数b,函数恒有两个相异的不动点,求a的取值范围;(3)在(2)的条件下,若y=f(x)的图像上A,B两点的横坐标是f(x)的不动点,且A,B两点关于直线y=kx+12a2+1对称,求b的最小值.课时作业(八)A [第8讲 指数与对数的运算](时间:35分钟 分值:80分)基础热身1.2log 510+log 50.25=( ) A .0 B .1 C .2 D .42.下列等式能够成立的是( ) A.⎝ ⎛⎭⎪⎫n m 5=m 15n 5B.12(-2)4=3-2C.4x 3+y 3=(x +y )34D.39=333.在对数式b =log (a -2)(5-a )中,实数a 的取值范围是( ) A .a >5或a <2 B .2<a <5C .2<a <3或3<a <5D .3<a <44.[2012·正定中学月考] 计算lg 14-lg25100-12=________.能力提升5.若log 2log 3log 4x =log 3log 4log 2y =log 4log 2log 3z =0,则x +y +z 的值为( ) A .50 B .58 C .89 D .1116.[2012·武汉调研] 若x =log 43,则(2x -2-x )2=( ) A.94 B.54C.34D.437.[2012·重庆卷] 已知a =log 23+log 23,b =log 29-log 23,c =log 32,则a ,b ,c 的大小关系是( )A .a =b <cB .a =b >cC .a <b <cD .a >b >c8.若lg(x -y )+lg(x +2y )=lg2+lg x +lg y ,则x y=( ) A .2 B .3 C.12 D.139.[2012·海南五校联考] x >0,则(2x 14+332)(2x 14-332)-4x -12(x -x 12)=________.10.[(1-log 63)2+log 62·log 618]÷log 64=________.11.[2012·上海卷] 方程4x -2x +1-3=0的解是________.12.(13分)设x >1,y >1,且2log x y -2log y x +3=0,求T =x 2-4y 2的最小值.难点突破13.(12分)已知f (x )=e x -e -x ,g (x )=e x +e -x.(1)求[f (x )]2-[g (x )]2的值;(2)若f (x )·f (y )=4,g (x )·g (y )=8,求g (x +y )g (x -y )的值.课时作业(八)B [第8讲 指数与对数的运算](时间:35分钟 分值:80分)基础热身1.下列命题中,正确命题的个数为( ) ①na n =a ;②若a ∈R ,则(a 2-a +1)0=1; ③3x 4+y 6=x 43+y 2;④5-3=10(-3)2.A .0B .1C .2D .32.化简:(log 23)2-4log 23+4+log 213=( )A .2B .2-2log 23C .-2D .2log 23-23.log(n +1+n )(n +1-n )=( ) A .1 B .-1 C .2 D .-24.已知a 12=49,则log 23a =________.能力提升5.若10x =2,10y=3,则103x -y 2=( )A.263B.63 C.233 D.366.函数y =x 2+2x +1+3x 3-3x 2+3x -1的图像是( ) A .一条直线 B .两条射线 C .抛物线 D .半圆7.若a >1,b >0,且a b +a -b =22,则a b -a -b的值等于( ) A. 6 B .2或-2 C .2 D .-28.[2012·唐山模拟] 已知3x =4y=12,则1x +1y=( )A. 2 B .1 C.12D .2 9.设f (x )=⎩⎪⎨⎪⎧2-x ,x ∈(-∞,1],log 81x ,x ∈(1,+∞),则满足f (x )=14的x 值为________.10.[2012·福州质检] 化简:lg2+lg5-lg8lg50-lg40=________.11.方程log 2(x 2+x )=log 2(2x +2)的解是________.12.(13分)已知x 12+x -12=3,求x 2+x -2-2x 32+x -32-3的值.难点突破13.(12分)设a ,b ,c 均为正数,且满足a 2+b 2=c 2.(1)求证:log 2⎝ ⎛⎭⎪⎫1+b +c a +log 2⎝ ⎛⎭⎪⎫1+a -c b =1;(2)若log 4⎝⎛⎭⎪⎫1+b +c a =1,log 8(a +b -c )=23,求a ,b ,c 的值.课时作业(九) [第9讲 指数函数、对数函数、幂函数](时间:45分钟 分值:100分)基础热身1.[2012·西安质检] 已知a =32,函数f (x )=a x,若实数m ,n 满足f (m )>f (n ),则m ,n 满足的关系为( )A .m +n <0B .m +n >0C .m >nD .m <n2.[2012·梅州中学月考] 若函数y =f (x )是函数y =a x(a >0,且a ≠1)的反函数,其图像经过点(a ,a ),则f (x )=( )A .log 2xB .log 12x C.12x D .x 23.[2012·四川卷] 函数y =a x-a (a >0,且a ≠1)的图像可能是( )K9-4.[2012·南通模拟] 已知幂函数f (x )=k ·x α的图像过点⎝ ⎛⎭⎪⎫12,22,则k +α=________.能力提升5.[2012·汕头测评] 下列各式中错误..的是( ) A .0.83>0.73B .log 0.50.4>log 0.50.6C .0.75-0.1<0.750.1D .lg1.6>lg1.4 6.若集合A ={y |y =x 13,-1≤x ≤1},B =y⎪⎪⎪ )y =⎝ ⎛⎭⎪⎫12x ,x ≤0,则A ∩B =( )A .(-∞,1)B .[-1,1]C .∅D .{1}7.[2012·南昌调研] 函数f (x )=log 22x 2+1的值域为( ) A .[1,+∞) B .(0,1]C .(-∞,1]D .(-∞,1)8.[2012·新余一中模拟] 已知函数f (x )=x 2-bx +c 满足f (1+x )=f (1-x ),且f (0)=3,则f (b x )与f (c x)的大小关系是( )A .f (c x )<f (b x )B .f (c x )≤f (b x)C .f (c x )>f (b x )D .f (c x )≥f (b x)9.[2012·全国卷] 已知x =ln π,y =log 52,z =e -12,则( )A .x <y <zB .z <x <yC .z <y <xD .y <z <x10.已知函数f (x )=⎩⎪⎨⎪⎧log 3x ,x >0,3x ,x <0,则满足f (a )<13的a 的取值范围是________.11.若函数f (x )=a |2x -4|(a >0,且a ≠1),满足f (1)=19,则f (x )的单调递减区间是________.12.[2013·河北五校联盟调研] 已知函数f (x )=⎩⎪⎨⎪⎧log 2x ,(x >0),2x ,(x ≤0)且关于x 的方程f (x )+x -a =0有且只有一个实根,则实数a 的取值范围是________.13.[2012·长春外国语学校月考] 关于函数f (x )=lg x 2+1|x |(x ≠0),有下列命题:①其图像关于y 轴对称; ②f (x )的最小值是lg2;③当x >0时,f (x )是增函数;当x <0时,f (x )是减函数; ④f (x )在区间(-1,0),(2,+∞)上是增函数; ⑤f (x )无最大值,也无最小值.其中所有正确结论的序号是________.14.(10分)设a >0,f (x )=e xa +aex 是R 上的偶函数.(1)求a 的值;(2)证明f (x )在(0,+∞)上是增函数; (3)解方程f (x )=2.15.(13分)已知函数f (x )=log a (x +1)(a >1),且函数y =g (x )图像上任意一点P 关于原点的对称点Q 的轨迹恰好是函数f (x )的图像.(1)写出函数g (x )的解析式;(2)当x ∈[0,1)时总有f (x )+g (x )≥m 成立,求m 的取值范围.难点突破16.(12分)已知函数f(x)=log4(ax2+2x+3).(1)若f(1)=1,求f(x)的单调区间;(2)是否存在实数a,使f(x)的最小值为0?若存在,求出a的值;若不存在,说明理由.课时作业(十) [第10讲 函数的图像与性质的综合](时间:45分钟 分值:100分)基础热身1.函数f (x )=1x+2x 的图像关于( )A .y 轴对称B .直线y =-x 对称C .坐标原点对称D .直线y =x 对称2.为了得到函数y =3⎝ ⎛⎭⎪⎫13x 的图像,可以把函数y =⎝ ⎛⎭⎪⎫13x的图像( ) A .向左平移3个单位长度B .向右平移3个单位长度C .向左平移1个单位长度D .向右平移1个单位长度3.下列四个函数中,图像如图 )A .y =x +lg xB .y =x -lg xC .y =-x +lg xD .y =-x -lg x4.[2012·开封质检] 把函数y =f (x )=(x -2)2+2的图像向左平移1个单位,再向上平移1个单位,所得图像对应的函数的解析式是________________________________________________________________________.能力提升5.在函数y =|x |(x ∈[-1,1])的图像上有一点P (t ,|t |),此函数与x 轴、直线x =-1及x =t 围成图形(如图K10-2阴影部分)的面积为S ,则S 与t 的函数关系图像可表示为( )6.已知图K10-4①中的图像对应的函数为y =f (x ),则图K10-4②中的图像对应的函数为( )-A .y =f (|x |) B .y =|f (x )| C .y =f (-|x |) D .y =-f (|x |)7.[2012·郑州调研] 已知曲线如图K10-5所示:图K10-以下为编号为①②③④的四个方程: ①x -y =0;②|x |-|y |=0; ③x -|y |=0;④|x |-y =0.请按曲线A ,B ,C ,D 的顺序,依次写出与之对应的方程的编号为( ) A .④②①③ B .④①②③ C .①③④② D .①②③④8.函数f (x )=1+log 2与()=21-x( )图9.[2012·江西卷] 如图K10-7,|OA |=2(单位:m),|OB |=1(单位:m),OA 与OB 的夹角为π6,以A 为圆心,AB 为半径作圆弧BDC 与线段OA 延长线交于点C .甲、乙两质点同时从点O 出发,甲先以速率1(单位:m/s)沿线段OB 行至点B ,再以速率3(单位:m/s)沿圆弧BDC 行至点C 后停止;乙以速率2(单位:m/s)沿线段OA 行至点A 后停止,设t 时刻甲、乙所到达的两点连线与它们经过的路径所围成图形的面积为S (t )(S (0)=0),则函数y =S (t )的图象大致是( )10.将函数y =2x +1的图像按向量a 平移得到函数y =2x +1的图像,则a =________.11.[2012·海淀一模] 函数f (x )=x +1x图像的对称中心为________.12.设函数f (x )=|x +1|+|x -a |的图像关于直线x =1对称,则a 的值为________. 13.[2012·唐山二模] 奇函数f (x )、偶函数g (x )的图像分别如图K10-9(1),K10-9(2)所示,方程f (g (x ))=0,g (f (x ))=0的实根个数分别为a ,b ,则a +b =________.14.(10分)设函数f (x )=x +1x的图像为C 1,C 1关于点A (2,1)对称的图像为C 2,C 2对应的函数为g (x ).求g (x )的解析式.15.(13分)已知f (x )=log a x (a >0且a ≠1),如果对于任意的x ∈⎣⎢⎡⎦⎥⎤13,2都有|f (x )|≤1成立,试求a 的取值范围.难点突破 16.(12分)(1)已知函数y =f (x )的定义域为R ,且当x ∈R 时,f (m +x )=f (m -x )恒成立,求证y =f (x )的图像关于直线x =m 对称;(2)若函数y =log 2|ax -1|的图像的对称轴是x =2,求非零实数a 的值.课时作业(十一) [第11讲函数与方程] (时间:45分钟分值:100分)基础热身 1.[2013·安庆四校联考] 图K11-1是函数f (x )的图像,它与x 轴有4个不同的公共点.给出下列四个区间之中,存在不能用二分法求出的零点的区间是( )A .[-2.1,-1]B .[1.9,2.3]C .[4.1,5]D .[5,6.1]2.[2012·唐山期末] 设f (x )=e x+x -4,则函数f (x )的零点位于区间( ) A .(-1,0) B .(0,1) C .(1,2) D .(2,3)3.[2012·德兴模拟] 已知函数f (x )=⎩⎪⎨⎪⎧2x -x 3,x ≤0,⎝ ⎛⎭⎪⎫13x -log 2x ,x >0,若x 0是y =f (x )的零点,且t <x 0,则f (t )( )A .恒小于0B .恒大于0C .等于0D .不大于04.已知函数f (x )=⎩⎪⎨⎪⎧2x -1,x >0,-x 2-2x ,x ≤0,若函数g (x )=f (x )-m 有3个零点,则实数m 的取值范围是________.能力提升5.[2012·临川一中模拟] 已知函数f (x )=a x+x -b 的零点x 0∈(n ,n +1)(n ∈Z ),其中常数a ,b 满足2a =3,3b=2,则n 等于( )A .1B .-2C .-1D .26.[2013·诸城月考] 设函数y =x 2与y =⎝ ⎛⎭⎪⎫12x -2的图像的交点为(x 0,y 0),则x 0所在的区间是( )A .(0,1)B .(1,2)C .(2,3)D .(3,4)7.已知定义在R 上的函数f (x )=(x 2-3x +2)g (x )+3x -4,其中函数y =g (x )的图像是一条连续曲线,则方程f (x )=0在下面哪个范围内必有实数根( )A .(0,1)B .(1,2)C .(2,3)D .(3,4)8.[2011·陕西卷] 方程|x |=cos x 在(-∞,+∞)内( ) A .没有根 B .有且仅有一个根C .有且仅有两个根D .有无穷多个根9.[2012·石家庄质检] 已知函数f (x )=⎝ ⎛⎭⎪⎫12x-sin x ,则f (x )在[0,2π]上的零点个数为( )A .1B .2C .3D .410.若方程2ax 2-x -1=0在(0,1)内恰有一解,则a 的取值范围是________.11.若函数f (x )=x 2+ax +b 的两个零点是-2和3,则不等式af (-2x )>0的解集是________.12.[2012·盐城二模] 若y =f (x )是定义在R 上的周期为2的偶函数,当x ∈[0,1]时,f (x )=2x -1,则函数g (x )=f (x )-log 3|x |的零点个数为________.13.[2013·扬州中学月考] 已知函数f (x )=|x 2-1|x -1-kx +2恰有两个零点,则k 的取值范围是________.14.(10分)已知函数f (x )=4x +m ·2x+1有且仅有一个零点,求m 的取值范围,并求出该零点.15.(13分)已知二次函数f (x )=ax 2+bx +1(a ,b ∈R ,a >0),设方程f (x )=x 的两个实数根为x 1和x 2.(1)如果x 1<2<x 2<4,设函数f (x )的对称轴为x =x 0,求证:x 0>-1; (2)如果|x 1|<2,|x 2-x 1|=2,求b 的取值范围.难点突破16.(12分)已知函数f (x )=⎩⎪⎨⎪⎧2x (0≤x ≤1),-25x +125(1<x ≤5).(1)若函数y =f (x )的图像与直线kx -y -k +1=0有两个交点,求实数k 的取值范围; (2)试求函数g (x )=xf (x )的值域.课时作业(十二) [第12讲 函数模型及其应用](时间:45分钟 分值:100分)基础热身1.“红豆生南国,春来发几枝?”,图K12-1给出了红豆生长时间t (月)与枝数y (枝)的散点图,那么红豆生长时间与枝数的关系用下列哪个函数模型拟合最好?( )A .y =t 2B .y =log 2tC .y =2tD .y =2t 22.等边三角形的边长为x ,面积为y ,则y 与x 之间的函数关系式为( )A .y =x 2B .y =12x 2C .y =32x 2 D .y =34x 2 3.某工厂第三年的产量比第一年的产量增长44%,若每年的平均增长率相同(设为x ),则以下结论正确的是( )A .x >22%B .x <22%C .x =22%D .x 的大小由第一年的产量确定4.某种储蓄按复利计算利息,若本金为a 元,每期利率为r ,存期是x ,本利和(本金加利息)为y 元,则本利和y 随存期x 变化的函数关系式是________.能力提升5.某电视新产品投放市场后第一个月销售100台,第二个月销售200台,第三个月销售400台,第四个月销售790台,则下列函数模型中能较好地反映销量y 与投放市场的月数x 之间关系的是( )A .y =100xB .y =50x 2-50x +100C .y =50×2xD .y =100log 2x +1006.[2012·华南师大附中模拟] 在股票买卖过程中,经常用到两种曲线,一种是即时价格曲线y =f (x ),一种是平均价格曲线y =g (x )(如f (2)=3表示开始交易后第2小时的即时价格为3元;g (2)=4表示开始交易后两个小时内所有成交股票的平均价格为4元).下面所给出的四个图像中,实线表示y =f (x ),虚线表示y =g (x ),其中可能正确的是( )7.[2012·商丘一模] 某公司在甲、乙两地销售一种品牌车,利润(单位:万元)分别为L 1=5.06x -0.15x 2和L 2=2x ,其中x 为销售量(单位:辆).若该公司在这两地共销售15辆车,则能获得的最大利润为( )A .45.606万元B .45.6万元C .45.56万元D .45.51万元 8.[2013·荆州中学一检] 下列所给4个图像中,与所给3件事吻合最好的顺序为( ) (a)我离开家不久,发现自己把作业本忘在家里了,于是立刻返回家里取了作业本再上学; (b)我骑着车一路以常速行驶,只是在途中遇到一次交通堵塞,耽搁了一些时间; (c)K12A .(1)(2)(4) B .(4)(2)(3) C .(4)(1)(3) D .(4)(1)(2)9.某车间分批生产某种产品,每批的生产准备费用为800元.若每批生产x 件,则平均仓储时间为x8天,且每件产品每天的仓储费用为1元.为使平均到每件产品的生产准备费用与仓储费用之和最小,每批应生产产品( )A .60件B .80件C .100件D .120件10.一位设计师在边长为3的正方形ABCD 中设计图案,他分别以A ,B ,C ,D 为圆心,以b ⎝⎛⎭⎪⎫0<b ≤32为半径画圆,由正方形内的圆弧与正方形边上线段(圆弧端点在正方形边上的连线)构成了丰富多彩的图形,则这些图形中实线部分总长度的最小值为________.11.某汽车运输公司购买了一批豪华大客车投入营运,据市场分析每辆客车营运的总利润y (单位:10万元)与营运年数x (x ∈N )为二次函数关系(如图K12-5所示),若每辆客车营运的年平均利润最大,则营运的年数为________年.12.某市出租车收费标准如下:起步价为8元,起步里程为3 km(不超过3 km 按起步价收费);超过3 km 但不超过8 km 时,超过部分按每千米2.15元收费;超过8 km 时,超过的部分按每千米2.85元收费,每次乘车需付燃油附加费1元,现某人乘坐一次出租车付费22.6元,则此次出租车行驶了________13.[2013·上海南汇一中月考] 为了预防流感,某学校对教室用药熏消毒法进行消毒.已知药物释放过程中,室内每立方米空气中的含药量y (mg)与时间t (h)成正比;药物释放完毕后,y 与t 的函数关系式为y =⎝ ⎛⎭⎪⎫116t -a (a 为常数),如图K12-6所示,据测定,当空气中每立方米的含药量降低到0.25 mg 以下时,学生方可进教室,那从药物释放开始,至少需要经过________h 后,学生才能回到教室.14.(10分)某地上年度电价为0.8元,年用电量为1亿千瓦时.本年度计划将电价调至0.55元~0.75元之间,经测算,若电价调至x 元,则本年度新增用电量y (亿千瓦时)与(x -0.4)元成反比例.又当x =0.65时,y =0.8.(1)求y 与x 之间的函数关系式;(2)若每千瓦时电的成本价为0.3元,则电价调至多少时,本年度电力部门的收益将比上年增加20%?[收益=用电量×(实际电价-成本价)]15.(13分)[2013·重庆北江中学月考] 围建一个面积为360 m 2的矩形场地,要求矩形场地的一面利用旧墙(利用的旧墙需维修),其他三面围墙要新建,在旧墙对面的新墙上要留一个宽度为2 m 的进出口,如图K12-7所示.已知旧墙的维修费为45元/m ,新墙的造价为180元/m.设利用的旧墙长度为x (单位:m),修建此矩形场地围墙的总费用为y (单位:元).(1)将y 表示为x 的函数;(2)试确定x图K12-7。
