二元一次方程拓展
- 格式:doc
- 大小:233.00 KB
- 文档页数:5
拓展:方程组的行列式解法
一、二元一次方程组的行列式解法
1.设二元一次方程组
111222,,a x b y c a x b y c +=⎧⎨+=⎩其中a 1、a 2、b 1、b 2 是系数且不全为零,c 1、c 2 是常数项。
通过消元得到x y
D x D D y D ⋅=⎧⎨⋅=⎩
则0D ≠时,.x y D x D D y D
⎧=⎪⎪⎨⎪=⎪⎩ 2.设三元一次方程组111122223
333,,,a x b y c z d a x b y c z d a x b y c z d ++=⎧⎪++=⎨⎪++=⎩(B )
其中x 、y 、z 是未知数,a 1、a 2、a 3、b 1、b 2、b 3、c 1、c 2、c 3是未知数的系数且不全为零,d 1、d 2、d 3是常数项,那么如何通过行列式来求解?
二、三元一次方程组的行列式解法
1.通过加减消元法可将三元一次方程组(B )转化为方程组,,.
x y z D x D D y D D z D ⎧⋅=⎪⋅=⎨⎪⋅=⎩
当0D ≠时,方程组(B )的解为 ,,.x y z D x D D y D D z D ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩
2.上述解法中的D ,x D 、y D 、z D 分别指哪些行列式?
3.对解法加以简单证明
4.三元一次方程组(B )有唯一解的条件是什么?。
二元一次方程——拓展方程应用能力的教案拓展方程应用能力的教案一、教学目标1.理解二元一次方程基本性质,掌握解二元一次方程的方法。
2.了解方程在实际问题中的应用,拓展方程应用能力。
3.培养学生分析问题和解决问题的能力。
4.培养学生的合作学习和自主学习能力。
二、教学重难点1.二元一次方程的解法。
2.如何将实际问题转化成方程。
3.如何应用方程解决实际问题。
三、教学内容和过程1、引入新知识观察下面的问题:(1)两个相遇的火车,分别从相距800km的两地相向而行。
两车相遇时,两车同时停车。
此时,两车距离出发地点各为多少公里?(2)有两个简单的数学题,其中第一个数是第二个数的三倍。
如果两个数的和是24,那么这两个数各是多少?(3)小明拿500元钱去商场购物,他买了3件衣服和4件裤子,每件衣服的价格是x元,每件裤子的价格是y元,已知他还有200元钱。
求x,y的解。
请大家思考上述问题的解法。
你们的解法是什么?是否存在更简单有效的方法?如何将这些实际问题转化成方程解决呢?接下来我们一起来学习解决这些问题的方法。
2、学习解题方法将问题转化成方程是解决实际问题的常用方法,而二元一次方程是解决实际问题的一种重要工具。
我们来看下面的例子:(1)两个相遇的火车,分别从相距800km的两地相向而行。
两车相遇时,两车同时停车。
此时,两车距离出发地点各为多少公里?解法:设两车分别行驶x、y公里,则x+y=800;因为两车的速度相同,所以两车走相同的时间,设时间为t,则x=vt,y=vt。
在两车相遇时,两车同时停车,所以x+y=800和x+y=2vt。
将x+y=800带入x+y=2vt中,得到800=2vt,即400=vt。
将vt=400带入x+y=800中,则x+y=800,x=400,y=400。
(2)有两个简单的数学题,其中第一个数是第二个数的三倍。
如果两个数的和是24,那么这两个数各是多少?解法:设第二个数为x,则第一个数为3x。
