拉伸法测杨氏模量
- 格式:ppt
- 大小:1.92 MB
- 文档页数:13
拉伸法测量金属丝的杨氏模量实验原理拉伸法测量金属丝的杨氏模量是一种常见的金属力学性质实验方法。
杨氏模量是特定物质在弹性变形的情况下表征其刚度的物理量。
该实验方法可以很好地了解金属材料在受到力引起的弹性变形时的性能。
以下是拉伸法测量金属丝的杨氏模量实验原理的详细介绍。
1. 实验材料和设备实验材料:金属丝样品、细密表、软尺、托盘、千分尺、滑轮和负载。
实验设备:万能材料试验机和电子天平。
2. 实验原理在拉伸实验中,断面积相同的样品材料被拉伸或挤压,以得出相对应的应力-应变关系。
应力是单位面积内的应力,通常用帕(Pa)表示,而应变是物体长度的相对变化量,通常用空间无量纲表示。
金属材料的杨氏模量可以通过以下公式计算:E = σ / ε,其中E是杨氏模量,σ是应力,ε是应变。
在金属拉伸试验中,应变可以容易地计算出来,因为拉伸物体时,其长度是由初始长度L进行变化的,并且拉伸的变化量d可以被直接测量。
此外,由于金属丝的横截面积可以被认为是恒定的,所以应力也可以由测量中施加的受力N / A(单位面积的负载)计算得出。
应变可以通过以下公式计算:ε = d / L,其中d是拉伸时金属丝长度的变化,而L 是金属丝初始的长度。
应力可以通过以下公式计算:σ = N / A,其中N是实验中施加的受力,而A是金属丝的截面积。
通过这些计算公式,可以得出金属丝样品的杨氏模量E。
此外,拉伸实验还可以通过施加不同大小的负载测量金属丝材料的最大拉伸强度,也可以得出金属样品材料的断裂伸长率和断裂强度,来计算材料的破断性能。
3. 实验步骤1) 将金属丝样品装入测试机,并将其夹紧在一个方向上以避免弯曲。
2) 通过细密表和软尺等测量元件测量金属丝的长度和直径,并计算其横截面积。
3) 在测试机的负载控制下施加一定的负载(例如50 N),使金属丝被拉伸或挤压。
4) 记录金属丝变形的长度,并计算出应变。
5) 通过读取测试机显示器上的内部传感器确定金属丝的负载荷。
拉伸法测金属丝杨氏模量实验数据及数据处理范例实验目的:
通过拉伸法测定金属丝的应变-应力关系,计算出其杨氏模量。
实验装置:
1.拉伸装置
2.千分尺
3.计时器
4.电子秤
5.砝码
实验步骤:
1.将金属丝从盒子中取出,用色布擦拭干净。
2.测量金属丝的直径,取5组数据。
3.挂上金属丝,调整砝码,使其自由悬挂。
5.将千分尺固定在金属丝上,并与拉伸装置连接。
6.千分尺的刻度盘上调整到零点,并记录下来。
7.每增加1kg的砝码,记录下金属丝的长度,直到金属丝拉断。
8.重复以上步骤,取5组数据。
数据处理:
1.计算平均直径d和平均长度l。
2.根据公式计算出金属丝的应变ε和应力σ。
3.画出应变-应力曲线,并计算出杨氏模量E。
范例:
1.直径:
2.长度:
平均直径:d=(0.254+0.251+0.253+0.252+0.250)÷5=0.252mm
平均长度:l=(119.2+118.9+119.4+119.1+119.0)÷5=119.12mm
应变ε=(L-L0)÷L0=(119.2-119.1)÷119.1=0.000840336
应力σ=mg÷A=1×9.8÷(π/4×0.252^2)=103.12MPa
结论:
通过本实验可以得出金属丝的杨氏模量为122658.1MPa,来评估金属丝的性能和用途,具有很高的实用价值。
拉伸法测杨氏模量实验报告一、实验目的1、学会用拉伸法测量金属丝的杨氏模量。
2、掌握用光杠杆放大法测量微小长度变化的原理和方法。
3、学会用逐差法处理实验数据。
二、实验原理杨氏模量是描述固体材料抵抗形变能力的物理量。
设一根粗细均匀的金属丝,长度为\(L\),横截面积为\(S\),受到沿长度方向的拉力\(F\)时,金属丝伸长了\(\Delta L\)。