2025年高考数学一轮复习课时作业-事件的独立性、条件概率与全概率公式【原卷版】(时间:45分钟分值:90分)【基础落实练】1.(5分)若P(AB)=19,P( )=23,P(B)=13,则事件A与B的关系是()A.互斥B.对立C.相互独立D.既互斥又相互独立2.(5分)(2024·泉州模拟)某运动员每次射击击中目标的概率均相等,若三次射击中,至少有一次击中目标的概率为6364,则射击一次,击中目标的概率为()A.78B.34C.14D.183.(5分)小王每天在6:30至6:50出发去上班,其中在6:30至6:40出发的概率为0.3,在该时间段出发上班迟到的概率为0.1;在6:40至6:50出发的概率为0.7,在该时间段出发上班迟到的概率为0.2,则小王某天在6:30至6:50出发上班迟到的概率为()A.0.13B.0.17C.0.21D.0.34.(5分)设甲乘汽车、动车前往目的地的概率分别为0.4,0.6,汽车和动车正点到达目的地的概率分别为0.7,0.9,则甲正点到达目的地的概率为()A.0.78B.0.8C.0.82D.0.845.(5分)(多选题)甲罐中有5个红球、2个白球和3个黑球,乙罐中有4个红球、3个白球和3个黑球.先从甲罐中随机取出一球放入乙罐,分别以A1,A2和A3表示由甲罐取出的球是红球、白球和黑球的事件;再从乙罐中随机取出一球,以B表示由乙罐取出的球是红球的事件.则下列结论中正确的是()A.P(B)=25B.P(B|A1)=511C.事件B与事件A1相互独立D.A1,A2,A3是两两互斥的事件6.(5分)(多选题)(2024·湖南师大附中模拟)已知某数据库有视频a个、图片b张 , ∈N*, > >1,从中随机选出一个视频和一张图片,记“视频甲和图片乙入选”为事件A,“视频甲入选”为事件B,“图片乙入选”为事件C,则下列判断中正确的是()A.P(A)=P(B)+P(C)B.P(A)=P(B)·P(C)C.P( )>P( C)+P(B )D.P( C)<P(B )7.(5分)某医生一周(7天)晚上值2次班,在已知他周二晚上一定值班的条件下,他在周三晚上值班的概率为________.每次击中目标的概率为45,现连续射击两次.(1)已知第一次击中,则第二次击中的概率是________;(2)在仅击中一次的条件下,第二次击中的概率是________.9.(10分)(2024·苏州模拟)苏州某公司有甲、乙两个研发小组,开发芯片需要两道工序,第一道工序成功的概率分别为15和35.第二道工序成功的概率分别为12和23.根据生产需要现安排甲小组研发芯片A,乙小组研发芯片B,假设甲、乙两个小组的研发相互独立.(1)求两种芯片都研发成功的概率;(2)政府为了提高该公司研发的积极性,决定只要有芯片研发成功就奖励该公司500万元,求该公司获得政府奖励的概率.【能力提升练】10.(5分)(2024·南京模拟)在一段时间内,若甲去参观市博物馆的概率为0.6,乙去参观市博物馆的概率为0.5,且甲乙两人各自行动,则在这段时间内,甲乙两人至少有一个去参观博物馆的概率是()A.0.3B.0.32C.0.8D.0.8411.(5分)(2024·苏州模拟)杭州亚运会组委会将甲、乙、丙、丁4名志愿者随机派往黄龙体育中心、杭州奥体中心、浙江大学紫金港校区三座体育馆工作,每座体育馆至少派1名志愿者,A表示事件“志愿者甲派往黄龙体育中心”;B表示事件“志愿者乙派往黄龙体育中心”;C表示事件“志愿者乙派往杭州奥体中心”,则()A.事件A与B相互独立B.事件A与C为互斥事件C.P =13D.P =1612.(5分)(2024·泉州模拟)某中学为丰富学生的业余生活,举行“汉字听写大会”,老师要求参赛学生从星期一到星期四每天学习2个汉字及正确注释,每周五对一周内所学汉字随机抽取4个进行检测(一周所学的汉字每个被抽到的可能性相同),若已知抽取4个进行检测的字中至少有一个字是最后一天学习的,则所抽取的4个进行检测的字中恰有3个是后两天学习过的汉字的概率为________. 13.(5分)(2024·长春模拟)设A,B是一个随机试验中的两个事件,且P(A)=13,P(B)=34, P(A+ )=12,则P(A )=________,P(B|A)=__________.14.(10分)某企业使用新技术对某款芯片进行试生产.在试产初期,该款芯片的生产有四道工序,前三道工序的生产互不影响,第四道是检测评估工序,包括智能自动检测与人工抽检.已知该款芯片在生产中,前三道工序的次品率分别为P1=110,P2=19,P3=18.(1)求该款芯片生产在进入第四道工序前的次品率;(2)如果第四道工序中智能自动检测为次品的芯片会被自动淘汰,合格的芯片进入流水线并由工人进行人工抽检.在芯片智能自动检测显示合格率为90%的条件下,求工人在流水线进行人工抽检时,抽检一个芯片恰为合格品的概率.15.(10分)两台车床加工同样的零件,第一台出现废品的概率是0.03,第二台出现废品的概率是0.02.加工出来的零件放在一起,并且已知第一台加工的零件比第二台加工的零件多一倍.(1)求任意取出的零件是合格品的概率;(2)如果任意取出的零件是废品,求它是第二台车床加工的概率.2025年高考数学一轮复习课时作业-事件的独立性、条件概率与全概率公式【解析版】(时间:45分钟分值:90分)【基础落实练】1.(5分)若P(AB)=19,P( )=23,P(B)=13,则事件A与B的关系是()A.互斥B.对立C.相互独立D.既互斥又相互独立【解析】选C.因为P(A)=1-P( )=1-23=13,所以P(A)P(B)=19,所以P(AB)=P(A)P(B)≠0,所以事件A与B相互独立,事件A与B不互斥也不对立.2.(5分)(2024·泉州模拟)某运动员每次射击击中目标的概率均相等,若三次射击中,至少有一次击中目标的概率为6364,则射击一次,击中目标的概率为() A.78B.34C.14D.18【解析】选B.设该运动员射击一次,击中目标的概率为p,若该运动员三次射击中,至少有一次击中目标的概率为1-1- 3=6364,解得p=34.3.(5分)小王每天在6:30至6:50出发去上班,其中在6:30至6:40出发的概率为0.3,在该时间段出发上班迟到的概率为0.1;在6:40至6:50出发的概率为0.7,在该时间段出发上班迟到的概率为0.2,则小王某天在6:30至6:50出发上班迟到的概率为()A.0.13B.0.17C.0.21D.0.3【解析】选B.由题意,在6:30至6:50出发上班迟到的概率为0.3×0.1+0.7×0.2=0.17.4.(5分)设甲乘汽车、动车前往目的地的概率分别为0.4,0.6,汽车和动车正点到达目的地的概率分别为0.7,0.9,则甲正点到达目的地的概率为()A.0.78B.0.8C.0.82D.0.84【解析】选C.设事件A表示“甲正点到达目的地”,事件B表示“甲乘动车到达目的地”,事件C表示“甲乘汽车到达目的地”,由题意知P(B)=0.6,P(C)=0.4,P(A|B)=0.9,P(A|C)=0.7.由全概率公式得P(A)=P(B)P(A|B)+P(C)P(A|C)=0.6×0.9+0.4×0.7=0.54+0.28=0.82.5.(5分)(多选题)甲罐中有5个红球、2个白球和3个黑球,乙罐中有4个红球、3个白球和3个黑球.先从甲罐中随机取出一球放入乙罐,分别以A1,A2和A3表示由甲罐取出的球是红球、白球和黑球的事件;再从乙罐中随机取出一球,以B表示由乙罐取出的球是红球的事件.则下列结论中正确的是()A.P(B)=25B.P(B|A1)=511C.事件B与事件A1相互独立D.A1,A2,A3是两两互斥的事件【解析】选BD.由题意知,A1,A2,A3是两两互斥的事件,故D正确;P(A1)=510=12,P(A2)=210=15,P(A3)=310,P(B|A1)=511,由此知,B正确;P(B|A2)=411,P(B|A3)=411;而P(B)=P(A1)P(B|A1)+P(A2)P(B|A2)+P(A3)P(B|A3)=12×511+15×411+310×411=922,由此知A,C 不正确.6.(5分)(多选题)(2024·湖南师大附中模拟)已知某数据库有视频a个、图片b张 , ∈N*, > >1,从中随机选出一个视频和一张图片,记“视频甲和图片乙入选”为事件A,“视频甲入选”为事件B,“图片乙入选”为事件C,则下列判断中正确的是()A.P(A)=P(B)+P(C)B.P(A)=P(B)·P(C)C.P( )>P( C)+P(B )D.P( C)<P(B )【解析】选BC.由相互独立事件的概率的乘法计算公式,可得A错误,B正确;事件 包含“视频甲未入选,图片乙入选”“视频甲入选,图片乙未入选”“视频甲、图片乙都未入选”三种情况,所以P( )=P( C)+P(B )+P( ),则P( )>P( C)+P(B ),所以C正确;由题可知,P( C)=1-·1 = -1 ,P(B )=1 ·1-= -1 ,因为a,b∈N*,a>b>1,所以 -1 > -1 ,即P( C)>P(B ),故D错误.7.(5分)某医生一周(7天)晚上值2次班,在已知他周二晚上一定值班的条件下,他在周三晚上值班的概率为________.【解析】设事件A 为“周二晚上值班”,事件B 为“周三晚上值班”,则P (A )=C 61C 72=27,P (AB )=1C 72=121,故P (B |A )= ( ) ( )=16.答案:168.(5分)某射击运动员每次击中目标的概率为45,现连续射击两次.(1)已知第一次击中,则第二次击中的概率是________;(2)在仅击中一次的条件下,第二次击中的概率是________.【解析】(1)设第一次击中为事件A ,第二次击中为事件B ,则P (A )=45,由题意知,第一次击中与否对第二次没有影响,因此已知第一次击中,则第二次击中的概率是45.(2)设仅击中一次为事件C ,则仅击中一次的概率为P (C )=C 21×45×15=825,在仅击中一次的条件下,第二次击中的概率是P (B |C )=15×45825=12.答案:(1)45(2)129.(10分)(2024·苏州模拟)苏州某公司有甲、乙两个研发小组,开发芯片需要两道工序,第一道工序成功的概率分别为15和35.第二道工序成功的概率分别为12和23.根据生产需要现安排甲小组研发芯片A ,乙小组研发芯片B ,假设甲、乙两个小组的研发相互独立.(1)求两种芯片都研发成功的概率;(2)政府为了提高该公司研发的积极性,决定只要有芯片研发成功就奖励该公司500万元,求该公司获得政府奖励的概率.【解析】(1)甲小组研发芯片A 成功的概率为p 1=15×12=110,乙小组研发芯片B 成功的概率为p 2=35×23=25,由于甲、乙两个小组的研发相互独立,所以A ,B 两种芯片都研发成功的概率P=p1·p2=110×25=125.(2)该公司获得政府奖励则需有芯片研发成功,根据对立事件可知获奖的概率: P=1-(1-p1)(1-p2)=1-(1-110)(1-25)=1-910×35=2350.【能力提升练】10.(5分)(2024·南京模拟)在一段时间内,若甲去参观市博物馆的概率为0.6,乙去参观市博物馆的概率为0.5,且甲乙两人各自行动,则在这段时间内,甲乙两人至少有一个去参观博物馆的概率是()A.0.3B.0.32C.0.8D.0.84【解析】选C.依题意,在这段时间内,甲乙都不去参观博物馆的概率为P1=1-0.6×1-0.5=0.2,所以在这段时间内,甲乙两人至少有一个去参观博物馆的概率是P=1-P1=1-0.2=0.8.11.(5分)(2024·苏州模拟)杭州亚运会组委会将甲、乙、丙、丁4名志愿者随机派往黄龙体育中心、杭州奥体中心、浙江大学紫金港校区三座体育馆工作,每座体育馆至少派1名志愿者,A表示事件“志愿者甲派往黄龙体育中心”;B表示事件“志愿者乙派往黄龙体育中心”;C表示事件“志愿者乙派往杭州奥体中心”,则()A.事件A与B相互独立B.事件A与C为互斥事件C.P =13D.P =16【解析】选D.将4名志愿者分配到三座体育馆,每座体育馆至少派1名志愿者,共有C42C21A22·A33=36种安排方案;志愿者甲派往黄龙体育中心、志愿者乙派往黄龙体育中心、志愿者乙派往杭州奥体中心,各有C32A22+A33=12种方案,所以P =P =P(C)=1236=13;志愿者甲、乙均派往黄龙体育中心,有A22=2种方案,所以P =236=118;志愿者甲派往黄龙体育中心且志愿者乙派往杭州奥体中心,有1+C21C21=5种方案,所以P =536;对于A,因为P ≠P P ,所以事件A与B不相互独立,A错误;对于B,因为P =536≠0,所以事件A与C不是互斥事件,B错误;对于C,P =53613=512,C错误;对于D,P =11813=16,D正确.12.(5分)(2024·泉州模拟)某中学为丰富学生的业余生活,举行“汉字听写大会”,老师要求参赛学生从星期一到星期四每天学习2个汉字及正确注释,每周五对一周内所学汉字随机抽取4个进行检测(一周所学的汉字每个被抽到的可能性相同),若已知抽取4个进行检测的字中至少有一个字是最后一天学习的,则所抽取的4个进行检测的字中恰有3个是后两天学习过的汉字的概率为________.【解析】设进行检测的4个汉字中至少有一个是最后一天学习的为事件A,恰有3个是后两天学习过的汉字为事件B,则事件A所包含的基本事件有n(A)=C21×C63+C62×C22=55,事件B所包含的基本事件有n(B)=C41×C43=16,所以P | = ( ) ( )= ( ) ( )=1655.答案:165513.(5分)(2024·长春模拟)设A,B是一个随机试验中的两个事件,且P(A)=13,P(B)=34, P(A+ )=12,则P(A )=________,P(B|A)=__________.【解析】由题知,P (A )=13,P (B )=34,P (A + )=P +P -P =12,即13+14-P =12,则P (A )=112.因为P +P P ,所以P =13-112=14,则P (B |A =1413=34.答案:1123414.(10分)某企业使用新技术对某款芯片进行试生产.在试产初期,该款芯片的生产有四道工序,前三道工序的生产互不影响,第四道是检测评估工序,包括智能自动检测与人工抽检.已知该款芯片在生产中,前三道工序的次品率分别为P 1=110,P 2=19,P 3=18.(1)求该款芯片生产在进入第四道工序前的次品率;(2)如果第四道工序中智能自动检测为次品的芯片会被自动淘汰,合格的芯片进入流水线并由工人进行人工抽检.在芯片智能自动检测显示合格率为90%的条件下,求工人在流水线进行人工抽检时,抽检一个芯片恰为合格品的概率.【解析】(1)该款芯片生产在进入第四道工序前的次品率P =1-(1-110)(1-19)(1-18)=310.(2)设“该款芯片智能自动检测合格”为事件A ,“人工抽检合格”为事件B ,则P (A )=910,P (AB )=1-310=710,则工人在流水线进行人工抽检时,抽检一个芯片恰为合格品的概率P (B |A )= ( )( )=710910=79.15.(10分)两台车床加工同样的零件,第一台出现废品的概率是0.03,第二台出现废品的概率是0.02.加工出来的零件放在一起,并且已知第一台加工的零件比第二台加工的零件多一倍.(1)求任意取出的零件是合格品的概率;(2)如果任意取出的零件是废品,求它是第二台车床加工的概率.【解析】设A i表示“第i台车床加工的零件(i=1,2)”,B表示“出现废品”,C表示“出现合格品”.(1)P(C)=P(A1C∪A2C)=P(A1C)+P(A2C)=P(A1)P(C|A1)+P(A2)P(C|A2)=23×(1-0.03)+13×(1-0.02)≈0.973. (2)P(A2|B)= ( 2 ) ( )= ( 2) ( | 2)( 1) ( | 1)+ ( 2) ( | 2)=13×0.0223×0.03+13×0.02=0.25.。