⼆元⼀次⽅程组知识点整理、典型例题练习总结⼆元⼀次⽅程组(拓展与提优)1、⼆元⼀次⽅程:含有两个未知数( x 和 y ),并且含有未知数の项の次数都是 1,像这样の整式⽅程叫做⼆元⼀次⽅程,它の⼀般形式是 ax by c(a 0,b 0).例 1、若⽅程( 2m-6)x|n|-1+(n+2)ym2-8=1是关于x 、yの⼆元⼀次⽅程,求 m 、n の值.2、⼆元⼀次⽅程の解:⼀般地,能够使⼆元⼀次⽅程の左右两边相等の两个未知数の值,叫做⼆元⼀次⽅程の解.【⼆元⼀次⽅程有⽆数组解】3、⼆元⼀次⽅程组:含有两个未知数( x 和 y ),并且含有未知数の项の次数都是 1,将这样の两个或⼏个⼀次⽅程合起来组成の⽅程组叫做⼆元⼀次⽅程组 .4、⼆元⼀次⽅程组の解:⼆元⼀次⽅程组中の⼏个⽅程の公共解,叫做⼆元⼀次⽅程组の解 . 【⼆元⼀次⽅程组解x y 1 x y 1x y 1 x y 1の情况:①⽆解,例如: x y 6,2x 2y 6;②有且只有⼀组解,例如: 2x y 2 ;③有⽆数组解,例如: 2x 2y 2】例 2、已知2x +(m -1)y =2nx+ y =1の解,试求(m+n ) 2016の值例 3、⽅程 x 3y 10 在正整数范围内有哪⼏组解?5、⼆元⼀次⽅程组の解法:代⼊消元法和加减消元法。
例 4、将⽅程 10 2(3 y ) 3(2 x )变形,⽤含有 x の代数式表⽰ y .例 5、⽤适当の⽅法解⼆元⼀次⽅程组ax y 1例 6、若⽅程组有⽆数组解,则 a 、 b の值分别为()6x by 2B. a 2,b 1C.a=3,b=-2D. a 2 b, 2x2x 2是关于 x 、 y の⼆元⼀次⽅程组A. a=6,b=-1例 7、已知关于 x, y の⽅程组 3x 5y m 2の解满⾜ x y 10,求式⼦ m 2 2m 1の值. 2x 3y m6、三元⼀次⽅程组及其解法:⽅程组中⼀共含有三个未知数,含未知数の项の次数都是1,并且⽅程组中⼀共有两个或两个以上の⽅程,这样の⽅程组叫做三元⼀次⽅程组。
欧几里得算法与扩展欧几里得算法(求二元一次不定方程、乘法逆元)1.欧几里得算法,即辗转相除法。
用于求两个整数的最大公约数比较方便,时间复杂度为O(logN)N为两个整数的规模。
最大公约数,是能够同时被两个整数整除的最大整数。
比如说,求56和21的最大公约数:(每行数分别代表a=56,b=21,a%b)此时得到最大公约数为7。
递归代码如下:int gcd(int a, int b)return b ? gcd(b, a%b) : a;2.扩展欧几里得算法顾名思义,扩展欧几里得算法就是对欧几里得算法的扩展,可以应用于求二元一次方程的通解、乘法逆元等。
对于上面的欧几里得算法,当递归到出口时,a=7,b=0。
很容易就可以得到一组ax+by=7的解:x=1,y=0。
那么如何通过7x+y=7的解逆推出56x+21y=7的解呢?对于欧几里得算法的每一个状态,都存在ax+by=gcd(a,b)的解,我们假设有这样两组解(且他们为相邻状态):ax1+by1=gcd(a,b)a'x2+b'y2=gcd(a',b')那么可以知道:a'=b b'=a%b 且gcd(a',b')=gcd(b,a%b)=gcd(a,b),所以有ax1+by1=bx2+(a%b)y2 另a%b可写为 a-a-b所以有 ax1+by1=bx2+(a-(a-b)b)y2故ax1+by1=ay2+bx2+(a-b)by2故ax1=ay2 by1 = b(x2+ (a-b)by2)故 x1=y2 y1 = x2 +(a-b)y2故可以得到x1,y1与x2,y2的关系 : x1=y2 y1 = x2 +(a-b)y2我们已知的是最后一组解,那么就要根据最后一组解逆推上去,就可以得到ax+by=gcd(a,b)的一组解了。
代码如下:int exgcd(int a, int b, intx, int y)return a;int r = exgcd(b, a%b, x, y); --递归到求出公约数,开始倒着求每一组的x,y。
谈谈二元一次方程组的解法
代入消元法和加减消元法是解二元一次方程组的主要方法,但对于某些特殊的二元一次方程组,常可以采取灵活的方法.