根据胡克定律,在弹性限度内,应力\(F/S\)与应变\(\Delta L/L\)成正比,即:\\frac{F}{S} = E \times \frac{\Delta L}{L}\其中\(E\)就是杨氏模量。
本实验中,金属丝的横截面积\(S =\pi d^2/4\)(\(d\)为金属丝的直径)。
由于伸长量\(\Delta L\)很小,难以直接测量,我们采用光杠杆放大法来测量。
光杠杆装置由光杠杆镜、望远镜和标尺组成。
光杠杆镜的前脚放在固定平台上,后脚放在金属丝的夹具上。
当金属丝伸长或缩短\(\Delta L\)时,光杠杆镜后脚会随之升降\(\Delta n\),通过望远镜和标尺可以测量出\(\Delta n\)。
根据几何关系,有:\\frac{\Delta L}{b} =\frac{\Delta n}{D}\其中\(b\)为光杠杆后脚到前两脚连线的垂直距离,\(D\)为望远镜到光杠杆镜面的水平距离。
联立上述式子,可得杨氏模量的表达式为:\E =\frac{8FLD}{\pi d^2 b \Delta n}\三、实验仪器杨氏模量测定仪、光杠杆、望远镜、标尺、螺旋测微器、游标卡尺、砝码、米尺等。
四、实验步骤1、调节仪器调节杨氏模量测定仪底座的水平调节螺丝,使立柱铅直。
将光杠杆放在平台上,调节光杠杆平面镜的俯仰,使其镜面大致垂直。
调节望远镜,使其与光杠杆平面镜等高,并且能够清晰地看到平面镜中的标尺像。
2、测量金属丝的长度\(L\)用米尺测量金属丝的有效长度,测量多次取平均值。
拉伸法测杨氏模量实验报告拉伸法测杨氏模量实验报告引言:拉伸法是一种常用的实验方法,用于测量材料的力学性能参数,其中杨氏模量是描述材料刚度的重要指标。
本实验旨在通过拉伸试验,测量不同材料的杨氏模量,并探讨拉伸过程中的力学行为。
实验目的:1. 了解拉伸法测量杨氏模量的原理和方法;2. 学习使用拉伸试验机进行拉伸试验;3. 掌握数据处理和结果分析的方法。
实验原理:拉伸试验是通过施加拉力使试样延长,测量应力与应变的关系,从而得到材料的力学性能参数。
杨氏模量是材料在线性弹性阶段的应力与应变之比,可以用来描述材料的刚度。
实验步骤:1. 准备工作:根据实验要求选择不同材料的试样,并进行标记;2. 安装试样:将试样放入拉伸试验机夹具中,确保试样处于垂直状态;3. 设定试验参数:根据试样的特性和实验要求,设定拉伸速度、试验温度等参数;4. 开始试验:启动拉伸试验机,施加拉力使试样开始延长;5. 记录数据:在试验过程中,记录拉力和延长量的变化,并计算应力和应变;6. 终止试验:当试样断裂或达到设定的延长量时,停止试验;7. 数据处理:根据记录的数据,绘制应力-应变曲线,并计算杨氏模量;8. 结果分析:比较不同材料的杨氏模量,分析影响杨氏模量的因素。
实验结果与讨论:通过实验测量得到的应力-应变曲线可以反映材料的力学行为,其中线性部分的斜率即为杨氏模量。
根据实验数据计算得到的杨氏模量可以用来比较不同材料的刚度,从而评估其力学性能。
在实验过程中,我们发现杨氏模量与材料的组织结构、晶粒大小、温度等因素有关。
例如,金属材料的杨氏模量通常较高,而聚合物材料的杨氏模量较低。
此外,温度的变化也会影响材料的力学性能,通常情况下,温度升高会导致杨氏模量的降低。
实验总结:本实验通过拉伸法测量了不同材料的杨氏模量,并对实验结果进行了分析和讨论。
通过实验我们了解了拉伸法的原理和方法,掌握了数据处理和结果分析的技巧。
实验结果表明,杨氏模量是描述材料刚度的重要参数,对于材料的力学性能评估具有重要意义。
用拉伸法测杨氏模量实验报告1. 实验背景与目的咱们今天要聊的可是个很有趣的实验——用拉伸法测杨氏模量。
这可是物理学里的一项经典测试,听起来有点儿高大上,但其实也没那么复杂。
简单来说,杨氏模量就是用来描述材料弹性的一个参数。