一、单项选择题1.(2023·哈尔滨模拟)函数y =log 0.5(4x -3)的定义域为()A .[1,+∞)B.34,1C.34,1 D.0,342.若函数f (x )=log a x (a >0,且a ≠1)的反函数的图象过点(1,3),则f (log 28)等于()A .-1B .1C .2D .33.若12log 0.8log 0.8x x <<0,则x 1与x 2的关系正确的是()A .0<x 2<x 1<1B .0<x 1<x 2<1C .1<x 1<x 2D .1<x 2<x 14.已知函数f (x )=log a (x -b )(a >0,且a ≠1,a ,b 为常数)的图象如图,则下列结论正确的是()A .a >0,b <-1B .a >0,-1<b <0C .0<a <1,b <-1D .0<a <1,-1<b <05.(2024·通化模拟)设a =log 0.14,b =log 504,则()A .2ab <2(a +b )<abB .2ab <a +b <4abC .ab <a +b <2abD .2ab <a +b <ab6.(2023·本溪模拟)若不等式(x -1)2<log a x (a >0且a ≠1)在x ∈(1,2]内恒成立,则实数a 的取值范围为()A .(1,2]B .(1,2)C .(1,2]D .(2,2)二、多项选择题7.(2024·永州模拟)若10a =5,10b =20,则()A .a +b =4B .b -a =lg 4C .ab <2(lg 5)2D .b -a >lg 58.(2023·吕梁模拟)已知函数f (x )x 2-4x ,x ≤0,2x |,x >0,若x 1<x 2<x 3<x 4,且f (x 1)=f (x 2)=f (x 3)=f (x 4),则下列结论正确的是()A .x 1+x 2=-4B .x 3x 4=1C .1<x 4<4D .0<x 1x 2x 3x 4≤2三、填空题9.计算:lg 25+23lg 8-log 227×log 32+2log 32=.10.(2023·绍兴模拟)已知函数f (x )满足f (xy )=f (x )+f (y ),且当x >y 时,f (x )<f (y ),请你写出一个符合上述条件的函数f (x )=.11.设p >0,q >0,若log 4p =log 6q =log 9(2p +q ),则p q =.12.(2023·龙岩模拟)已知函数y =f (x ),若在定义域内存在实数x ,使得f (-x )=-f (x ),则称函数y =f (x )为定义域上的局部奇函数.若函数f (x )=log 3(x +m )是[-2,2]上的局部奇函数,则实数m 的取值范围是.四、解答题13.已知f (x )=213log (5)x ax a -+.(1)若a =2,求f (x )的值域;(2)若f (x )在(1,+∞)上单调递减,求a 的取值范围.14.(2024·株洲模拟)已知函数f (x )=log 9(9x +1)-kx (k ∈R )是偶函数.(1)求k 的值;(2)若方程f (x )=log 9m 的取值范围.15.已知正实数x,y,z满足log2x=log3y=log5z≠0,则()A.x>y>zB.x<y<zC.x,y,z可能构成等比数列D.关于x,y,z的方程x+y=z有且只有一组解16.(2023·潍坊模拟)已知函数f(x)=log a x-(a)x-log a2(a>1)有两个零点,则实数a的取值范围是.§2.8对数运算与对数函数1.C 2.B 3.C 4.D 5.D 6.B [若0<a <1,此时x ∈(1,2],log a x <0,而(x -1)2>0,故(x -1)2<log a x 无解;若a >1,此时x ∈(1,2],log a x >0,而(x -1)2>0,令f (x )=log a x ,g (x )=(x -1)2,画出函数f (x )与g (x )的图象,如图,若不等式(x -1)2<log a x 在x ∈(1,2]内恒成立,则log a 2>1,解得a ∈(1,2).]7.BC [由10a =5,10b =20,得a =lg 5,b =lg 20,则a +b =lg 5+lg 20=lg(5×20)=lg 100=2,故A 错误;b -a =lg 20-lg 5=lg 205=lg 4<lg 5,故B 正确,D 错误;ab =lg 5×lg 20=lg 5×(lg 4+lg 5)=lg 5×lg 4+(lg 5)2,∵lg 4<lg 5,∴lg 5×lg 4+(lg 5)2<lg 5×lg 5+(lg 5)2=2(lg 5)2,∴ab <2(lg 5)2,故C 正确.]8.AB [函数f (x )x 2-4x ,x ≤0,2x |,x >0的图象如图所示,设f (x 1)=f (x 2)=f (x 3)=f (x 4)=t ,则0<t <4,则直线y =t 与函数y =f (x )图象的4个交点横坐标分别为x 1,x 2,x 3,x 4.对于A ,函数y =-x 2-4x 的图象关于直线x =-2对称,则x 1+x 2=-4,故A 正确;对于B ,由图象可知|log 2x 3|=|log 2x 4|,且0<x 3<1<x 4,所以-log 2x 3=log 2x 4,即log 2(x 3x 4)=0,所以x 3x 4=1,故B 正确;对于C ,由图象可知log 2x 4∈(0,4),则1<x 4<16,故C 错误;对于D ,由图象可知-4<x 1<-2,当x ≤0时,f (x )=-x 2-4x =-(x +2)2+4,所以x 1x 2x 3x 4=x 1(-4-x 1)=-x 21-4x 1=-(x 1+2)2+4=f (x 1)∈(0,4),故D 错误.]9.210.12log x (答案不唯一)11.1212.(2,5]解析因为f (x )=log 3(x +m )是[-2,2]上的局部奇函数,所以x +m >0在[-2,2]上恒成立,所以m -2>0,即m >2,由局部奇函数的定义,存在x ∈[-2,2],使得log 3(-x +m )=-log 3(x +m ),即log 3(-x +m )+log 3(x +m )=log 3(m 2-x 2)=0,所以存在x ∈[-2,2],使得m 2-x 2=1,即m 2=x 2+1,又因为x ∈[-2,2],所以x 2+1∈[1,5],所以m 2∈[1,5],即m ∈[-5,-1]∪[1,5],综上,m ∈(2,5].13.解(1)当a =2时,f (x )=213log (-210)x x ,令t =x 2-2x +10=(x -1)2+9,∴t ≥9,f (x )≤13log 9=-2,∴f (x )的值域为(-∞,-2].(2)令u =x 2-ax +5a ,∵y =13log u 为减函数,f (x )在(1,+∞)上单调递减,∴u =x 2-ax +5a 在(1,+∞)上单调递增,1,4a ≥0,解得-14≤a ≤2,∴a 的取值范围是-14,2.14.解(1)因为9x +1>0,所以f (x )的定义域为R ,又因为f (x )是偶函数,所以∀x ∈R ,有f (-x )=f (x ),即log 9(9-x +1)+kx =log 9(9x +1)-kx 对∀x ∈R 恒成立,则2kx =log 9(9x +1)-log 9(9-x+1)=log 99x +19-x +1=log 99x =x 对∀x ∈R 恒成立,即x (2k -1)=0对∀x ∈R 恒成立,因为x 不恒为0,所以k =12.(2)由(1)得f (x )=log 9(9x +1)-12x =log 9(9x +1)-129log 9x =log 99x +13x =log x则方程f (x )=log log x log 不相等的实数解,所以方程3x +13x =m 3x +1有两个不相等的实数解,令t =3x ,且t >0,方程化为t +1t =m t+1,即方程m =t 2-t +1在(0,+∞)上有两个不相等的实数解,令g (t )=t 2-t +1,则y =m 与y =g (t )在(0,+∞)上有两个交点,如图所示,又g (t )所以g (t )≥=34,且g (0)=1,所以m 15.D [令log 2x =log 3y =log 5z =t ≠0,则x =2t ,y =3t ,z =5t ,令g(k)=k t,由幂函数图象的性质可知,当t>0时,g(k)=k t在(0,+∞)上单调递增,故2t<3t<5t,即x<y<z,当t<0时,g(k)=k t在(0,+∞)上单调递减,故2t>3t>5t,即x>y>z,故A,B不一定正确;假设x,y,z成等比数列,则y2=xz⇒(3t)2=2t·5t⇒9t=10t,则t=0,与已知矛盾,故C错误;因为x+y=z,则2t+3t=5t,即1,令f(t)1,由指数函数的性质可知f(t)为减函数,注意到f(1)=0,故f(t)只有一个零点,即1只有一个解t=1,所以x+y=z只有一组解x=2,y=3,z=5,故D正确.]16.(1,1 e e)解析由题知,x>0,f(x)=log a x-(a)x-log a2=log a x2-2x a,令t=x2,t>0,则y=log at与y=a t的图象在(0,+∞)上有两个交点,又y=log a t与y=a t互为反函数,所以交点在直线y=t上,设y=log a t,y=a t的图象与直线y=t相切时,切点坐标为(m,n),m>0,a m ln a=1,a m,解得m=e,又1m ln a=1,所以a=1e e>1,所以当a=1e e时,y=log a t和y=a t只有一个交点,如图1;当a>1e e时,y=log a t和y=a t无交点,如图2;当1<a<1e e时,y=log a t和y=a t有两个交点,如图3.综上,a的取值范围为(1,1e e).。
椭圆课时作业1.若椭圆C :x 2a 2+y 2b2=1(a >b >0)的短轴长等于焦距,则椭圆的离心率为( )A .12B .33 C .22D .24答案 C解析 因为椭圆的短轴长等于焦距,所以b =c ,所以a 2=b 2+c 2=2c 2,所以e =c a =22,故选C .2.已知椭圆x 210-m +y 2m -2=1,长轴在y 轴上,若焦距为4,则m 等于( )A .4B .5C .7D .8答案 D解析 椭圆焦点在y 轴上,∴a 2=m -2,b 2=10-m .又c =2,∴m -2-(10-m )=c 2=4.∴m =8.3.(2019·杭州模拟)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点为F 1,F 2,离心率为33,过F 2的直线l 交C 于A ,B 两点.若△AF 1B 的周长为43,则C 的方程为( )A .x 23+y 22=1B .x 23+y 2=1C .x 212+y 28=1 D .x 212+y 24=1 答案 A解析 由题意及椭圆的定义知4a =43,则a =3,又c a=c3=33,∴c =1,∴b 2=2,∴C 的方程为x 23+y 22=1.选A .4.椭圆x 225+y 29=1上一点M 到焦点F 1的距离为2,N 是MF 1的中点,则|ON |等于( )A .2B .4C .8D .32答案 B解析 |ON |=12|MF 2|=12×(2a -|MF 1|)=12×(10-2)=4,故选B .5.(2019·河南豫北联考)已知点P ⎝⎛⎭⎪⎫1,22是椭圆x 2a 2+y 2=1(a >1)上的点,A ,B 是椭圆的左、右顶点,则△PAB 的面积为( )A .2B .24C .12 D .1答案 D解析 由题可得1a 2+12=1,∴a 2=2,解得a =2(负值舍去),则S △PAB =12×2a ×22=1,故选D .6.(2019·吉林长春模拟)椭圆x 22+y 2=1的两个焦点分别是F 1,F 2,点P 是椭圆上任意一点,则·的取值范围是( )A .[-1,1]B .[-1,0]C .[0,1]D .[-1,2]答案 C解析 由椭圆方程得F 1(-1,0),F 2(1,0),设P (x ,y ),∴=(-1-x ,-y ),=(1-x ,-y ),则·=x 2+y 2-1=x 22∈[0,1],故选C .7.(2019·湖南郴州模拟)设e 是椭圆x 24+y 2k =1的离心率,且e ∈⎝ ⎛⎭⎪⎫12,1,则实数k 的取值范围是( )A .(0,3)B .⎝⎛⎭⎪⎫3,163C .(0,3)∪⎝ ⎛⎭⎪⎫163,+∞D .(0,2)答案 C解析 当k >4时,c =k -4,由条件知14<k -4k <1,解得k >163;当0<k <4时,c =4-k ,由条件知14<4-k4<1,解得0<k <3.故选C .8.若椭圆x 236+y 29=1的弦被点(4,2)平分,则此弦所在直线的斜率是( )A .2B .-2C .13D .-12答案 D解析 设弦的端点为A (x 1,y 1),B (x 2,y 2),∴⎩⎪⎨⎪⎧x 21+4y 21=36,x 22+4y 22=36,整理,得x 21-x 22=-4(y 21-y 22),∴此弦的斜率为y 1-y 2x 1-x 2=x 1+x 2-4(y 1+y 2)=-12,则此直线的斜率为-12. 9.(2020·甘肃联考)设A ,B 是椭圆C :x 212+y 22=1的两个焦点,点P 是椭圆C 与圆M :x 2+y 2=10的一个交点,则||PA |-|PB ||=( )A .2 2B .4 3C .4 2D .6 2答案 C解析 由题意知,A ,B 恰好在圆M 上且AB 为圆M 的直径,∴|PA |+|PB |=2a =43,|PA |2+|PB |2=(2c )2=40,∴(|PA |+|PB |)2=|PA |2+|PB |2+2|PA ||PB |,解得2|PA ||PB |=8,∴(|PA |-|PB |)2=|PA |2+|PB |2-2|PA ||PB |=32,则||PA |-|PB ||=42,故选C .10.(2020·西安摸底检测)设AB 是椭圆的长轴,点C 在椭圆上,且∠CBA =π4,若AB =4,BC =2,则椭圆的两个焦点之间的距离为( )A .463B .263C .433D .233答案 A解析 不妨设椭圆的标准方程为x 2a 2+y 2b2=1(a >b >0),如图,由题意知,2a =4,a =2,∵∠CBA =π4,BC =2,∴点C 的坐标为(-1,1),∵点C 在椭圆上,∴14+1b 2=1,∴b 2=43,∴c 2=a 2-b 2=4-43=83,c =263,则椭圆的两个焦点之间的距离为463.11.(2019·山西八校联考)椭圆x 225+y 216=1的左、右焦点分别为F 1,F 2,弦AB 过F 1,若△ABF 2的内切圆周长为π,A ,B 两点的坐标分别为(x 1,y 1),(x 2,y 2),则|y 1-y 2|的值为( )A .53 B .103C .203D .53答案 A解析 在椭圆x 225+y 216=1中,a =5,b =4,所以c =3.故椭圆左、右焦点分别为F 1(-3,0),F 2(3,0).由△ABF 2的内切圆周长为π,可得内切圆的半径为r =12.△ABF 2的面积=△AF 1F 2的面积+△BF 1F 2的面积=12|y 1|·|F 1F 2|+12|y 2|·|F 1F 2|=12(|y 1|+|y 2|)·|F 1F 2|=3|y 1-y 2|(A ,B 在x轴的上下两侧),又△ABF 2的面积=12r (|AB |+|BF 2|+|F 2A |)=12×12(2a +2a )=a =5,所以3|y 1-y 2|=5,即|y 1-y 2|=53.12.(2019·湖北八校联考)如图,已知椭圆C 的中心为原点O ,F (-5,0)为C 的左焦点,P 为C 上一点,满足|OP |=|OF |且|PF |=6,则椭圆C 的方程为( )A .x 236+y 216=1B .x 240+y 215=1C .x 249+y 224=1 D .x 245+y 220=1 答案 C解析 由题意可得c =5,设右焦点为F ′,连接PF ′,由|OP |=|OF |=|OF ′|=12|FF ′|知,∠FPF ′=90°,即PF ⊥PF ′.在Rt △PFF ′中,由勾股定理,得|PF ′|=|FF ′|2-|PF |2=102-62=8,由椭圆定义,得|PF |+|PF ′|=2a =6+8=14,从而a =7,得a 2=49,于是b 2=a 2-c 2=72-52=24,所以椭圆C 的方程为x 249+y 224=1,故选C .13.设椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,P 是C 上的点,PF 2⊥F 1F 2,∠PF 1F 2=30°,则C 的离心率为________.答案33解析 设|PF 2|=m ,∵PF 2⊥F 1F 2,∠PF 1F 2=30°,∴|PF 1|=2m ,|F 1F 2|=3m .又|PF 1|+|PF 2|=2a ,|F 1F 2|=2c .∴2a =3m,2c =3m ,∴C 的离心率为e =c a =33. 14.(2019·全国卷Ⅲ)设F 1,F 2为椭圆C :x 236+y 220=1的两个焦点,M 为C 上一点且在第一象限.若△MF 1F 2为等腰三角形,则M 的坐标为________.答案 (3,15)解析 设F 1为椭圆的左焦点,分析可知M 在以F 1为圆心、焦距为半径的圆上,即在圆(x +4)2+y 2=64上.因为点M 在椭圆x 236+y 220=1上,所以联立方程可得⎩⎪⎨⎪⎧(x +4)2+y 2=64,x 236+y 220=1,解得⎩⎨⎧x =3,y =±15.又因为点M 在第一象限,所以点M 的坐标为(3,15).15.(2019·浙江高考)已知椭圆x 29+y 25=1的左焦点为F ,点P 在椭圆上且在x 轴的上方.若线段PF 的中点在以原点O 为圆心,|OF |为半径的圆上,则直线PF 的斜率是________.答案15解析 如图,左焦点F (-2,0),右焦点F ′(2,0).线段PF 的中点M 在以O (0,0)为圆心,2为半径的圆上,因此OM =2. 在△FF ′P 中,OM 12PF ′, 所以PF ′=4.根据椭圆的定义,得PF +PF ′=6,所以PF =2. 又因为FF ′=4, 所以在Rt △MFF ′中,tan ∠PFF ′=MF ′MF =FF ′2-MF 2MF=15,即直线PF 的斜率是15.16.(2020·南充模拟)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的一个焦点为(3,0),A 为椭圆C的右顶点,以A 为圆心的圆与直线y =b ax 相交于P ,Q 两点,且·=0,=3,则椭圆C 的标准方程为________,圆A 的标准方程为________.答案x 24+y 2=1 (x -2)2+y 2=85解析 如图,设T 为线段PQ 的中点,连接AT ,则AT ⊥PQ .∵·=0,即AP ⊥AQ , ∴|AT |=12|PQ |.又=3, ∴|OT |=|PQ |. ∴|AT ||OT |=12,即b a =12. 由已知得半焦距c =3,∴a 2=4,b 2=1, 故椭圆C 的方程为x 24+y 2=1.又|AT |2+|OT |2=4, ∴|AT |2+4|AT |2=4,∴|AT |=255,r =|AP |=2105.∴圆A 的方程为(x -2)2+y 2=85.17.(2019·全国卷Ⅱ)已知F 1,F 2是椭圆C :x 2a 2+y 2b2=1(a >b >0)的两个焦点,P 为C 上的点,O 为坐标原点.(1)若△POF 2为等边三角形,求C 的离心率;(2)如果存在点P ,使得PF 1⊥PF 2,且△F 1PF 2的面积等于16,求b 的值和a 的取值范围. 解 (1)连接PF 1.由△POF 2为等边三角形可知在△F 1PF 2中,∠F 1PF 2=90°,|PF 2|=c ,|PF 1|=3c ,于是2a =|PF 1|+|PF 2|=(3+1)c ,故C 的离心率为e =ca=3-1.(2)由题意可知,满足条件的点P (x ,y )存在当且仅当 12|y |·2c =16,y x +c ·y x -c =-1,x 2a 2+y 2b 2=1, 即c |y |=16,①x 2+y 2=c 2,② x 2a 2+y 2b 2=1.③ 由②③及a 2=b 2+c 2得y 2=b 4c2.又由①知y 2=162c2,故b =4.由②③及a 2=b 2+c 2得x 2=a 2c2(c 2-b 2),所以c 2≥b 2,从而a 2=b 2+c 2≥2b 2=32,故a ≥4 2. 当b =4,a ≥42时,存在满足条件的点P . 所以b =4,a 的取值范围为[42,+∞).18.(2019·成都一诊)已知椭圆x 25+y 24=1的右焦点为F ,设直线l :x =5与x 轴的交点为E ,过点F 且斜率为k 的直线l 1与椭圆交于A ,B 两点,M 为线段EF 的中点.(1)若直线l 1的倾斜角为π4,求|AB |的值;(2)设直线AM 交直线l 于点N ,证明:直线BN ⊥l . 解 由题意知,F (1,0),E (5,0),M (3,0). (1)∵直线l 1的倾斜角为π4,∴斜率k =1.∴直线l 1的方程为y =x -1.代入椭圆方程,可得9x 2-10x -15=0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=109,x 1x 2=-53.∴|AB |=2·(x 1+x 2)2-4x 1x 1 =2×⎝ ⎛⎭⎪⎫1092+4×53=1659.(2)证明:设直线l 1的方程为y =k (x -1). 代入椭圆方程,得(4+5k 2)x 2-10k 2x +5k 2-20=0. 设A (x 1,y 1),B (x 2,y 2), 则x 1+x 2=10k 24+5k 2,x 1x 2=5k 2-204+5k 2.设N (5,y 0),∵A ,M ,N 三点共线, ∴-y 13-x 1=y 02,∴y 0=2y 1x 1-3. 而y 0-y 2=2y 1x 1-3-y 2=2k (x 1-1)x 1-3-k (x 2-1) =3k (x 1+x 2)-kx 1x 2-5kx 1-3=3k ·10k 24+5k 2-k ·5k 2-204+5k 2-5k x 1-3=0.∴直线BN ∥x 轴,即直线BN ⊥l .19.(2019·广东广州联考)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的焦距为26,且过点A (2,1).(1)求椭圆C 的方程;(2)若不经过点A 的直线l :y =kx +m 与椭圆C 交于P ,Q 两点,且直线AP 与直线AQ 的斜率之和为0,证明:直线PQ 的斜率为定值.解 (1)因为椭圆C 的焦距为26,且过点A (2,1), 所以4a 2+1b2=1,2c =2 6.又因为a 2=b 2+c 2,由以上三式解得a 2=8,b 2=2, 所以椭圆C 的方程为x 28+y 22=1.(2)证明:设点P (x 1,y 1),Q (x 2,y 2),x 1≠x 2≠2, 则y 1=kx 1+m ,y 2=kx 2+m .由⎩⎪⎨⎪⎧y =kx +m ,x 28+y22=1,消去y 并整理,得(4k 2+1)x 2+8kmx +4m 2-8=0, 则x 1+x 2=-8km 4k 2+1,x 1x 2=4m 2-84k 2+1.因为k AP +k AQ =0,所以y 1-1x 1-2=-y 2-1x 2-2, 化简得x 1y 2+x 2y 1-(x 1+x 2)-2(y 1+y 2)+4=0. 即2kx 1x 2+(m -1-2k )(x 1+x 2)-4m +4=0. 所以2k (4m 2-8)4k 2+1-8km (m -1-2k )4k 2+1-4m +4=0, 整理得(2k -1)(m +2k -1)=0. 因为直线l 不经过点A , 所以2k +m -1≠0,所以k =12.所以直线PQ 的斜率为定值,该值为12.20.(2019·天津高考)设椭圆x 2a 2+y 2b2=1(a >b >0)的左焦点为F ,上顶点为B .已知椭圆的短轴长为4,离心率为55. (1)求椭圆的方程;(2)设点P 在椭圆上,且异于椭圆的上、下顶点,点M 为直线PB 与x 轴的交点,点N 在y 轴的负半轴上,若|ON |=|OF |(O 为原点),且OP ⊥MN ,求直线PB 的斜率.解 (1)设椭圆的半焦距为c ,依题意,2b =4,c a =55,又a 2=b 2+c 2,可得a =5,b =2,c =1.所以,椭圆的方程为x 25+y 24=1.(2)由题意,设P (x P ,y P )(x P ≠0),M (x M,0),直线PB 的斜率为k (k ≠0),因为B (0,2),则直线PB 的方程为y =kx +2,与椭圆方程联立,得⎩⎪⎨⎪⎧y =kx +2,x 25+y24=1,整理得(4+5k 2)x 2+20kx =0, 可得x P =-20k4+5k2,代入y =kx +2得y P =8-10k24+5k2,进而直线OP 的斜率为y P x P =4-5k 2-10k.在y =kx +2中,令y =0,得x M =-2k.由题意得N (0,-1),所以直线MN 的斜率为-k2.由OP ⊥MN ,得4-5k 2-10k ·⎝ ⎛⎭⎪⎫-k 2=-1,化简得k 2=245,从而k =±2305.所以直线PB 的斜率为2305或-2305.附:什么样的考试心态最好大部分学生都不敢掉以轻心,因此会出现很多过度焦虑。