1.整代法
解:方程①可变形为
2(11x-10y)-y=87 ③
将方程②中的11x-10y整体代入③,得86-y=87,
∴y=-1,把y=-1代入②,
2.消项法
分析:因两方程中x的系数与常数项成比例,即5∶3=25∶15,因此可同时消去x和常数项.
解:①·3-②·5,得-14y=0,
∴y=0.将y=0代入①
3.比值法
9k+16k=25,∴k=1.
4.对称法
分析:观察方程组不难发现:把其中任意一个方程中的两个未知数互换位置,得到的方程恰为另一个方程.不难验证在这种情况下,将原方程组中任一方程与y=x联立求得的解即为原方程组的解,这种方法称为对称消元法.解:原方程组与下列方程组的解相同.
把②代入①,得x=35,
5.换元法
则原方程组可化为。
二元一次方程的应用题一、解答题1•某校组织“大手拉小手,义卖献爱心”活动,购买了黑白两种颜色的文化衫共140件, 进行手绘设计后了出售,所获利润全部捐给山区困难孩子. 每件文化衫的批发价和零售价如下表:假设文化衫全部售出,共获利I860元,求黑白两种文化衫各多少件?2.(列方程组解应用题)新新儿童服装店对“天使”牌服装进行调价,其中A型每件的价格上调了 10% , B型每件的价格下调了 5%,已知调价前买这两种服装各一件共花费 70元,调价后买3件A型服装和2件B型服装共花费175元,问这两种服装在调价前每件各多少元?3.2015年我区中小学生田径运动会于5月中旬在区体育中心举行,区内某中学组织180名七年级学生和 224名八年级学生参加开幕式的演出,其中表演队伍中八年级女生比七年级女生多24人,八年级男生是七年级男生的 1.2倍,为了接送这些学生与 31位带队老师,学校租用了 45座和60座的大客车一共9辆,并且刚好能坐满.45座大客车的租金是500元/辆,60座大客车的租金是 600元/辆.(1)求整个表演队伍中有女生,男生各多少人?2)租用了 45座,60座大客车各几辆,租车费用是多少元;(3)你能否找出更合算的租车方案来吗?如果没有,请说明理由;如果有,请你写出租车方案和租车费用.4.双十一期间,商场针对某品牌洗洁精和洗衣液推出如下两种促销套餐: 套餐一:3瓶洗洁精2袋洗衣液一组,总价为 60元;套餐二:4瓶洗洁精3袋洗衣液一组,总价为 85元,根据上述信息,分别求该品牌一瓶洗洁精和一袋洗衣液的售价.50台,正好用去90000元,150元,200元,250元,请5•某厂家生产三种不同型号的电视机, 甲,乙,丙出厂价分别为1500元,2100元,2500元.(1) 某商场同时从该厂购进其中两种不同型号的电视机共 可有几种进货方案(写出演算步骤)?(2) 若该商场销售甲、乙、丙种电视机每台可分别获利 你结合(1)的进货方案,如何进货可使销售时获利最多?6•为了响应“足球进校园”的目标,某校计划为学校足 球队购买一批足球,已知购买2个A 品牌的足球和3个 B 品牌的足球共需 380元;购买4个A 品牌的足球和2 个B 品牌的足球共需360元. (1 )求A ,B 两种品牌的足球的单价.(2)求该校购买20个A 品牌的足球和2个B 品牌的足球的总费用.7•某汽车专卖店销售 A 、B 两种型号的新能源汽车.