打个比方,你拿着一根橡皮筋,拉它的时候它会变长,放手后又会弹回去。
杨氏模量就像是告诉你这根橡皮筋有多“坚韧”,拉得越长,它能“忍受”的压力就越大。
实验的目的是为了通过实际的拉伸实验来测量这个杨氏模量,从而了解材料的弹性特性。
是不是有点像探险,揭开材料弹性的神秘面纱呢?2. 实验准备与步骤2.1 实验器材与材料首先,咱们得准备好一些实验器材。
首先是拉伸机,这个大家可以想象成一台很牛的机器,能精准地拉伸材料。
然后是标准化的试样,比如钢丝、铝合金片,这些都是我们要测试的对象。
还需要一个测量装置,可以是精密的游标卡尺,或者更高大上的电子测量工具。
最后,记录数据的工具,比如笔记本、计算器等也少不了。
材料的选择可是至关重要的,不同的材料会有不同的杨氏模量,所以挑选材料时可得仔细点儿,别让它们在测试中搞什么“小动作”。
2.2 实验步骤实验的步骤其实也很有意思。
首先,你得把试样固定在拉伸机上,这就像是给材料系上安全带,准备开始“拉力测试”了。
然后慢慢增加拉伸的力量,这时候你会看到试样变得越来越长。
别急,慢慢来,别让它一瞬间被拉断了。
接着,记录下在不同拉力下试样的长度变化。
像做数学题一样,做好每一步的数据记录,确保没有遗漏。
最后,当试样被拉到一定程度时,它可能会断裂。
这个时候,你得小心翼翼地测量它断裂前后的长度变化,计算出杨氏模量的值。
3. 数据处理与结果分析3.1 数据处理数据处理是实验中很重要的一部分。
你得将记录的数据整理成表格,这样就能清晰地看到不同拉力下材料的伸长量了。
计算杨氏模量的公式是:( E =frac{sigma{varepsilon ),其中 (sigma) 是应力,(varepsilon) 是应变。
用拉伸法测量杨氏模量实验报告用拉伸法测量杨氏模量实验报告引言:杨氏模量是描述材料在拉伸过程中的刚度和弹性的重要物理量。
测量杨氏模量的方法有很多种,其中一种常用的方法是拉伸法。
本实验旨在通过拉伸法测量杨氏模量,并分析实验结果。
一、实验原理拉伸法测量杨氏模量是通过施加外力使试样发生拉伸变形,根据胡克定律建立拉伸应力与应变之间的关系,从而计算得到杨氏模量。
二、实验装置和材料实验装置包括拉伸试验机、试样夹具、测量仪器等。
材料为金属试样,如铜、铁等。
三、实验步骤1. 准备试样:选择合适的金属试样,并按照规定尺寸制作成标准形状。
2. 安装试样:将试样夹具固定在拉伸试验机上,并将试样夹紧。
3. 调整参数:根据试样的材料和尺寸,调整拉伸试验机的参数,如加载速度、加载范围等。
4. 开始实验:启动拉伸试验机,施加外力使试样发生拉伸变形,同时记录加载力和试样的伸长量。
5. 终止实验:当试样发生断裂或达到设定的加载范围时,停止拉伸试验机。
6. 数据处理:根据实验数据计算拉伸应力和应变,并绘制应力-应变曲线。
7. 计算杨氏模量:根据应力-应变曲线的斜率,计算得到杨氏模量。
四、实验结果与讨论根据实验数据计算得到的应力-应变曲线如下图所示:[插入应力-应变曲线图]从图中可以看出,应力与应变呈线性关系,符合胡克定律。
根据斜率计算得到的杨氏模量为XXX GPa。
通过实验结果可以看出,不同材料的杨氏模量是不同的,这是由于材料的结构和组成不同所致。
杨氏模量越大,材料的刚度越高,即材料越难发生弹性变形。
在工程和科学领域中,杨氏模量的测量对于材料的选择和设计具有重要意义。
五、实验误差分析在实验中,可能存在一些误差,影响了实验结果的准确性。
主要误差来源包括:1. 试样制备误差:试样的尺寸和形状可能存在一定的误差,影响了实际应力和应变的计算。
2. 试样夹具固定误差:试样夹具的固定可能存在一定的松动,导致实验过程中试样的位移不准确。
3. 测量仪器误差:测量仪器的精度和灵敏度可能存在一定的误差,影响了实验数据的准确性。
实验七拉伸法测量金属杨氏模量杨氏模量是描述固体材料抵抗形变能力的物理量。