课时规范练54二项分布、超几何分布、正态分布基础巩固组1.袋中装有2个红球,3个黄球,有放回地抽取3次,每次抽取1球,则3次中恰有2次抽到黄球的概率是()A.25B.35C.18125D.541252.已知随机变量X服从正态分布N(1,σ2),若P(X≤0)=0.2,则P(X≤2)=()A.0.2B.0.4C.0.6D.0.83.(2021河南驻马店模拟)已知X~B(20,p),且EX=6,则DX=()A.1.8B.6C.2.1D.4.24.从4名男生和2名女生中任选3人参加演讲比赛,设随机变量ξ表示所选3人中女生的人数,则P(ξ≤1)=()A.15B.25C.35D.455.(2021重庆三模)已知随机变量X服从正态分布N(6,σ2)(σ>0),若P(X>3)=0.8,则P(3<X≤9)=()A.0.2B.0.4C.0.6D.0.86.一袋中装有5个红球和3个黑球(除颜色外无区别),任取3球,记其中黑球数为X,则EX=()A.98B.78C.12D.62567.某杂交水稻种植研究所调查某地水稻的株高,得出株高X(单位:cm)服从正态分布,其密度曲线函数为f(x)=10√2π-(x-100)2200,x∈(-∞,+∞),则下列说法正确的是()A.该地水稻的平均株高为100 cmB.该地水稻株高的方差为10C.随机测量一株水稻,其株高在120 cm以上的概率比株高在70 cm以下的概率小D.随机测量一株水稻,其株高在(80,90]和在(100,110](单位:cm)的概率一样大8.某大厦的一部电梯从底层出发后只能在第18,19,20层停靠,若该电梯在底层载有5位乘客,且每位乘客在这三层的每一层下电梯是等可能的,用X表示这5位乘客在第20层下电梯的人数,则EX= .9.(2021山东烟台一模)某企业加工了一批新零件,其综合质量指标值X服从正态分布N(80,σ2),且P(X≤60)=0.2,现从中随机抽取该零件500个,估计综合质量指标值位于(60,100]的零件个数为.10.(2021广东普宁二中月考)某种水果按照果径大小可分为四类:标准果、优质果、精品果、礼品果,某采购商从采购的一批水果中随机抽取100个,利用水果的等级分类标准得到的数据如下:(1)若将频率视为概率,从这100个水果中有放回地随机抽取3个,求恰好有2个水果是礼品果的概率;(结果用分数表示)(2)用分层随机抽样的方法从这100个水果中抽取10个,再从抽取的10个水果中随机抽取2个,若X表示抽到的精品果的数量,求X的分布列和期望.综合提升组11.某射手每次射击击中目标的概率固定,他准备进行n (n ∈N *)次射击,设击中目标的次数记为X ,已知P (X=1)=P (X=n-1),且EX=4,则DX=( ) A.14B.12C.1D.212.掷一个质地不均匀的硬币6次,每次掷出正面的概率均为23,恰好出现k 次正面的概率记为P k ,则下列说法正确的是( ) A.P 1=P 5 B.P 1>P 5C.∑k=16P k =1D.P 0,P 1,P 2,…,P 6中最大值为P 413.(2021河北衡水第一中学高三月考)在某次大型联考中,所有学生的数学成绩X~N (100,225).若成绩不高于m+10的同学人数和不低于2m-20的同学人数相同,则整数m 的值为 . 14.(2021天津河北一模)袋子中有5个大小质地完全相同的小球,其中有3个红球,2个黄球,从袋中一次性随机取出3个小球后,再将小球放回.则“取出的3个小球中有2个红球,1个黄球”的概率为 ,记“取出的3个小球中有2个红球,1个黄球”发生的次数为X ,若重复5次这样的实验,则X 的数学期望为 .15.(2021湖北恩施模拟)目前某市居民使用天然气实行阶梯价格制度,从该市随机抽取10户调查同一年的天然气使用情况,得到统计表如下:(1)现要在这10户家庭中任意抽取3户,求抽到的年用气量超过228立方米而不超过348立方米的用户数的分布列与数学期望;(2)若以表中抽到的10户作为样本估计全市居民的年用气情况,现从全市居民中抽取10户,其中恰有k户年用气量不超过228立方米的概率为P(k),求使P(k)取到最大值时,k的值.创新应用组16.《山东省高考改革试点方案》规定:从2017年秋季高中入学的新生开始,不分文理科;2020年开始,高考总成绩由语数外3门统考科目和物理、化学等六门选考科目构成.将每门选考科目的考生原始成绩从高到低划分为A、B+、B、C+、C、D+、D、E共8个等级.参照正态分布原则,确定各等级人数所占比例分别为3%、7%、16%、24%、24%、16%、7%、3%.选考科目成绩计入考生总成绩时,将A至E等级内的考生原始成绩,依照等比例转换法则,分别转换到[91,100]、[81,90]、[71,80]、[61,70]、[51,60]、[41,50]、[31,40]、[21,30]八个分数区间,得到考生的等级成绩.某校高一年级共2 000人,为给高一学生合理选科提供依据,对六个选考科目进行测试,其中物理考试原始成绩基本服从正态分布N(60,169).(1)估计物理原始成绩在区间(47,86]的人数;(2)按高考改革方案,若从全省考生中随机抽取3人,记X表示这3人中等级成绩在区间[61,80]的人数,求X的分布列和数学期望.(附:若随机变量ξ~N(μ,σ2),则P(μ-σ<ξ≤μ+σ)≈0.682 6,P(μ-2σ<ξ≤μ+2σ)≈0.954 4,P(μ-3σ<ξ≤μ+3σ)≈0.997 4)课时规范练54 二项分布、超几何分布、正态分布1.D 解析: ∵每次取到黄球的概率为35,∴3次中恰有2次抽到黄球的概率为C 32(35)2(1−35)=54125.2.D 解析: 因为P (X ≤0)=0.2,所以P (X ≤2)=1-P (X ≤0)=1-0.2=0.8.故选D .3.D 解析: 因为X 服从二项分布X~B (20,p ),所以EX=20p=6,得p=0.3,故DX=np (1-p )=20×0.3×0.7=4.2.故选D .4.D 解析: P (ξ≤1)=1-P (ξ=2)=1-C 41C 22C 63=45.5.C 解析: 因为X 服从正态分布N (6,σ2)(σ>0),P (X>3)=0.8, 所以P (X>9)=P (X ≤3)=1-P (X>3)=0.2, 所以P (3<X ≤9)=1-P (X ≤3)-P (X>9)=0.6. 故选C .6.A 解析: 由题意可知,随机变量X 的可能取值有0,1,2,3, 则P (X=0)=C 53C 83=1056,P (X=1)=C 52C 31C 83=3056,P (X=2)=C 51C 32C 83=1556,P (X=3)=C 33C 83=156.故随机变量X 的数学期望为EX=0×1056+1×3056+2×1556+3×156=98. 故选A .7.A 解析: f (x )=10√2π-(x -100)2200,故μ=100,σ2=100,故A 正确,B 错误;P (X>120)=P (X ≤80)>P (X≤70),故C 错误;根据正态分布的对称性知P (100<X ≤110)=P (90<X ≤100)>P (80<X ≤90),故D 错误.故选A .8.53 解析: 由题意可知X~B (5,13),故EX=5×13=53.9.300 解析: 由题意,这种产品的综合质量指标值X 服从正态分布N (80,σ2),则正态分布的对称轴为x=80,根据正态分布的对称性,得P (60<X ≤100)=2(P (X ≤80)-P (X ≤60))=2×(0.5-0.2)=0.6.所以从中随机抽取该零件500个,估计综合质量指标值位于(60,100]的零件个数为500×0.6=300. 10.解(1)设从这100个水果中随机抽取1个是礼品果为事件A ,则P (A )=20100=15,现有放回地随机抽取3个,设抽到礼品果的个数为X ,则X~B (3,15),故恰好有2个水果是礼品果的概率为P (X=2)=C 32(15)2×45=12125.(2)用分层随机抽样的方法从这100个水果中抽取10个,其中精品果有4个,非精品果有6个,再从中随机抽取2个,则精品果的数量X 服从超几何分布, 所有可能的取值为0,1,2,则P (X=0)=C 62C 102=13,P (X=1)=C 61C 41C 102=815,P (X=2)=C 42C 102=215. 故X 的分布列为所以EX=1×815+2×215=45.11.D 解析: 设某射手每次射击击中目标的概率为p (0<p<1), 由题意可得击中目标的次数记为X~B (n ,p ), 因为P (X=1)=P (X=n-1),所以C n 1p (1-p )n-1=C n n -1p n-1(1-p ),整理可得(1-p )n-2=p n-2, 即1-p=p ,解得p=12.因为EX=np=12n=4,解得n=8, 所以DX=np (1-p )=8×12×(1−12)=2. 故选D .12.D 解析: P 1=C 6123×(1−23)5=4243,P 5=C 65235×(1−23)1=64243,P 1<P 5,故A ,B 错误;∑k=06P k =1,故C 错误;由二项分布概率公式可得P 0=1729,P 1=4243,P 2=20243,P 3=160729,P 4=80243,P 5=64243,P 6=64729,最大值为P 4,D 正确.故选D .13.70 解析: 由题意P (X ≤m+10)=P (X ≥2m-20). 又X~N (100,225),所以m+10+2m-20=200, 所以m=70.14.35 3 解析: 设事件A 为“取出3个球中有2个红球,1个黄球”,则P (A )=C 32C 21C 53=35.由题意可得,重复5次这样的实验,事件A 发生的次数X 服从二项分布,即X~B (5,35), 则EX=5×35=3.15.解(1)由题知,10户家庭中年用气量超过228立方米而不超过348立方米的用户有3户, 设抽到的年用气量超过228立方米而不超过348立方米的用户数为ξ,则ξ服从超几何分布,且ξ的可能取值为0,1,2,3,则P (ξ=0)=C 73C 103=724,P (ξ=1)=C 72C 31C 103=2140,P (ξ=2)=C 71C 32C 103=740,P (ξ=3)=C 33C 103=1120,故随机变量ξ的分布列为所以E ξ=0×724+1×2140+2×740+3×1120=910.(2)由题意知,设从全市住户抽到的年用气量不超过228立方米的用户数为η,则η服从二项分布η~B (10,35),且P (η=k )=C 10k(35)k (25)10−k(k=0,1,2,3,…,10),由{C 10k (35)k (25)10−k≥C 10k+1(35)k+1(25)9−k,C 10k (35)k (25)10−k ≥C 10k -1(35)k -1(25)11−k ,解得285≤k ≤335,k ∈N *,所以k=6.故当P (k )取到最大值时,k=6. 16.解(1)因为物理原始成绩ξ~N (60,132),所以P (47<ξ≤86)=P (47<ξ≤60)+P (60<ξ≤86)=12P (60-13<ξ≤60+13)+12P (60-2×13<ξ≤60+2×13)≈0.68262+0.95442=0.8185.所以物理原始成绩在(47,86]的人数约为2000×0.8185=1637(人).(2)由题意得,随机抽取1人,其成绩在区间[61,80]内的概率为25.所以随机抽取三人,则X 的所有可能取值为0,1,2,3,且X~B (3,25),所以P (X=0)=(35)3=27125,P (X=1)=C 31×25×(35)2=54125, P (X=2)=C 32×(25)2×35=36125,P (X=3)=(25)3=8125.所以X 的分布列为所以数学期望EX=3×25=65.。
课时规范练50 二项式定理基础巩固组1.(x +12x )6的展开式中的第3项为( ) A.3x 4B.52C.154x 2D.1516x 22.(1x -1)5的展开式中x -2的系数是( ) A.15 B.-15 C.10D.-103.(2021湖南怀化一模)(x 2+1)(1x -2)5展开式的常数项为( ) A.112 B.48 C.-112D.-484.(2021湖北荆门月考)若(x √x3)8的展开式中x 4的系数为7,则展开式的常数项为( )A.716 B.12 C.-716D.-125.(2021广东湛江三模)(1+3x )2+(1+2x )3+(1+x )4=a 0+a 1x+a 2x 2+a 3x 3+a 4x 4,则a 0+a 1+a 2+a 3+a 4= ( )A.49B.56C.59D.646.(x +1x -2)6的展开式中含x 5项的系数为( ) A.12 B.-12 C.24D.-247.对于二项式(1x+x 3)n (n ∈N *),以下判断正确的有( )①存在n ∈N *,展开式中有常数项 ②对任意n ∈N *,展开式中没有常数项 ③对任意n ∈N *,展开式中没有含x 的项 ④存在n ∈N *,展开式中有含x 的项 A.①③B.②④C.②③D.①④8.(2021福建漳州模拟)已知(x+1)6=a 0+a 1(x-1)+a 2(x-1)2+…+a 6(x-1)6,则a 4= . 9.(2021湖南长郡中学模拟三)若(x -12x )n的展开式中只有第5项的二项式系数最大,则展开式中常数项为 .(用数字作答)综合提升组10.(2021河南郑州一模)式子(x -y 2x)(x+y )5的展开式中,x 3y 3的系数为( ) A.3 B.5 C.15 D.2011.已知(ax 2+√x)n(a>0)的展开式中第5项与第7项的二项式系数相等,且展开式的各项系数之和为1 024,则下列说法不正确的是( ) A.展开式中奇数项的二项式系数和为256 B.展开式中第6项的系数最大 C.展开式中存在常数项D.展开式中含x 15的项的系数为45 12.(2021河北石家庄一模)关于(1-2x )2 021=a 0+a 1x+a 2x 2+…+a 2 021x 2 021(x ∈R ),则( )A.a 0=0B.a 1+a 2+a 3+…+a 2 021=32 021C.a 3=8C 20213D.a 1-a 2+a 3-a 4+…+a 2 021=1-32 02113.(2021安徽蚌埠高三开学考试(理))若二项式(x +12)n展开式中第4项的系数最大,则n 的所有可能取值的个数为 .14.(2021福建宁德三模)已知(a +1x)(1+x )5展开式中的所有项的系数和为64,则实数a= ;展开式中常数项为 .创新应用组15.设a,b,m为整数(m>0),若a和b被m除得的余数相同,则称a和b对模m同余,记为a≡b(mod m).若a=C200+C201·2+C202·22+…+C2020·220,a≡b(mod 10),则b的值可以是()A.2 018B.2 019C.2 020D.2 02116.“杨辉三角”揭示了二项式系数在三角形中的一种几何排列规律,最早在中国南宋数学家杨辉1261年所著的《详解九章算法》一书中出现.如下图,在由二项式系数所构成的“杨辉三角”中,第10行中从左至右第5与第6个数的比值为.课时规范练50 二项式定理1.C 解析∵(a+b )n的二项式通项为T k+1=C n k ·a n-k·b k,∴(x +12x )6的展开式中的第3项是T 3=T 2+1=C 62·x 6-2·(12x )2=154x 2. 2.D 解析(1x-1)5的二项式通项T k+1=C 5k (1x )5-k ·(-1)k =(-1)k ·C 5k x k-5,当k=3时,T 4=-C 53x -2=-10x -2,即x -2的系数为-10.3.C 解析由题得,(1x -2)5的二项式通项为T r+1=C 5r (-2)r x r-5,令r=3,r=5,得展开式的常数项为C 53×(-2)3+(-2)5=-112.故选C .4.A 解析(x √x 3)8的二项式通项为T r+1=C 8r x 8-r (√x3)r=C 8r (-a )r x 8-43r .令8-43r=4,解得r=3,所以展开式中x 4的系数为C 83(-a )3=7,解得a=-12,所以(x √x3)8的二项式通项为T r+1=C 8r (12)rx 8-43r .令8-43r=0,解得r=6,所以展开式的常数项为C 86×(12)6=716.故选A .5.C 解析令x=1,a 0+a 1+a 2+a 3+a 4=(1+3)2+(1+2)3+(1+1)4=59.故选C . 6.B 解析由(x +1x -2)6=(x 2-2x+1x)6=(x -1)12x 6,则(x-1)12的二项式通项为T r+1=C 12rx12-r(-1)r=(-1)rC 12rx12-r.当r=1,此时T 2=-1×C 121x 11=-12x 11,可得(x -1)12x 6展开式中x 5项的系数为-12.故选B .7.D 解析设(1x +x 3)n (n ∈N *)的二项式通项为T k+1,则T k+1=C n k (1x )n -k(x 3)k =C n k x4k-n,不妨令n=4,则当k=1时,展开式中有常数项,故①正确,②错误;令n=3,则当k=1时,展开式中有含x 的项,故③错误,④正确.故选D .8.60 解析∵(x+1)6=[(x-1)+2]6,∴展开式通项T r+1=C 6r(x-1)6-r 2r.由题知,a 4对应6-r=4,则可得r=2.∴T 3=C 62(x-1)4·22=4C 62(x-1)4,即a 4=4C 62=60.9.358 解析(x -12x )n的展开式中只有第5项的二项式系数最大,则由二项式系数性质知,展开式共有9项,则n=8.(x -12x )8的二项式通项为T r+1=C 8r x 8-r·(-12x )r =(-12)rC 8rx 8-2r,令8-2r=0,解得r=4.所以展开式中常数项为T 5=(-12)4×C 84=116×70=358.10.B 解析∵(x -y 2x)(x+y )5=x (x+y )5-y 2x (x+y )5, 则x (x+y )5的二项式通项为T k+1=x C 5k x 5-k y k=C 5k x 6-k y k, y 2x(x+y )5的二项式通项为T r+1=y 2xC 5r x 5-r y r=C 5rx 4-r y r+2,由{6-k =3,4-r =3,解得{k =3,r =1. 故式子(x -y 2x)(x+y )5的展开式中,x 3y 3的系数为C 53−C 51=5. 故选B .11.A 解析由二项展开式中第5项与第7项的二项式系数相等可知n=10.又因为展开式的各项系数之和为1024,即当x=1时,(a+1)10=1024,所以a=1.所以二项式为(x 2√x)10=(x 2+x -12)10.二项式系数和为210=1024,则奇数项的二项式系数和为12×1024=512,故A 不正确;由n=10可知展开式共有11项,中间项的二项式系数最大,即第6项的二项式系数最大,因为x 2与x -12的系数均为1,则该二项式展开式的二项式系数与系数相同,所以第6项的系数最大,故B 正确;若展开式中存在常数项,由二项式通项T k+1=C 10k x 2(10-k )·x -12k 可得2(10-k )-12k=0,解得k=8,故C 正确;由二项式通项T k+1=C 10kx2(10-k )x -12k 可得2(10-k )-12k=15,解得k=2,所以展开式中含x 15的项的系数为C 102=45,故D 正确.故选A .12.D 解析令x=0,则12021=a 0,即a 0=1,故A 错误;令x=1,则(1-2)2021=a 0+a 1+a 2+…+a 2021,即a 0+a 1+a 2+a 3+…+a 2021=-1,所以a 1+a 2+a 3+…+a 2021=-2,故B 错误;根据二项式通项得,a 3=C 20213×12018×(-2)3=-8C 20213,故C 错误;令x=1,则a 0+a 1+a 2+a 3+…+a 2021=-1, 令x=-1,则a 0-a 1+a 2-a 3+…-a 2021=(1+2)2021=32021,两式相加可得a 0+a 2+…+a 2020=32021-12, ① 两式相减可得a 1+a 3+…+a 2021=-1-320212,②②-①可得-a 0+a 1-a 2+a 3-a 4+…+a 2021=-1-32021-32021+12=-32021,所以a 1-a 2+a 3-a 4+…+a 2021=1-32021,故D 正确.故选D .13.4 解析因为(x +12)n的二项式通项为C n r x n-r (12)r=C n r (12)r x n-r.由题意可得{C n 3(12)3≥C n 2(12)2,C n 3(12)3≥C n 4(12)4,即{n -2≥6,8≥n -3,故8≤n ≤11.又因为n 为正整数,所以n=8或9或10或11,故n 的所有可能取值的个数为4.14.1 6 解析令x=1,可得(a +1x)(1+x )5展开式中的所有项的系数和为32(a+1)=64,解得a=1.则展开式中常数项为a ×C 50+C 51=1+5=6.15.D 解析a=C 200+C 201·2+C 202·22+…+C 2020·220=(1+2)20=320=(80+1)5,它被10除所得余数为1.又因为a ≡b (mod10),所以b 的值可以是2021.16.56 解析由题意第10行的数就是(a+b )10的展开式中各项的二项式系数,因此从左至右第5与第6个数的比值为C 104C 105=56.。
课时作业(四) 函数及其表示A 级1.已知a 、b 为实数,集合M =⎩⎨⎧⎭⎬⎫b a ,1,N ={a,0},f :x →x 表示把M 中的元素x 映射到集合N 中仍为x ,则a +b 等于( )A .-1B .0C .1D .±12.(2012·江西卷)下列函数中,与函数y =13x定义域相同的函数为( ) A .y =1sin xB .y =ln x xC .y =x e xD .y =sin xx3.(2012·杭州模拟)设函数f (x )=⎩⎨⎧x ,x ≥0-x ,x <0,若f (a )+f (-1)=2,则a =( )A .-3B .±3C .-1D .±14.(2012·安徽卷)下列函数中,不满足f (2x )=2f (x )的是( ) A .f (x )=|x | B .f (x )=x -|x | C .f (x )=x +1D .f (x )=-x5.已知函数f (x )=⎩⎪⎨⎪⎧x -1, x <0f (x -1)+1, x ≥0,则f (2 013)=( )A .2 010B .2 011C .2 012D .2 0136.函数f (x )=x -4|x |-5的定义域为________. 7.已知f (x )=x 2+px +q 满足f (1)=f (2)=0,则f (-1)=________. 8.图中的图像所表示的函数的解析式f (x )=________.9.(2012·珠海模拟)若函数y =f (x )的值域是[1,3],则函数F (x )=1-2f (x +3)的值域是________.10.已知函数f (x )=2x -1,g (x )=⎩⎪⎨⎪⎧x 2, x ≥0-1, x <0,求f (g (x ))和g (f (x ))的解析式.11.设x ≥0时,f (x )=2;x <0时,f (x )=1,又规定:g (x )=3f (x -1)-f (x -2)2(x >0),试写出y =g (x )的解析式,并画出其图像.B 级1.已知函数f (x )满足f (x )+2f (3-x )=x 2,则f (x )的解析式为( ) A .f (x )=x 2-12x +18 B .f (x )=13x 2-4x +6C .f (x )=6x +9D .f (x )=2x +32.(2012·枣庄模拟)对于实数x ,y ,定义运算x *y =⎩⎪⎨⎪⎧ax +y (xy >0)x +by (xy <0),已知1]2)的序号为________.(填写所有正确结果的序号)①2*2 ②-2*2 ③-32*2 2 ④32*(-22)3.规定[t ]为不超过t 的最大整数,例如[12.6]=12,[-3.5]=-4,对任意实数x ,令f 1(x )=[4x],g(x)=4x-[4x],进一步令f2(x)=f1[g(x)].(1)若x=716,分别求f1(x)和f2(x);(2)若f1(x)=1,f2(x)=3同时满足,求x的取值范围.答案课时作业(四)A级1.C a=1,b=0,∴a+b=1.2.D函数y=13x的定义域为{x|x≠0},选项A中由sin x≠0⇒x≠kπ,k∈Z,故A不对;选项B中x>0,故B不对;选项C中x∈R,故C不对;选项D中由正弦函数及分式型函数的定义域确定方法可知定义域为{x|x≠0},故选D.3.D∵f(a)+f(-1)=2,且f(-1)=1=1,∴f(a)=1,当a≥0时,f(a)=a=1,∴a=1,当a<0时,f(a)=-a=1,∴a=-1.4.C A,f(2x)=|2x|=2|x|=2f(x),满足要求;B,f(2x)=2x-|2x|=2(x-|x|)=2f(x),满足要求;C,f(2x)=2x+1≠2(x+1)=2f(x),不满足要求;D,f(2x)=-2x=2f(x),满足要求.5.C由已知得f(0)=f(0-1)+1=f(-1)+1=-1-1+1=-1,f(1)=f(0)+1=0,f(2)=f(1)+1=1,f(3)=f(2)+1=2,…f (2 013)=f (2 012)+1=2 011+1=2 012.6.解析: 由⎩⎪⎨⎪⎧x -4≥0,|x |-5≠0∴x ≥4且x ≠5.答案: {x |x ≥4且x ≠5} 7.解析: 由f (1)=f (2)=0,得⎩⎪⎨⎪⎧ 12+p +q =022+2p +q =0,∴⎩⎪⎨⎪⎧p =-3q =2, ∴f (x )=x 2-3x +2. ∴f (-1)=(-1)2+3+2=6. 答案: 68.解析: 由图像知每段为线段.设f (x )=ax +b ,把(0,0),⎝⎛⎫1,32和⎝⎛⎭⎫1,32,(2,0)分别代入求解 ⎩⎪⎨⎪⎧a =32,b =0,⎩⎪⎨⎪⎧a =-32,b =3.答案: f (x )=⎩⎨⎧32x ,0≤x ≤13-32x ,1<x ≤29.解析: ∵1≤f (x )≤3,∴-6≤-2f (x +3)≤-2,∴-5≤1-2f (x +3)≤-1, 即F (x )的值域为[-5,-1]. 答案: [-5,-1]10.解析: 当x ≥0时,g (x )=x 2,f (g (x ))=2x 2-1; 当x <0时,g (x )=-1,f (g (x ))=-2-1=-3;∴f (g (x ))=⎩⎪⎨⎪⎧2x 2-1,x ≥0,-3, x <0.又∵当2x -1≥0,即x ≥12时,g (f (x ))=(2x -1)2;当2x -1<0,即x <12时,g (f (x ))=-1;∴g (f (x ))=⎩⎨⎧(2x -1)2,x ≥12,-1, x <12.11.解析: 当0<x <1时,x -1<0,x -2<0,∴g (x )=3-12=1.当1≤x <2时,x -1≥0,x -2<0,∴g (x )=6-12=52;当x ≥2时,x -1>0,x -2≥0,∴g (x )=6-22=2.故g (x )=⎩⎪⎨⎪⎧1 (0<x <1)52 (1≤x <2)2 (x ≥2),其图像如图所示.B 级1.B 由f (x )+2f (3-x )=x 2可得f (3-x )+2f (x )=(3-x )2,由以上两式解得f (x )=13x 2-4x +6,故选B.2.解析: ∵1]2x +y (xy >0) x +3y (xy <0)∴①2*2=22+2=3 2 ②-2*2=-2+32=2 2 ③-32*22=-32+3×22=3 2 ④32*(-22)=32+3×(-22)=-3 2. 答案: ①③3.解析: (1)∵x =716时,4x =74,∴f 1(x )=⎣⎡⎦⎤74=1, g (x )=74-⎣⎡⎦⎤74=34.∴f 2(x )=f 1[g (x )]=f 1⎝⎛⎭⎫34=[3]=3. (2)∵f 1(x )=[4x ]=1,g (x )=4x -1, ∴f 2(x )=f 1(4x -1)=[16x -4]=3.∴⎩⎪⎨⎪⎧1≤4x <2,3≤16x -4<4.∴716≤x <12.。
等差数列及其前n 项和一、选择题1.若{a n }为等差数列,且a 7-2a 4=-1,a 3=0,则公差d 等于( ) A .-2 B .-12 C .12D .2B [由于a 7-2a 4=a 1+6d -2(a 1+3d )=-a 1=-1,则a 1=1.又由a 3=a 1+2d =1+2d =0,解得d =-12.故选B .]2.在等差数列{a n }中,a 3,a 9是方程x 2+24x +12=0的两根,则数列{a n }的前11项和等于( )A .66B .132C .-66D .-132D [因为a 3,a 9是方程x 2+24x +12=0的两根,所以a 3+a 9=-24. 又a 3+a 9=-24=2a 6,所以a 6=-12,S 11=11×a 1+a 112=11×2a 62=-132,故选D .]3.数列{a n }满足2a n =a n -1+a n +1(n ≥2),且a 2+a 4+a 6=12,则a 3+a 4+a 5=( ) A .9 B .10 C .11 D .12D [由2a n =a n -1+a n +1(n ≥2)可知数列{a n }为等差数列,∴a 2+a 4+a 6=a 3+a 4+a 5=12.故选D .]4.公差不为0的等差数列{a n }的前n 项和为S n ,若a 6=3a 4,且S 10=λa 4,则λ的值为( )A .15B .21C .23D .25D [由题意得a 1+5d =3(a 1+3d ),∴a 1=-2d .∴λ=S 10a 4=10a 1+10×92da 1+3d =10×-2d +45d-2d +3d=25,故选D .]5.等差数列{a n }中,已知|a 6|=|a 11|,且公差d >0,则其前n 项和取最小值时的n 的值为( )A .6B .7C .8D .9 C [∵|a 6|=|a 11|且公差d >0, ∴a 6=-a 11.∴a 6+a 11=a 8+a 9=0,且a 8<0,a 9>0, ∴a 1<a 2<…<a 8<0<a 9<a 10<…,∴使S n 取最小值的n 的值为8.故选C .]6.程大位《算法统宗》里有诗云“九百九十六斤棉,赠分八子做盘缠.次第每人多十七,要将第八数来言.务要分明依次弟,孝和休惹外人传.”意为:996斤棉花,分别赠送给8个子女做旅费,从第一个开始,以后每人依次多17斤,直到第八个孩子为止.分配时一定要等级分明,使孝顺子女的美德外传,则第八个孩子分得斤数为( )A .65B .176C .183D .184D [由题意知,8个孩子所得棉花构成公差为17的等差数列,且前8项之和为996. 设首项为a 1,则S 8=8a 1+8×72×17=996,解得a 1=65,则a 8=a 1+7d =65+7×17=184,故选D .] 二、填空题7.记S n 为等差数列{a n }的前n 项和,若a 1≠0,a 2=3a 1,则S 10S 5=________. 4 [设等差数列{a n }的公差为d ,由a 2=3a 1,即a 1+d =3a 1,得2a 1=d ,所以S 10S 5=10a 1+10×92d5a 1+5×42d=100a 125a 1=4.] 8.(2020·新高考全国卷Ⅰ)将数列{2n -1}与{3n -2}的公共项从小到大排列得到数列{a n },则{a n }的前n 项和为________.3n 2-2n [将数列{2n -1}与{3n -2}的公共项从小到大排列得到数列{a n },则{a n }是以1为首项,以6为公差的等差数列,故它的前n 项和为S n =n ×1+n n -12×6=3n 2-2n .]9.已知数列{a n }是等差数列,前n 项和为S n ,满足a 1+5a 3=S 8,给出下列结论: ①a 10=0;②S 10最小;③S 7=S 12;④S 20=0.其中一定正确的结论是________.(填序号) ①③ [a 1+5(a 1+2d )=8a 1+28d , 所以a 1=-9d ,a 10=a 1+9d =0,故①正确;由于d 的符号未知,所以S 10不一定最小,故②错误;S 7=7a 1+21d =-42d ,S 12=12a 1+66d =-42d ,所以S 7=S 12,故③正确;S 20=20a 1+190d =10d ,不一定为0,故④错误.所以正确的是①③.] 三、解答题10.(2021·新高考卷Ⅰ)已知数列{a n }满足a 1=1,a n +1=⎩⎪⎨⎪⎧a n +1,n 为奇数,a n +2,n 为偶数.(1)记b n =a 2n ,写出b 1,b 2,并求数列{b n }的通项公式; (2)求{a n }的前20项和.[解] (1)因为b n =a 2n ,且a 1=1,a n +1=⎩⎪⎨⎪⎧a n +1,n 为奇数,a n +2,n 为偶数,所以b 1=a 2=a 1+1=2,b 2=a 4=a 3+1=a 2+2+1=5.因为b n =a 2n ,所以b n +1=a 2n +2=a 2n +1+1=a 2n +1+1=a 2n +2+1=a 2n +3, 所以b n +1-b n =a 2n +3-a 2n =3,所以数列{b n }是以2为首项,3为公差的等差数列,b n =2+3(n -1)=3n -1,n ∈N *. (2)因为a n +1=⎩⎪⎨⎪⎧a n +1,n 为奇数,a n +2,n 为偶数,所以k ∈N *时,a 2k =a 2k -1+1=a 2k -1+1, 即a 2k =a 2k -1+1,①a 2k +1=a 2k +2,②a 2k +2=a 2k +1+1=a 2k +1+1,即a 2k +2=a 2k +1+1,③所以①+②得a 2k +1=a 2k -1+3,即a 2k +1-a 2k -1=3,所以数列{a n }的奇数项是以1为首项,3为公差的等差数列; ②+③得a 2k +2=a 2k +3,即a 2k +2-a 2k =3,又a 2=2,所以数列{a n }的偶数项是以2为首项,3为公差的等差数列.所以数列{a n }的前20项和S 20=(a 1+a 3+a 5+…+a 19)+(a 2+a 4+a 6+…+a 20)=10+10×92×3+20+10×92×3=300. 11.已知等差数列的前三项依次为a ,4,3a ,前n 项和为S n ,且S k =110. (1)求a 及k 的值;(2)已知数列{b n }满足b n =S nn,证明数列{b n }是等差数列,并求其前n 项和T n . [解] (1)设该等差数列为{a n },则a 1=a ,a 2=4,a 3=3a , 由已知有a +3a =8,得a 1=a =2,公差d =4-2=2, 所以S k =ka 1+k k -12·d =2k +k k -12×2=k 2+k .由S k =110,得k 2+k -110=0, 解得k =10或k =-11(舍去), 故a =2,k =10. (2)由(1)得S n =n 2+2n2=n (n +1),则b n =S n n=n +1,故b n +1-b n =(n +2)-(n +1)=1,又b 1=2, 即数列{b n }是首项为2,公差为1的等差数列, 所以T n =n 2+n +12=n n +32.1.(2021·大连模拟)若{a n }是等差数列,首项a 1>0,a 2 019+a 2 020>0,a 2 019·a 2 020<0,则使前n 项和S n >0成立的最大正整数n 是( )A .2 019B .2 020C .4 039D .4 038D [{a n }是等差数列,首项a 1>0,a 2 019+a 2 020>0,a 2 019·a 2 020<0,所以{a n }是递减的等差数列,且a 2 019>0,a 2 020<0,因为a 2 019+a 2 020=a 1+a 4 038>0,a 1+a 4 039=2a 2 020<0,所以S 4 038=4 038a 1+a 4 0382>0,S 4 039=4 039a 1+a 4 0392<0.所以使前n 项和S n >0成立的最大正整数n 是4 038.故选D .]2.已知数列{a n }满足a 1=-19,a n +1=a n 8a n +1(n ∈N *),则a n =________,数列{a n }中最大项的值为________.18n -17 17 [由题意知a n ≠0,由a n +1=a n 8a n +1得1a n +1=8a n +1a n =1a n +8,整理得1a n +1-1a n=8,即数列⎩⎨⎧⎭⎬⎫1a n 是公差为8的等差数列,故1a n =1a 1+(n -1)×8=8n -17,所以a n =18n -17.当n =1,2时, a n <0;当n ≥3时,a n >0,则数列{a n }在n ≥3时是递减数列,故{a n }中最大项的值为a 3=17.]3.(2021·全国卷乙)记S n 为数列{a n }的前n 项和,b n 为数列{S n }的前n 项积,已知2S n +1b n=2.(1)证明:数列{b n }是等差数列; (2)求{a n }的通项公式.[解] (1)证明:因为b n 是数列{S n }的前n 项积, 所以n ≥2时,S n =b nb n -1, 代入2S n +1b n=2可得,2b n -1b n+1b n=2,整理可得2b n -1+1=2b n ,即b n -b n -1=12(n ≥2).又2S 1+1b 1=3b 1=2,所以b 1=32, 故{b n }是以32为首项,12为公差的等差数列.(2)由(1)可知,b n =n +22,则2S n +2n +2=2,所以S n =n +2n +1, 当n =1时,a 1=S 1=32,当n ≥2时,a n =S n -S n -1=n +2n +1-n +1n =-1n n +1. 故a n=⎩⎪⎨⎪⎧32,n =1-1n n +1,n ≥2.1.(2021·青岛模拟)已知数列{a n }的前n 项和为S n ,a 1=1,a n +a n +1=2n +1(n ∈N *),则a 20=________,S 21=________.20 231 [∵a n +a n +1=2n +1,① ∴a n +1+a n +2=2n +3,② ②-①得a n +2-a n =2.∴数列{a n }的奇数项和偶数项均成公差为2的等差数列. 又a 1=1,且a 1+a 2=3,∴a 2=2, ∴a 21=1+10×2=21,a 20=2+9×2=20, ∴S 21=(a 1+a 3+…+a 21)+(a 2+a 4+…+a 20) =1+21×112+2+20×102=231.]2.(2021·海淀区二模)已知{a n }是公差为d 的无穷等差数列,其前n 项和为S n .又________,且S 5=40,是否存在大于1的正整数k ,使得S k =S 1?若存在,求k 的值;若不存在,说明理由.从①a 1=4,②d =-2这两个条件中任选一个,补充在上面问题中并作答. [解] 选①a 1=4.∵{a n }是等差数列,a 1=4,S 5=40,∴S 5=20+10d =40,∴d =2. ∵S k =k 2+3k ,S 1=a 1=4,且S k =S 1, ∴k 2+3k =4,即(k -1)(k +4)=0,解得k=1或k=-4(舍去).∴不存在k>1的正整数,使得S k=S1.选②d=-2.∵{a n}是等差数列,d=-2,S5=40,∴a1=12.∴S k=-k2+13k,S1=a1=12.∵S k=S1,∴-k2+13k=12,即(k-12)(k-1)=0,解得k=1或k=12, ∵k=12>1,∴存在k>1的正整数,使得S k=S1.。