当一条长度为L、截面积为S的金属丝在力F作用下伸长ΔL(为微小变化量)时,F/S叫应力,即金属丝单位截面积所受到的力;ΔL/L叫应变,即金属丝单位长度所对应的伸长量;应力与应变的比叫弹性模量。
杨氏模量(Young's modulus),又称拉伸模量(tensile modulus)是沿纵向的弹性模量(elastic modulus or modulus of elasticity)。
除了杨氏模量以外,弹性模量还包括体积模量(bulk modulus)和剪切模量(shear modulus)等。
杨氏模量是工程设计上选用材料时常需涉及的重要参数之一,一般只与材料的性质和温度有关,与其几何形状无关。
杨氏模量的大小标志了材料的刚性,杨氏模量越大,越不容易发生形变。
实验测定杨氏模量的方法很多,如拉伸法、弯曲法和振动法(前两种方法属静态法,后一种属动态法)。
本实验是用拉伸法测定金属丝的杨氏模量,它提供了测量微小长度的方法,既有光杠杆法,也有显微镜法。
显微镜测量基本分2种:目镜分化测量和软件测量。
实验仪器兼具光杠杆法和显微镜法两种功能,后者采用软件测量方式,两种方法相互独立,实验时既可只采用其中一种方法,也可两种方法同时采用。
实验目的1. 学会用拉伸法测量金属丝的杨氏模量2. 理解光杠杆法测量微小伸长量的原理实验仪器ZKY-YM-3双法杨氏模量测量仪,主要包括实验架、光杠杆组件(含望远镜)、数码显微组件,以及数字拉力计、长度测量工具(包括卷尺、游标卡尺、螺旋测微器)、安装有专业测量软件的计算机,如图1所示。
1. 实验架实验架是待测金属丝杨氏模量测量的主要平台。
金属丝一端穿过横梁被上夹头夹紧,另一端被下夹头夹紧,并与拉力传感器相连,拉力传感器再经螺栓穿过下台板与施力螺母相连。
施力螺母通过旋转方式加力。
拉力传感器输出拉力信号通过数字拉力计显示金属丝受到的拉力值。
用拉伸法测金属丝的杨氏模量报告杨氏模量是用来描述固体材料在受力时的弹性特性的重要参数,可以描述材料在受力时的抗拉能力和变形能力。
拉伸法是测量材料杨氏模量的常用方法之一,本报告将详细介绍使用拉伸法测量金属丝的杨氏模量的实验步骤、仪器设备、数据处理和结果分析等内容。
一、实验目的:本实验的目的是通过拉伸法测量金属丝的杨氏模量,从而了解金属丝的力学性质。
二、实验原理:拉伸法是测量杨氏模量的常用方法之一,基本原理是通过测量金属丝在受拉力作用下的变形量与受力的关系,得到杨氏模量。
三、实验仪器设备:1.金属丝样品(材料:金属丝);2.拉力机;3.游标卡尺等测量工具;4.外力计。
四、实验步骤:1.准备工作:a.将金属丝剪成合适的长度,并用离心机清洗干净;b.按照实验要求,在拉力机上安装好金属丝样品,并调整好拉力机的参数。
2.实验测量:a.测量金属丝样品的初始长度和直径,并记录测量结果;b.在拉力机上施加一个逐渐增大的拉力,记录拉力和相应的伸长量。
3.数据处理:a.根据实验测量结果,计算金属丝的应变(单位长度的伸长量),并绘制应变-应力图;b.根据应变-应力图中线性部分的斜率,计算金属丝的杨氏模量。
五、结果分析:根据实验测量的数据和计算结果,可以得到金属丝的杨氏模量。
根据实验测量的应变-应力图中线性部分的斜率,可以计算出杨氏模量的数值。
六、实验注意事项:1.实验过程中需要注意安全,避免发生意外情况;2.测量金属丝的长度和直径时,要使用合适的测量工具进行准确测量;3.在实验过程中需要仔细记录实验数据,并及时进行数据处理;4.在数据处理过程中需要注意计算的准确性和可靠性。
七、实验总结:通过本次实验,成功使用拉伸法测量了金属丝的杨氏模量。
实验过程中,需要仔细操作测量仪器和记录实验数据,以提高实验的准确性和可靠性。
本次实验的结果可用于研究金属丝的力学性质和应用等方面,对进一步了解材料的性能和特性具有重要意义。