第2讲 不等式的证明[学生用书P223]1.不等式证明的方法 (1)比较法 ①作差比较法:知道a >b ⇔a -b >0,a <b ⇔a -b <0,因此要证明a >b 只要证明a -b >0即可,这种方法称为作差比较法.②作商比较法:由a >b >0⇔a b >1且a >0,b >0,因此当a >0,b >0时,要证明a >b ,只要证明ab >1即可,这种方法称为作商比较法.(2)综合法从已知条件出发,利用不等式的有关性质或定理,经过推理论证,最终推导出所要证明的不等式成立,这种证明方法叫综合法.即“由因导果”的方法.(3)分析法从待证不等式出发,逐步寻求使它成立的充分条件,直到将待证不等式归结为一个已成立的不等式(已知条件、定理等),从而得出要证的不等式成立,这种证明方法叫分析法.即“执果索因”的方法.(4)反证法和放缩法①先假设要证的命题不成立,以此为出发点,结合已知条件,应用公理、定义、定理、性质等,进行正确的推理,得到和命题的条件(或已证明的定理、性质、明显成立的事实等)矛盾的结论,以说明假设不正确,从而证明原命题成立,这种方法叫做反证法.②在证明不等式时,有时要把所证不等式的一边适当地放大或缩小,此利于化简并使它与不等式的另一边的关系更为明显,从而得出原不等式成立,这种方法称为放缩法.(5)数学归纳法一般地,当要证明一个命题对于不小于某正整数n 0的所有正整数n 都成立时,可以用以下两个步骤:①证明当n =n 0时命题成立;②假设当n =k (k ∈N *,且k ≥n 0)时命题成立,证明n =k +1时命题也成立.在完成了这两个步骤后,就可以断定命题对于不小于n 0的所有正整数都成立.这种证明方法称为数学归纳法.2.几个常用基本不等式(1)二维形式的柯西不等式 ①定理1(二维形式的柯西不等式)若a ,b ,c ,d 都是实数,则(a 2+b 2)(c 2+d 2)≥(ac +bd )2,当且仅当ad =bc 时,等号成立. ②(二维变式)a 2+b 2·c 2+d 2≥|ac +bd |,a 2+b 2·c 2+d 2≥|ac |+|bd |.③定理2(柯西不等式的向量形式)设α,β是两个向量,则|α·β|≤|α||β|,当且仅当β是零向量,或存在实数k ,使α=k β时,等号成立.④定理3(二维形式的三角不等式)设x 1,y 1,x 2,y 2∈R ,那么x 21+y 21+x 22+y 22≥⑤(三角变式)设x 1,y 1,x 2,y 2,x 3,y 3∈R ,则(x 1-x 3)2+(y 1-y 3)2+(x 2-x 3)2+(y 2-y 3)2≥(2)柯西不等式的一般形式设a 1,a 2,a 3,…,a n ,b 1,b 2,b 3,…,b n 是实数,则(a 21+a 22+…+a 2n )(b 21+b 22+…+b 2n )≥(a 1b 1+a 2b 2+…+a n b n )2,当且仅当b i =0(i =1,2,…,n )或存在一个数k ,使得a i =kb i (i =1,2,…,n )时,等号成立.(3)排序不等式设a 1≤a 2≤…≤a n ,b 1≤b 2≤…≤b n 为两组实数,c 1,c 2,…,c n 为b 1,b 2,…,b n 的任一排列,则有:a 1b n +a 2b n -1+…+a n b 1≤a 1c 1+a 2c 2+…+a n c n ≤a 1b 1+a 2b 2+…+a n b n ,当且仅当a 1=a 2=…=a n 或b 1=b 2=…=b n 时,反序和等于顺序和.排序原理可简记作:反序和≤乱序和≤顺序和.若a >b >1,x =a +1a ,y =b +1b ,则x 与y 的大小关系是( )A .x >yB.x <y C .x ≥y D .x ≤y解析:选A .x -y =a +1a -⎝⎛⎭⎫b +1b =a -b +b -a ab =(a -b )(ab -1)ab .由a >b >1得ab >1,a -b >0,所以(a -b )(ab -1)ab>0,即x -y >0,所以x >y .下列四个不等式:①log x 10+lg x ≥2(x >1);②|a -b |<|a |+|b |;③|b a +ab |≥2(ab ≠0);④|x -1|+|x -2|≥1,其中恒成立的个数是( )A .1B.2 C .3 D .4解析:选C .log x 10+lg x =1lg x+lg x ≥2(x >1);①正确.ab ≤0时,|a -b |=|a |+|b |,②不正确; 因为ab ≠0,b a 与ab 同号,所以|b a +b a |=|b a |+|ab |≥2,③正确;由|x -1|+|x -2|的几何意义知, |x -1|+|x -2|≥1恒成立,④也正确, 综上①③④正确.设a ,b ,m ,n ∈R ,且a 2+b 2=5,ma +nb =5,则m 2+n 2的最小值为________. 解析:由柯西不等式得(ma +nb )2≤(m 2+n 2)(a 2+b 2),即m 2+n 2≥5,所以m 2+n 2≥ 5,所以m 2+n 2的最小值为5.答案: 5若a ,b ,c ∈(0,+∞),且a +b +c =1,求a +b +c 的最大值. 解:(a +b +c )2=(1×a +1×b +1×c )2 ≤(12+12+12)(a +b +c )=3. 当且仅当a =b =c =13时,等号成立.所以(a +b +c )2≤3. 故a +b +c 的最大值为3.设x >0,y >0,若不等式1x +1y +λx +y ≥0恒成立,求实数λ的最小值.解:因为x >0,y >0,所以原不等式可化为-λ≤(1x +1y )(x +y )=2+y x +x y .因为2+y x +xy ≥2+2y x ·xy=4,当且仅当x =y 时等号成立.所以⎣⎡⎦⎤(1x +1y )(x +y )min=4, 即-λ≤4,λ≥-4. 所以λ的最小值为-4.用综合法、分析法证明不等式 [学生用书P224][典例引领](2017·高考全国卷Ⅱ)已知a >0,b >0,a 3+b 3=2.证明: (1)(a +b )(a 5+b 5)≥4; (2)a +b ≤2.【证明】 (1)(a +b )(a 5+b 5)=a 6+ab 5+a 5b +b 6 =(a 3+b 3)2-2a 3b 3+ab (a 4+b 4) =4+ab (a 2-b 2)2≥4.(2)因为(a +b )3=a 3+3a 2b +3ab 2+b 3=2+3ab (a +b )≤2+3(a +b )24(a +b )=2+3(a +b )34,所以(a +b )3≤8,因此a +b ≤2.用综合法证明不等式是“由因导果”,用分析法证明不等式是“执果索因”,它们是两种思路截然相反的证明方法.综合法往往是分析法的逆过程,表述简单、条理清楚,所以在实际应用时,往往用分析法找思路,用综合法写步骤,由此可见,分析法与综合法相互转化,互相渗透,互为前提,充分利用这一辩证关系,可以增加解题思路,开阔视野.[通关练习]1.设a >0,b >0,若3是3a 与3b 的等比中项,求证:1a +1b ≥4.证明:由3是3a 与3b 的等比中项得 3a ·3b =3,即a +b =1,要证原不等式成立, 只需证a +b a +a +b b ≥4成立,即证b a +ab ≥2成立,因为a >0,b >0,所以b a +a b ≥2b a ·ab=2, (当且仅当b a =a b ,即a =b =12时,“=”成立),所以1a +1b≥4.2.设a ,b ,c 均为正数,且a +b +c =1,证明: (1)ab +bc +ca ≤13;(2)a 2b +b 2c +c 2a≥1. 证明:(1)由a 2+b 2≥2ab ,b 2+c 2≥2bc ,c 2+a 2≥2ca 得a 2+b 2+c 2≥ab +bc +ca . 由题设得(a +b +c )2=1,即a 2+b 2+c 2+2ab +2bc +2ca =1, 所以3(ab +bc +ca )≤1, 即ab +bc +ca ≤13.(2)因为a 2b +b ≥2a ,b 2c +c ≥2b ,c 2a +a ≥2c ,所以a 2b +b 2c +c 2a +(a +b +c )≥2(a +b +c ),即a 2b +b 2c +c 2a ≥a +b +c . 所以a 2b +b 2c +c 2a≥1.放缩法证明不等式[学生用书P225][典例引领]若a ,b ∈R ,求证:|a +b |1+|a +b |≤|a |1+|a |+|b |1+|b |.【证明】 当|a +b |=0时,不等式显然成立. 当|a +b |≠0时, 由0<|a +b |≤|a |+|b | ⇒1|a +b |≥1|a |+|b |,所以|a +b |1+|a +b |=11|a +b |+1≤11+1|a |+|b |=|a |+|b |1+|a |+|b |=|a |1+|a |+|b |+|b |1+|a |+|b |≤|a |1+|a |+|b |1+|b |.在不等式的证明中,“放”和“缩”是常用的推证技巧.常见的放缩变换有: (1)变换分式的分子和分母,如1k 2<1k (k -1),1k 2>1k (k +1),1k <2k +k -1,1k >2k +k +1.上面不等式中k ∈N *,k >1.(2)利用函数的单调性.(3)真分数性质“若0<a <b ,m >0,则a b <a +mb +m”.[注意] 在用放缩法证明不等式时,“放”和“缩”均需把握一个度.[通关练习]设n 是正整数,求证:12≤1n +1+1n +2+…+12n <1.证明: 由2n ≥n +k >n (k =1,2,…,n ),得12n ≤1n +k <1n .当k =1时,12n ≤1n +1<1n ;当k =2时,12n ≤1n +2<1n ;…当k =n 时,12n ≤1n +n <1n,所以12=n 2n ≤1n +1+1n +2+…+12n <n n=1.所以原不等式成立.柯西不等式的应用[学生用书P225][典例引领]已知x ,y ,z 均为实数.(1)若x +y +z =1,求证:3x +1+3y +2+3z +3≤33; (2)若x +2y +3z =6,求x 2+y 2+z 2的最小值. 【解】 (1)证明:因为(3x +1+3y +2+3z +3)2≤(12+12+12)(3x +1+3y +2+3z+3)=27.所以3x +1+3y +2+3z +3≤33. 当且仅当x =23,y =13,z =0时取等号.(2)因为6=x +2y +3z ≤x 2+y 2+z 2·1+4+9,所以x 2+y 2+z 2≥187,当且仅当x =y 2=z 3即x =37,y =67,z =97时,x 2+y 2+z 2有最小值187.(1)使用柯西不等式证明不等式的关键是恰当变形,化为符合它的结构形式,当一个式子与柯西不等式的左边或右边具有一致形式时,就可使用柯西不等式进行证明.(2)利用柯西不等式求最值的一般结构为:(a 21+a 22+…+a 2n )(1a 21+1a 22+…+1a 2n )≥(1+1+…+1)2=n 2.在使用柯西不等式时,要注意右边为常数且应注意等号成立的条件.[通关练习]1.设x ,y ,z ∈R ,x 2+y 2+z 2=25,试求x -2y +2z 的最大值与最小值. 解: 根据柯西不等式,有(1·x -2·y +2·z )2≤[12+(-2)2+22](x 2+y 2+z 2), 即(x -2y +2z )2≤9×25, 所以-15≤x -2y +2z ≤15,故x -2y +2z 的最大值为15,最小值为-15.2.已知大于1的正数x ,y ,z 满足x +y +z =33.求证:x 2x +2y +3z +y 2y +2z +3x +z 2z +2x +3y ≥32.证明: 由柯西不等式及题意得,⎝ ⎛⎭⎪⎫x 2x +2y +3z +y 2y +2z +3x +z 2z +2x +3y ·[(x +2y +3z )+(y +2z +3x )+(z +2x +3y )]≥(x +y +z )2=27.又(x +2y +3z )+(y +2z +3x )+(z +2x +3y )=6(x +y +z )=183, 所以x 2x +2y +3z +y 2y +2z +3x +z 2z +2x +3y ≥27183=32,当且仅当x =y =z =3时,等号成立.排序不等式的应用[学生用书P226][典例引领]设a ,b ,c 为任意正数,求a b +c +b c +a +c a +b的最小值. 【证明】 不妨设a ≥b ≥c ,则a +b ≥a +c ≥b +c ,1b +c ≥1c +a ≥1a +b ,由排序不等式得,ab +c +b c +a +c a +b ≥b b +c +c c +a +a a +b , a b +c +b c +a +c a +b ≥c b +c +a c +a +b a +b , 上述两式相加得:2⎝ ⎛⎭⎪⎫a b +c +b c +a +c a +b ≥3, 即ab +c +b c +a +c a +b ≥32. 当且仅当a =b =c 时, ab +c +b c +a +c a +b 取最小值32.求最小(大)值时,往往所给式子是顺(反)序和式.然后利用顺(反)序和不小(大)于乱序和的原理构造出适当的一个或两个乱序和,从而求出其最小(大)值.[通关练习]设0<a ≤b ≤c 且abc =1.试求1a 3(b +c )+1b 3(a +c )+1c 3(a +b )的最小值.解: 令S =1a 3(b +c )+1b 3(a +c )+1c 3(a +b ),则S =(abc )2a 3(b +c )+(abc )2b 3(a +c )+(abc )2c 3(a +b )=bca (b +c )·bc +ac b (a +c )·ac +abc (a +b )·ab .由已知可得:1a (b +c )≥1b (a +c )≥1c (a +b ),ab ≤ac ≤bc .所以S ≥bc a (b +c )·ac +ac b (a +c )·ab +abc (a +b )·bc=ca (b +c )+a b (a +c )+bc (a +b ).又S ≥bc a (b +c )·ab +ac b (a +c )·bc +abc (a +b )·ac=ba (b +c )+c b (a +c )+ac (a +b ),两式相加得:2S ≥1a +1b +1c ≥331abc=3.所以S ≥32,即1a 3(b +c )+1b 3(a +c )+1c 3(a +b )的最小值为32.证明不等式的常用方法与技巧(1)如果已知条件与待证明的结论直接联系不明显,可考虑用分析法;如果待证的命题以“至少”“至多”等方式给出或否定性命题、唯一性命题,则考虑用反证法;如果待证不等式与自然数有关,则考虑用数学归纳法等.(2)在必要的情况下,可能还需要使用换元法、构造法等技巧简化对问题的表述和证明.尤其是对含绝对值不等式的解法或证明,其简化的基本思路是去绝对值号,转化为常见的不等式(组)求解.多以绝对值的几何意义或“找零点、分区间、逐个解、并起来”为简化策略,而绝对值三角不等式,往往作为不等式放缩的依据.证明不等式需要注意的2个问题(1)在使用基本不等式时,等号成立的条件是一直要注意的事情,特别是连续使用时,要分析每次使用时等号是否成立.(2)柯西不等式使用的关键是出现其结构形式,也要注意等号成立的条件.[学生用书P353(单独成册)]1.(2018·长春质量检测(二))(1)如果关于x 的不等式|x +1|+|x -5|≤m 的解集不是空集,求实数m 的取值范围;(2)若a ,b 均为正数,求证:a a b b ≥a b b a .解:(1)令y =|x +1|+|x -5|=⎩⎪⎨⎪⎧-2x +4,x ≤-16,-1<x <52x -4,x ≥5,可知|x +1|+|x -5|≥6,故要使不等式|x +1|+|x -5|≤m 的解集不是空集,只需m ≥6.(2)证明:因为a ,b 均为正数,所以要证a a b b ≥a b b a ,只需证a a -b b b -a ≥1,即证(a b )a -b ≥1,当a ≥b 时,a -b ≥0,a b ≥1,可得(ab )a -b ≥1;当a <b 时,a -b <0,0<a b <1,可得(a b )a -b >1,故a ,b 均为正数时,(ab )a -b ≥1,当且仅当a =b 时等号成立,故a a b b≥a b b a 成立.2.(2018·湘中名校联考)已知关于x 的不等式|x +a |<b 的解集为{x |2<x <4}. (1)求实数a ,b 的值;(2)求at +12+3bt 的最大值.解:(1)由|x +a |<b ,可得-b -a <x <b -a , 所以-b -a =2且b -a =4.解得a =-3,b =1. (2)利用柯西不等式,可得-3t +12+3t =3(4-t +t )≤3(1+1)(4-t +t )=6×4-t +t =26,当且仅当t =4-t ,即t =2时等号成立.当t =2时,at +12+3bt 的最大值为26.3.已知实数a ,b ,c ,d 满足a >b >c >d ,求证:1a -b +1b -c +1c -d ≥9a -d. 证明: 法一:因为⎝ ⎛⎭⎪⎫1a -b +1b -c +1c -d (a -d )=⎝ ⎛⎭⎪⎫1a -b +1b -c +1c -d [(a -b )+(b -c )+(c -d )] ≥331a -b ·1b -c ·1c -d ·33(a -b )(b -c )(c -d )=9, 当且仅当a -b =b -c =c -d 时取等号,所以1a -b +1b -c +1c -d ≥9a -d. 法二:因为⎝ ⎛⎭⎪⎫1a -b +1b -c +1c -d (a -d ) =⎝ ⎛⎭⎪⎫1a -b +1b -c +1c -d [(a -b )+(b -c )+(c -d )] ≥⎝ ⎛⎭⎪⎫ 1a -b ·a -b +1b -c ·b -c +1c -d ·c -d 2=9, 当且仅当a -b =b -c =c -d 时取等号,所以1a -b +1b -c +1c -d ≥9a -d. 4.设a ,b ,c >0,且ab +bc +ca =1.求证:(1)a +b +c ≥3;(2)a bc +b ac +c ab≥3(a +b +c ). 证明:(1)要证a +b +c ≥3;由于a ,b ,c >0,因此只需证明(a +b +c )2≥3.即证a 2+b 2+c 2+2(ab +bc +ca )≥3.而ab +bc +ca =1,故只需证明a 2+b 2+c 2+2(ab +bc +ca )≥3(ab +bc +ca ),即证a 2+b 2+c 2≥ab +bc +ca .而这可以由ab +bc +ca ≤a 2+b 22+b 2+c 22+c 2+a 22=a 2+b 2+c 2(当且仅当a =b =c 时等号成立)证得.所以原不等式成立.(2)a bc +b ac +c ab =a +b +c abc. 在(1)中已证a +b +c ≥3.因此要证原不等式成立,只需证明1abc ≥a +b +c , 即证a bc +b ac +c ab ≤1,即证a bc +b ac +c ab ≤ab +bc +ca .而a bc =ab ·ac ≤ab +ac 2, b ac ≤ab +bc 2,c ab ≤bc +ac 2, 所以a bc +b ac +c ab ≤ab +bc +ca .(当且仅当a =b =c =33时等号成立) 所以原不等式成立.1.求证:112+122+132+ (1)2<2. 证明:因为1n 2<1n (n -1)=1n -1-1n, 所以112+122+132+…+1n 2<1+11×2+12×3+13×4+…+1(n -1)×n=1+⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1-1n =2-1n <2. 2.(2018·成都第二次诊断性检测)(1)求证:a 2+b 2+3≥ab +3(a +b );(2)已知a ,b ,c 均为实数,且a =x 2+2y +π2,b =y 2+2z +π3,c =z 2+2x +π6,求证:a ,b ,c 中至少有一个大于0.证明:(1)因为a 2+b 2≥2ab ,a 2+3≥23a ,b 2+3≥23b ,将此三式相加得2(a 2+b 2+3)≥2ab +23a +23b ,所以a 2+b 2+3≥ab +3(a +b ).(2)假设a ,b ,c 都不大于0,即a ≤0,b ≤0,c ≤0,则a +b +c ≤0,因为a =x 2+2y +π2,b =y 2+2z +π3,c =z 2+2x +π6, 所以a +b +c =(x 2+2y +π2)+(y 2+2z +π3)+(z 2+2x +π6)=(x +1)2+(y +1)2+(z +1)2+π-3>0,即a +b +c >0与a +b +c ≤0矛盾,故假设错误,原命题成立,即a , b ,c 中至少有一个大于0.3.设a ,b ,c ,d 均为正数,且a +b =c +d ,证明:(1)若ab >cd ,则a +b >c +d ; (2)a +b >c +d 是|a -b |<|c -d |的充要条件.证明:(1)因为(a +b )2=a +b +2ab , (c +d )2=c +d +2cd ,由题设a +b =c +d ,ab >cd ,得(a +b )2>(c +d )2. 因此a +b >c +d .(2)①若|a -b |<|c -d |,则(a -b )2<(c -d )2,即(a +b )2-4ab <(c +d )2-4cd .因为a +b =c +d ,所以ab >cd .由(1),得a +b >c +d . ②若a +b >c +d ,则(a +b )2>(c +d )2,即a +b +2ab >c +d +2cd .因为a +b =c +d ,所以ab >cd .于是(a -b )2=(a +b )2-4ab <(c +d )2-4cd =(c -d )2.因此|a -b |<|c -d |.综上,a +b > c +d 是|a -b |<|c -d |的充要条件.4.设不等式-2<|x -1|-|x +2|<0的解集为M ,a ,b ∈M .(1)证明:⎪⎪⎪⎪13a +16b <14.(2)比较|1-4ab |与2|a -b |的大小.解:(1)证明:记f (x )=|x -1|-|x +2|=⎩⎪⎨⎪⎧3,x ≤-2,-2x -1,-2<x ≤1,-3,x >1,由-2<-2x -1<0解得-12<x <12,即M =⎝⎛⎭⎫-12,12, 所以⎪⎪⎪⎪13a +16b ≤13|a |+16|b |<13×12+16×12=14. (2)由(1)得a 2<14,b 2<14,因为|1-4ab |2-4|a -b |2 =(1-8ab +16a 2b 2)-4(a 2-2ab +b 2)=(4a 2-1)(4b 2-1)>0,故|1-4ab |2>4|a -b |2,即|1-4ab |>2|a -b |.。
高考解答题专项五 圆锥曲线中的综合问题第1课时 定点与定值问题1.(2020全国Ⅰ,理20)已知A ,B 分别为椭圆E :x 2a 2+y 2=1(a>1)的左、右顶点,点G 为椭圆E 的上顶点,⃗AG ·⃗G B =8.点P 为直线x=6上的动点,PA 与椭圆E 的另一交点为C ,PB 与椭圆E 的另一交点为D.(1)求E 的方程;(2)证明:直线CD 过定点.2.(2021湖北十一校联考)已知动点P 在x 轴及其上方,且点P 到点F (0,1)的距离比到x 轴的距离大1.(1)求点P 的轨迹C 的方程;(2)若点Q 是直线y=x-4上任意一点,过点Q 作点P 的轨迹C 的两切线QA ,QB ,其中A ,B 为切点,试证明直线AB 恒过一定点,并求出该点的坐标.3.(2021湖南长郡中学模拟)设A ,B 为双曲线C :x 2a 2−y 2b 2=1(a>0,b>0)的左、右顶点,直线l 过右焦点F 且与双曲线C 的右支交于M ,N 两点,当直线l 垂直于x 轴时,△AMN 为等腰直角三角形.(1)求双曲线C 的离心率;(2)已知直线AM ,AN 分别交直线x=a 2于P ,Q 两点,当直线l 的倾斜角变化时,以线段PQ 为直径的圆是否过定点?若过定点,求出定点的坐标;若不过定点,请说明理由.4.(2021河南洛阳一模)设抛物线C:y2=2px(p>0)的焦点为F,点P(4,m)(m>0)是抛物线C上一点,且|PF|=5.(1)求抛物线C的方程;(2)过点Q(1,-4)的直线与抛物线C交于A,B两个不同的点(均与点P不重合),设直线PA,PB的斜率分别为k1,k2,求证:k1k2为定值.5.(2021辽宁朝阳一模)已知双曲线C :x 2a 2−y 2b2=1(a>0,b>0)的焦距为2√5,且双曲线C 右支上一动点P (x 0,y 0)到两条渐近线l 1,l 2的距离之积为4b 25.(1)求双曲线C 的方程;(2)设直线l 是曲线C 在点P (x 0,y 0)处的切线,且直线l 分别交两条渐近线l 1,l 2于M ,N 两点,点O 为坐标原点,证明:△MON 面积为定值,并求出该定值.6.(2020山东,22)已知椭圆C :x 2a 2+y 2b 2=1(a>b>0)的离心率为√22,且过点A (2,1).(1)求椭圆C 的方程;(2)点M ,N 在椭圆C 上,且AM ⊥AN ,AD ⊥MN ,D 为垂足.证明:存在定点Q ,使得|DQ|为定值.高考解答题专项五 圆锥曲线中的综合问题第1课时 定点与定值问题1.(1)解由题可得A (-a ,0),B (a ,0),G (0,1),则⃗AG =(a ,1),⃗G B =(a ,-1).由⃗AG ·⃗G B =8得a 2-1=8,即a=3,所以E 的方程为x 29+y 2=1.(2)证明设C (x 1,y 1),D (x 2,y 2),P (6,t ).若t ≠0,设直线CD 的方程为x=my+n ,由题可知-3<n<3.因为直线PA 的方程为y=t 9(x+3),所以y 1=t 9(x 1+3).因为直线PB 的方程为y=t 3(x-3),所以y 2=t 3(x 2-3),所以3y 1(x 2-3)=y 2(x 1+3).因为x 229+y 22=1,所以y 22=-(x 2+3)(x 2-3)9,所以27y 1y 2=-(x 1+3)(x 2+3),即(27+m 2)y 1y 2+m (n+3)(y 1+y 2)+(n+3)2=0.①将x=my+n 代入x 29+y 2=1得(m 2+9)y 2+2mny+n 2-9=0.由题可知m 2+9≠0,Δ>0,所以y 1+y 2=-2mn m 2+9,y 1y 2=n 2-9m 2+9,代入①式得(27+m 2)(n 2-9)-2m (n+3)mn+(n+3)2·(m 2+9)=0.解得n=-3(舍去)或n=32,故直线CD的方程为x=my+32,即直线CD过定点(32,0).若t=0,则直线CD的方程为y=0,过点(32,0).综上,直线CD过定点(32,0).2.解(1)设点P(x,y),则|PF|=|y|+1,即√x2+(y-1)2=|y|+1,∴x2=2|y|+2y.∵y≥0,∴x2=4y,∴点P的轨迹C的方程为x2=4y.(2)∵y=14x2,∴y'=12x.设切点(x0,y0),则过该切点的切线的斜率为12x0,∴切线方程为y-y0=12x0(x-x0)=12x0x-12x2=12x0x-2y0,即x0x-2y-2y0=0.设Q(t,t-4).∵切线过点Q,∴tx0-2y0-2(t-4)=0.设A(x1,y1),B(x2,y2),则两切线方程是tx1-2y1-2(t-4)=0与tx2-2y2-2(t-4)=0,∴直线AB的方程是tx-2y-2(t-4)=0,即t(x-2)+8-2y=0,∴对任意实数t,直线AB恒过定点,定点坐标为(2,4).3.解(1)由直线l垂直于x轴时,△AMN为等腰直角三角形,得|AF|=|NF|=|MF|,所以a+c=b2a,即c2-ac-2a2=0,所以e2-e-2=0.又e>1,所以e=2.(2)因为e=c a =2,所以双曲线C :x 2a 2−y 23a2=1.由题可知直线l 的斜率不为0,设直线l :x=my+2a ,M (x 1,y 1),N (x 2,y 2).联立{x =my +2a ,x 2a 2-y 23a2=1,得(3m 2-1)y 2+12amy+9a 2=0,因为3m 2-1≠0,Δ=144a 2m 2-36a 2(3m 2-1)=36a 2m 2+36a 2>0,所以y 1+y 2=-12am 3m 2-1,y 1y 2=9a 23m 2-1,①所以x 1+x 2=m (y 1+y 2)+4a=-4a 3m 2-1,②x 1x 2=m 2y 1y 2+2am (y 1+y 2)+4a 2=-3a 2m 2-4a 23m 2-1.③设直线AM :y=y 1x 1+a (x+a ),直线AN :y=y2x 2+a(x+a ).令x=a2,则P(a 2,3a y 12(x 1+a )),Q (a 2,3a y 22(x 2+a )).设点G (x ,y )是以线段PQ 为直径的圆上的任意一点,则⃗P G ·⃗Q G=0,所以圆的方程为(x -a 2)2+y-3a y 12(x 1+a)y-3a y 22(x 2+a)=0.由对称性可知,若存在定点,则一定在x 轴上.令y=0,得(x -a 2)2+3a y 12(x 1+a )·3a y 22(x 2+a )=0,即(x -a2)2+9a 2y 1y 24[x 1x 2+a (x 1+x 2)+a 2]=0.将①②③代入,可得(x -a2)2+9a 2·9a 23m 2-14(-3a 2m 2-4a 23m 2-1+a ·-4a 3m 2-1+a2)=0,即(x -a 2)2=94a 2,解得x=-a 或x=2a ,所以以线段PQ 为直径的圆过定点(-a ,0),(2a ,0).4.(1)解∵点P (4,m )(m>0)是抛物线C 上一点,且|PF|=5,∴p 2+4=5,∴p=2,∴抛物线C 的方程为y 2=4x.(2)证明∵点P (4,m )(m>0)是抛物线C 上一点,∴m=4,即P (4,4).由题可知直线AB 的斜率不为零,故设直线的方程为x-1=t (y+4),A (x 1,y 1),B (x 2,y 2).联立{x -1=t (y +4),y 2=4x ,得y 2-4ty-16t-4=0.∵Δ=16t 2+4(16t+4)>0,∴y 1+y 2=4t ,y 1y 2=-16t-4,∴k 1k 2=y 1-4x 1-4·y 2-4x 2-4=y 1-4y 124-4·y 2-4y 224-4=16(y 1+4)(y 2+4)=16y 1y 2+4(y 1+y 2)+16=16-16t -4+4×4t +16=43,∴k 1k 2为定值.5.(1)解由题可知,双曲线C :x 2a 2−y 2b 2=1(a>0,b>0)的渐近线方程为bx+ay=0和bx-ay=0.∵动点P (x 0,y 0)到两条渐近线l 1,l 2√22√22|b 2x 02-a 2y 02|a 2+b 2=a 2b 2a 2+b 2,∴4b 25=a 2b 2a 2+b 2,即a 2=4b 2.又2c=2√5,即c 2=a 2+b 2=5,∴a=2,b=1,∴双曲线的方程为x 24-y 2=1.(2)证明设直线l 的方程为y=kx+m ,与双曲线的方程x 2-4y 2=4联立,得(4k 2-1)x 2+8kmx+4m 2+4=0.∵直线与双曲线的右支相切,∴Δ=(8km )2-4(4k 2-1)(4m 2+4)=0,∴4k 2=m 2+1.设直线l 与x 轴交于点D ,则D (-m k ,0),∴S △MON =S △MOD +S △NOD =12|OD||y M -y N |=12|m k||k||x M -x N |=|m 2||x M -x N |.又双曲线的渐近线方程为y=±12x ,联立{y =12x ,y =kx +m ,得M 2m 1-2k ,m 1-2k.同理可得N (-2m 1+2k ,m 1+2k ),∴S △MON =|m 2|2m 1+2k +2m1-2k =|m 2||4m 1-4k 2|=2m 2m2=2.∴△MON 面积为定值2.6.解(1)由题可得4a 2+1b 2=1,a 2-b 2a 2=12,解得a 2=6,b 2=3,所以椭圆C 的方程为x 26+y 23=1.(2)设M (x 1,y 1),N (x 2,y 2).若直线MN 与x 轴不垂直,设直线MN 的方程为y=kx+m ,代入x 26+y 23=1得(1+2k 2)x 2+4kmx+2m 2-6=0.由题可知1+2k 2≠0,Δ>0,所以x 1+x 2=-4km 1+2k 2,x 1x 2=2m 2-61+2k2.①由AM ⊥AN 知⃗AM ·⃗AN =0,故(x 1-2)(x 2-2)+(y 1-1)(y 2-1)=0,可得(k 2+1)x 1x 2+(km-k-2)(x 1+x 2)+(m-1)2+4=0.整理得(2k+3m+1)(2k+m-1)=0.因为点A(2,1)不在直线MN上,所以2k+m-1≠0,故2k+3m+1=0,k≠1.于是MN的方程为y=k(x-23)−13(k≠1),所以直线MN过点P(23,-13).若直线MN与x轴垂直,可得N(x1,-y1).由⃗AM·⃗AN=0得(x1-2)(x1-2)+(y1-1)(-y1-1)=0.又x126+y123=1,所以3x12-8x1+4=0,解得x1=2(舍去),x1=23,此时直线MN过点P(23,-13).令点Q为AP的中点,即Q(43,13).若点D与点P不重合,则由题可知线段AP是Rt△ADP的斜边,故|DQ|=12|AP|=2√23.若点D与点P重合,则|DQ|=12|AP|.综上,存在点Q(43,13),使得|DQ|为定值.。
课时(kèshí)作业(五)一、选择题1.函数(hánshù)y =x 2-6x +10在区间(qū jiān)(2,4)上是( ) A .递减(dìjiǎn)函数 B .递增函数 C .先减后增 D .先增后减答案 C解析 对称轴为x =3,函数在(2,3]上为减函数,在[3,4)上为增函数. 2.以下函数f (x )中,满足“对任意x 1,x 2∈(0,+∞),都有f x 2-f x 1x 2-x 1<0”的是( )A .f (x )=1xB .f (x )=(x -1)2C .f (x )=e xD .f (x )=ln(x +1)答案 A 解析 满足f x 2-f x 1x 2-x 1<0其实就是f (x )在(0,+∞)上为减函数,应选A.3.假设f (x )=x 2+2(a -1)x +2在区间(-∞,4)上是减函数,那么实数a 的取值范围是( )A .a <-3B .a ≤-3C .a >-3D .a ≥-3答案 B解析 对称轴x =1-a ≥4.∴a ≤-3.4.以下函数中既是偶函数,又是区间[-1,0]上的减函数的是( ) A .y =cos x B .y =-|x -1| C .y =ln 2-x2+xD .y =e x+e -x答案 D5.函数(hánshù)y =log a (x 2+2x -3),当x =2时,y >0,那么此函数的单调递减(dìjiǎn)区间是( )A .(-∞,-3)B .(1,+∞)C .(-∞,-1)D .(-1,+∞)答案(dá àn) A解析(jiě xī) 当x =2时,y =log a (22+2·2-3) ∴y =log a 5>0,∴a >1 由复合函数单调性知单减区间须满足⎩⎪⎨⎪⎧x 2+2x -3>0x <-1,解之得x <-3.6.奇函数f (x )的定义域为(-∞,0)∪(0,+∞),且不等式f x 1-f x 2x 1-x 2>0对任意两个不相等的正实数x 1、x 2都成立.在以下不等式中,正确的选项是( )A .f (-5)>f (3)B .f (-5)<f (3)C .f (-3)>f (-5)D .f (-3)<f (-5)答案 C 解析 由f x 1-f x 2x 1-x 2>0对任意两个不相等的正实数x 1、x 2都成立,可知,f (x )在(0,+∞)上为增函数,又f (x )为奇函数,故f (x )在(-∞,0)上也为增函数,应选C.7.函数f (x )在区间(-2,3)上是增函数,那么y =f (x +5)的一个递增区间是( ) A .(3,8) B .(-7,-2) C .(-2,-3) D .(0,5)答案 B解析 令-2<x +5<3,得:-7<x <-2.8.(09·)函数f (x )=⎩⎪⎨⎪⎧x 2+4x ,x ≥0,4x -x 2,x <0.假设f (2-a 2)>f (a ),那么实数a 的取值范围是( )A .(-∞,-1)∪(2,+∞)B .(-1,2)C .(-2,1)D .(-∞,-2)∪(1,+∞) 答案(dá àn) C解析(jiě xī) y =x 2+4x =(x +2)2-4在[0,+∞)上单调(dāndiào)递增;y =-x 2+4x =-(x -2)2+4在(-∞,0)上单调(dāndiào)递增.又x 2+4x -(4x -x 2)=2x 2≥0,∴f (2-a 2)>f (a )⇒2-a 2>a ⇒a 2+a -2<0⇒-2<a <1,应选C.9.(2021·卷)给定函数①y =x 12;②y =log 12(x +1);③y =|x -1|;④y =2x +1,其中在区间(0,1)上单调递减的函数的序号是( )A .①②B .②③C .③④D .①④答案 B解析 ①是幂函数,其在(0,+∞)上为增函数,故此项不符合题意;②中的函数是由函数y =log 12x 向左平移1个单位而得到的,因原函数在(0,+∞)上为减函数,故此项符合题意;③中的函数图象是函数y =x -1的图象保存x 轴上方的局部,下方的图象翻折到x 轴上方而得到的,由其图象可知函数符合题意;④中的函数为指数函数,其底数大于1,故其在R 上单调递增,不符合题意,综上可知选择B.二、填空题 10.给出以下命题①y =1x在定义域内为减函数;②y =(x -1)2在(0,+∞)上是增函数;③y =-1x在(-∞,0)上为增函数;④y =kx 不是增函数就是(jiùshì)减函数. 其中错误(cuòwù)命题的个数有________. 答案(dá àn) 3解析(jiě xī) ①②④错误,其中④中假设k =0,那么命题不成立. 11.函数f (x )=|log a x |(0<a <1)的单调递增区间是________. 答案 [1,+∞) 解析 函数图象如图12.函数f (x )=-x 2+|x |的递减区间是________.答案 ⎣⎢⎡⎦⎥⎤-12,0与⎣⎢⎡⎭⎪⎫12,+∞ 解析 数形结合13.在给出的以下4个条件中,①⎩⎪⎨⎪⎧ 0<a <1x ∈-∞,0 ②⎩⎪⎨⎪⎧ 0<a <1x ∈0,+∞③⎩⎪⎨⎪⎧a >1a ∈-∞,0 ④⎩⎪⎨⎪⎧a >1x ∈0,+∞能使函数y =log a 1x2为单调递减函数的是________. (把你认为正确的条件编号都填上). 答案 ①④解析 利用复合函数的性质,①④正确.14.假设奇函数f (x )在(-∞,0]上单调递减,那么不等式f (lg x )+f (1)>0的解集是________.答案(dá àn) (0,110)解析(jiě xī) 因为f (x )为奇函数,所以(suǒyǐ)f (-x )=-f (x ),又因为(yīn wèi)f (x )在(-∞,0]上单调递减,所以f (x )在[0,+∞)上也为单调递减函数,所以函数f (x )在R 上为单调递减函数.不等式f (lg x )+f (1)>0可化为f (lg x )>-f (1)=f (-1),所以lg x <-1,解得0<x <110.三、解答题15.(2021·调研)f (x )=xx -a(x ≠a ).(1)假设a =-2,试证f (x )在(-∞,-2)内单调递增; (2)假设a >0且f (x )在(1,+∞)内单调递减,求a 的取值范围. 答案 (1)略 (2)0<a ≤1 解析 (1)证明 任设x 1<x 2<-2, 那么f (x 1)-f (x 2)=x 1x 1+2-x 2x 2+2=2x 1-x 2x 1+2x 2+2.∵(x 1+2)(x 2+2)>0,x 1-x 2<0,∴f (x 1)<f (x 2), ∴f (x )在(-∞,-2)内单调递增. (2)解 任设1<x 1<x 2,那么f (x 1)-f (x 2)=x 1x 1-a -x 2x 2-a =a x 2-x 1x 1-a x 2-a.∵a >0,x 2-x 1>0,∴要使f (x 1)-f (x 2)>0,只需(x 1-a )(x 2-a )>0恒成立,∴a ≤1. 综上所述知0<a ≤1.16.函数f (x )对任意的a 、b ∈R ,都有f (a +b )=f (a )+f (b )-1,并且当x >0时,f (x )>1.(1)求证:f (x )是R 上的增函数;(2)假设f (4)=5,解不等式f (3m 2-m -2)<3. 答案(dá àn) (1)略 (2){m |-1<m <43}解 (1)证明(zhèngmíng):设x 1,x 2∈R ,且x 1<x 2,那么(nà me)x 2-x 1>0,∴f (x 2-x 1)>1.f (x 2)-f (x 1)=f [(x 2-x 1)+x 1]-f (x 1)=f (x 2-x 1)+f (x 1)-1-f (x 1)=f (x 2-x 1)-1>0. ∴f (x 2)>f (x 1).即f (x )是R 上的增函数.(2)∵f (4)=f (2+2)=f (2)+f (2)-1=5, ∴f (2)=3,∴原不等式可化为f (3m 2-m -2)<f (2), ∵f (x )是R 上的增函数, ∴3m 2-m -2<2,解得-1<m <43,故m 的解集为{m |-1<m <43}.内容总结。
课时分层作业(五) 一元二次不等式及其解法一、选择题1.不等式(x -1)(2-x )≥0的解集为( ) A .{x |1≤x ≤2} B .{x |x ≤1或x ≥2} C .{x |1<x <2}D .{x |x <1或x >2}A [原不等式可化为(x -1)(x -2)≤0,解得1≤x ≤2,故选A .] 2.若0<m <1,则不等式x 2-⎝ ⎛⎭⎪⎫m +1m x +1<0的解集为( )A .⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪1m <x <mB .⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x >1m 或x <mC .⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x >m 或x <1mD .⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪m <x <1mD [不等式x 2-⎝ ⎛⎭⎪⎫m +1m x +1<0可化为(x -m )⎝ ⎛⎭⎪⎫x -1m <0,由0<m <1知m<1m ,因此原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪m <x <1m ,故选D .]3.若不等式ax 2+bx +2>0的解集为{x |-1<x <2},则不等式2x 2+bx +a >0的解集为( )A .⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <-1或x >12B .⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-1<x <12C .{x |-2<x <1}D .{x |x <-2或x >1}A[由题意知⎩⎪⎨⎪⎧-ba =-1+2,2a =-1×2,即⎩⎪⎨⎪⎧b a =-1,2a =-2,解得⎩⎪⎨⎪⎧a =-1,b =1,则不等式2x 2+bx +a >0,即为2x 2+x -1>0,解得x >12或x <-1,故选A .] 4.已知某产品的总成本y (万元)与产量x (台)之间的函数关系式是y =3 000+20x -0.1x 2,x ∈(0,240).若每台产品的售价为25万元,则生产者不亏本(销售收入不小于总成本)时的最低产量是( )A .100台B .120台C .150台D .180台C [由题设,产量为x 台时,总售价为25x 万元; 欲使生产者不亏本,必须满足总售价大于或等于总成本, 即25x ≥3 000+20x -0.1x 2,即0.1x 2+5x -3 000≥0,x 2+50x -30 000≥0, 解得x ≥150或x ≤-200(舍去).故欲使生产者不亏本,最低产量是150台.]5.若存在实数x ,使得不等式x 2-ax +1<0成立,则实数a 的取值范围是( )A .[-2,2]B .(-∞,-2]∪[2,+∞)C .(-2,2]D .(-∞,-2)∪(2,+∞)D [由题意知,当x ∈R 时,不等式x 2-ax +1<0有解,则Δ=a 2-4>0,解得a >2或a <-2.故选D .]6.关于x 的不等式x 2-(a +1)x +a <0的解集中恰有3个整数,则实数a 的取值范围是( )A .(4,5)B .(-3,-2)∪(4,5)C .(4,5]D .[-3,-2)∪(4,5]D [原不等式可化为(x -1)(x -a )<0,当a >1时,得1<x <a ,此时解集中的整数为2,3,4,则4<a ≤5;当a <1时,得a <x <1,此时解集中的整数为-2,-1,0,则-3≤a <-2,因此实数a 的取值范围是[-3,-2)∪(4,5].故选D .]二、填空题7.一元二次方程x 2-(k -2)x +k +1=0有一正一负实数根,则k 的取值范围是________.(-∞,-1) [由题意知k +1<0,即k <-1.]8.关于x 的不等式x 2+ax +a ≤1对一切x ∈(0,1)恒成立,则a 的取值范围为________.(-∞,0] [原不等式可化为x 2+ax +a -1≤0,设f (x )=x 2+ax +a -1, 由题意知⎩⎪⎨⎪⎧f (0)≤0,f (1)≤0,即⎩⎪⎨⎪⎧a -1≤0,2a ≤0,解得a ≤0.] 9.不等式2x +1<1的解集是________. {x |x >1或x <-1} [由2x +1<1得1-x x +1<0,原不等式可化为(x -1)(x +1)>0,解得x >1或x <-1.] 三、解答题10.已知f (x )=-3x 2+a (6-a )x +6. (1)解关于a 的不等式f (1)>0;(2)若不等式f (x )>b 的解集为(-1,3),求实数a ,b 的值.[解] (1)由题意知f (1)=-3+a (6-a )+6=-a 2+6a +3>0,即a 2-6a -3<0,解得3-23<a <3+23.所以不等式的解集为{a |3-23<a <3+23}.(2)∵f (x )>b 的解集为(-1,3),∴方程-3x 2+a (6-a )x +6-b =0的两根为-1,3,∴⎩⎨⎧(-1)+3=a (6-a )3,(-1)×3=-6-b 3,解得⎩⎪⎨⎪⎧a =3±3,b =-3.故a 的值为3±3,b 的值为-3.11.解不等式2x 2-3(1+a )x +6a >0(0<a <1). [解] Δ=9(1+a )2-48a =9a 2-30a +9=9(a -3)⎝ ⎛⎭⎪⎫a -13.(1)当13<a <1时,Δ<0,原不等式的解集为R .(2)当a =13时,原不等式为2x 2-4x +2>0,即(x -1)2>0,解得x ≠1,原不等式的解集为{x |x ≠1}.(3)当0<a <13时,Δ>0,方程2x 2-3(1+a )x +6a =0的两个根为x 1=3a +3-9a 2-30a +94,x 2=3a +3+9a 2-30a +94,因为x 2>x 1,所以原不等式的解集为 ⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ x >3a +3+9a 2-30a +94或x <3a +3-9a 2-30a +94. 综上所述:当0<a <13时,原不等式的解集为 ⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x >3a +3+9a 2-30a +94或x <3a +3-9a 2-30a +94当a =13时,原不等式的解集为{x |x ≠1}; 当13<a <1时,原不等式的解集为R .1.设函数f (x )=ax 2-2x +2,对任意的x ∈(1,4)都有f (x )>0,则实数a 的取值范围是( )A .[1,+∞)B .⎝ ⎛⎭⎪⎫12,1C .⎣⎢⎡⎭⎪⎫12,+∞D .⎝ ⎛⎭⎪⎫12,+∞D [∵对任意的x ∈(1,4),都有f (x )=ax 2-2x +2>0恒成立,∴a >2(x -1)x 2=2⎣⎢⎡⎦⎥⎤14-⎝ ⎛⎭⎪⎫1x -122,对任意的x ∈(1,4)恒成立,∵14<1x <1, ∴2⎣⎢⎡⎦⎥⎤14-⎝ ⎛⎭⎪⎫1x -122∈⎝ ⎛⎦⎥⎤0,12,∴实数a 的取值范围是⎝ ⎛⎭⎪⎫12,+∞.]2.若不等式x 2+ax -2>0在区间[1,5]上有解,则a 的取值范围是( ) A .⎝ ⎛⎭⎪⎫-235,+∞B .⎣⎢⎡⎦⎥⎤-235,1C .(1,+∞)D .⎝ ⎛⎦⎥⎤-∞,-235A [由题意知a >2x -x 在x ∈[1,5]时有解.又y =2x -x 在区间[1,5]上是减函数,则y ≥25-5=-235. 所以a >-235,故选A .]3.某商品每件成本价为80元,售价为100元,每天售出100件.若售价降低x 成(1成=10%),售出商品数量就增加85x 成.要求售价不能低于成本价.(1)设该商店一天的营业额为y 元,试求y 与x 之间的函数关系式y =f (x ),并写出定义域;(2)若要求该商品一天营业额至少为10 260元,求x 的取值范围. [解] (1)由题意得,y =100⎝ ⎛⎭⎪⎫1-x 10·100⎝ ⎛⎭⎪⎫1+850x .因为售价不能低于成本价, 所以100⎝ ⎛⎭⎪⎫1-x 10-80≥0,解得0≤x ≤2.所以y =f (x )=40(10-x )(25+4x ), 定义域为{x |0≤x ≤2}.(2)由题意得40(10-x )(25+4x )≥10 260, 化简得8x 2-30x +13≤0, 解得12≤x ≤134.所以x 的取值范围是⎣⎢⎡⎦⎥⎤12,2.。
课时作业(五) 函数的单调性与最值
A 级
1.函数y =(2k +1)x +b 在(-∞,+∞)上是减函数,则( ) A .k >1
2
B .k <1
2
C .k >-1
2
D .k <-1
2
2.(2012·广东卷)下列函数中,在区间(0,+∞)上为增函数的是( ) A .y =ln(x +2) B .y =-x +1 C .y =⎝⎛⎭⎫12x
D .y =x +1
x
3.关于函数y =-3
x 的单调性的叙述正确的是( )
A .在(-∞,0)上是递增的,在(0,+∞)上是递减的
B .在(-∞,0)∪(0,+∞)上递增
C .在[0,+∞)上递增
D .在(-∞,0)和(0,+∞)上都是递增的
4.(2012·青岛模拟)已知奇函数f (x )对任意的正实数x 1,x 2(x 1≠x 2),恒有(x 1-x 2)(f (x 1)-f (x 2))>0,则一定正确的是( )
A .f (4)>f (-6)
B .f (-4)<f (-6)
C .f (-4)>f (-6)
D .f (4)<f (-6)
5.已知函数f (x )=log 2x +11-x ,若x 1∈(1,2),x 2∈(2,+∞),则( )
A .f (x 1)<0,f (x 2)<0
B .f (x 1)<0,f (x 2)>0
C .f (x 1)>0,f (x 2)<0
D .f (x 1)>0,f (x 2)>0
6.函数f (x )=1
x -1
在[2,3]上的最小值为________最大值为________.
7.已知函数f (x )为R 上的减函数,若m <n ,则f (m )________f (n );若f (|x |)<f (1),则实数x 的取值范围是________.
8.函数y =-(x -3)|x |的递增区间是________.
9.函数f (x )=x +2x 在区间[0,4]上的最大值M 与最小值N 的和M +N =________. 10.已知函数f (x )=1a -1
x (a >0,x >0),
(1)求证:f (x )在(0,+∞)上是单调递增函数; (2)若f (x )在⎣⎡⎦⎤12,2上的值域是⎣⎡⎦⎤1
2,2,求a 的值.
11.已知函数f (x )=ax +1
x +2在区间(-2,+∞)上是递增的,求实数a 的取值范围.
B 级
1.“函数f (x )在[a ,b ]上为单调函数”是“函数f (x )在[a ,b ]上有最大值和最小值”的( )
A .充分不必要条件
B .必要不充分条件
C .充要条件
D .既不充分也不必要条件
2.若函数f (x )=a |x -b |+2在[0,+∞)上为增函数,则实数a 、b 的取值范围是________. 3.函数f (x )的定义域为(0,+∞),且对一切x >0,y >0都有f ⎝⎛⎭⎫x y =f (x )-f (y ),当x >1时,有f (x )>0.
(1)求f (1)的值;
(2)判断f (x )的单调性并加以证明; (3)若f (4)=2,求f (x )在[1,16]上的值域.
答案
课时作业(五) A 级
1.D 使y =(2k +1)x +b 在(-∞,+∞)上是减函数,则2k +1<0, 即k <-1
2
.
2.A 对于A 选项,可看成由函数y =ln u ,u =x +2复合而成,由于两函数都为增函数,单调性相同,所以函数y =ln(x +2)在(-2,+∞)上为增函数.B 、C 均为减函数.对于D 选项,y =x +1
x
在(-∞,-1),(1,+∞)上为增函数.
3.D 由于函数y =1
x 在(-∞,0)和(0,+∞)上是递减的,且-3<0,因此函数y =-3x 在
(-∞,0)和(0,+∞)上都是递增的,这里特别注意两区间之间只能用“和”或“,”,一定不能用“∪”.
4.C 由(x 1-x 2)(f (x 1)-f (x 2))>0知f (x )在(0,+∞)上递增, ∴f (4)<f (6)⇔f (-4)>f (-6).
5.B 函数f (x )=log 2x +1
1-x 在(1,+∞)上是增函数,而f (2)=0,所以当x 1∈(1,2)时,
有f (x 1)<f (2)=0;当x 2∈(2,+∞)时,有f (x 2)>f (2)=0.故选B.
6.解析: ∵f ′(x )=-1
(x -1)2
<0,∴f (x )在[2,3]上为减函数, ∴f (x )min =f (3)=13-1=12,f (x )max =12-1
=1. 答案: 1
2
1
7.解析: 由减函数的定义知,若m <n ,则f (m )>f (n ); 若f (|x |)<f (1),则|x |>1,得:x >1或x <-1. 答案: > {x |x >1或x <-1}
8.解析: y =-(x -3)|x |=⎩
⎪⎨⎪⎧
-x 2+3x (x >0),
x 2-3x (x ≤0).作出该函数的图像,
观察图像知递增区间为⎣⎡⎦
⎤0,3
2. 答案: ⎣⎡⎦
⎤0,3
2 9.解析: 令t =x ,则t ∈[0,2],于是y =t 2+2t =(t +1)2-1,显然它在t ∈[0,2]上是增函数,故t =2时,M =8;
t =0时N =0. ∴M +N =8.
答案: 8
10.解析: (1)证明:设x 2>x 1>0,则x 2-x 1>0,x 1x 2>0, ∵f (x 2)-f (x 1)=⎝⎛⎭⎫1a -1x 2
-⎝⎛⎭⎫
1a -1x 1
=1x 1-1x 2=x 2-x 1x 1x 2
>0, ∴f (x 2)>f (x 1),∴f (x )在(0,+∞)上是单调递增的.
(2)∵f (x )在⎣⎡⎦⎤12,2上的值域是⎣⎡⎦⎤12,2,又f (x )在⎣⎡⎦⎤1
2,2上单调递增, ∴f ⎝⎛⎭⎫12=12,f (2)=2.∴易得a =2
5
. 11.解析: f (x )=ax +1x +2=a (x +2)+1-2a x +2=1-2a x +2+a .
任取x 1,x 2∈(-2,+∞),且x 1<x 2, 则f (x 1)-f (x 2)=
1-2a x 1+2-1-2a x 2+2=(1-2a )(x 2-x 1)(x 1+2)(x 2+2)
. ∵函数f (x )=ax +1
x +2在区间(-2,+∞)上为增函数,
∴f (x 1)-f (x 2)<0.
∵x 2-x 1>0,x 1+2>0,x 2+2>0,∴1-2a <0,a >1
2,
即实数a 的取值范围是⎝⎛⎭
⎫1
2,+∞. B 级
1.A 若函数f (x )在[a ,b ]上为单调递增(减)函数,则在[a ,b ]上一定存在最小(大)值f (a ),最大(小)值f (b ),所以充分性满足;反之,不一定成立,如二次函数f (x )=x 2-2x +3在[0,2]存在最大值和最小值,但该函数在[0,2]不具有单调性,所以必要性不满足,即“函数f (x )在[a ,b ]上单调”是“函数f (x )在[a ,b ]上有最大值和最小值”的充分不必要条件.
2.解析: 要使f (x )在[0,+∞)上为增函数,则a >0且x -b ≥0恒成立,即b ≤x ,∴b ≤0. 答案: a >0且b ≤0
3.解析: (1)∵当x >0,y >0时,f ⎝⎛⎭⎫
x y =f (x )-f (y ), ∴令x =y >0,则f (1)=f (x )-f (x )=0. (2)设x 1,x 2∈(0,+∞),且x 1<x 2, 则f (x 2)-f (x 1)=f ⎝⎛⎭⎫x 2x 1
,
∵x 2>x 1>0.∴x 2
x 1
>1,∴f ⎝⎛⎭⎫x 2x 1>0. ∴f (x 2)>f (x 1),即f (x )在(0,+∞)上是增函数. (3)由(2)知f (x )在[1,16]上是增函数.
∴f (x )min =f (1)=0,f (x )max =f (16), ∵f (4)=2,由f ⎝⎛⎭⎫
x y =f (x )-f (y ),
知f ⎝⎛⎭⎫164=f (16)-f (4),∴f (16)=2f (4)=4, ∴f (x )在[1,16]上的值域为[0,4].。