上周售出1辆A 型车和3辆B 型车, 两种车型的销售总额为 96万元;本周销售2辆A 型车和1辆B 型车,两种车型的销 售总额为62万元,已知这两周两种型号汽车销售价格不变,求它们的销售单价.8•抗洪指挥部的一位驾驶员接到一个防洪的紧急任务,要在限定的时间内把一批抗洪物 质从物资局仓库运到水库•这辆车如果按每小时 30千米的速度行驶,在限定的时间内赶到水库,还差3千米,他决定以每小时40千米的速度前进,结果比限定时间早到 18 分钟•限定时间是几小时物资局仓库离水库有多远?9•某高校共有5个大餐厅和2个小餐厅.经过测试:同时开放1个大餐厅、2个小餐厅, 可供1680名学生就餐;同时开放 2个大餐厅、1个小餐厅,可供 2280名学生就餐. (1)求1个大餐厅、1个小餐厅分别可供多少名学生就餐; ⑵ 若7个餐厅同时开放,能否供全校的 5300名学生就餐?请说明理由.10•团体购买公园门票票价如下:今有甲、乙两个旅行团,已知甲团人数少于50人,乙团人数不超过100人•若分别购票,两团共计应付门票费 1392元,若合在一起作为一个团体购票,总计应付门票费1080 元.(1)请你判断乙团的人数是否也少于50人;⑵ 求甲、乙两旅行团各有多少人?11.福林制衣厂现有24名制作服装的工人,每天都制作某种品牌的衬衫和裤子,每人每天可制作这种衬衫 3件或裤子5条.(1)若该厂要求每天制作的衬衫和裤子数量相等,则应各安排多少人制作衬衫和裤子?(2)已知制作一件衬衫可获得利润30元,制作一条裤子可获得利润16元,若该厂要求每天获得利润2100元,则需要安排多少名工人制作衬衫?12.某地新建的一个企业,每月将生产1960吨污水,为保护环境,该企业计划购置污水处理器,并在如已知商家售出的 2台A型、3台B型污水处理器的总价为 44万元,售出的1台A型、 4台B型污水处理器的总价为 42万元.(1)求每台A型、B型污水处理器的价格;(2)为确保将每月产生的污水全部处理完,该企业决定购买上述的污水处理器,那么他们至少要支付多少钱?13.假如某市的出租车是这样收费的:起步价所包含的路程为0〜1.5千米,超过1.5千米的部分按每千米另收费.小刘说:“我乘出租车从市政府到娄底汽车站走了 4.5千米,付车费10.5元.”小李说:“我乘出租车从市政府到娄底汽车站走了 6.5千米,付车费14.5元.”问:(1)出租车的起步价是多少元?超过 1.5千米后每千米收费多少元?(2)小张乘坐出租车从汽车站到市政府走了10千米,应付车费多少元?14.某校准备组织七年级 400名学生参加夏令营,已知满员时,用3辆小客车和1辆大客车每次可运送学生 105人;用一辆小客车和 2辆大客车每次可运送学生110人.(1)1辆小客车和1辆大客车都坐满后一次可送多少名学生?(2)若学校计划租用小客车 a辆,大客车b辆,一次送完,且恰好每辆车都坐满;①请你设计出所有的租车方案;②若小客车每辆需租金 200兀,大客车每辆需租金 380兀,请选出最省钱的租车方案,并求出最少租金.15.春节期间,某商场计划购进甲、乙两种商品,已知购进甲商品2件和乙商品3件共需270元;购进甲商品3件和乙商品2件共需230元.(1)求甲、乙两种商品每件的进价分别是多少元?(2)商场决定甲商品以每件 40元出售,乙商品以每件 90元出售,为满足市场需求,需购进甲、乙两种商品共100件,且甲种商品的数量不少于乙种商品数量的4倍,请你求出获利最大的进货方案,并求出最大利润.16.某制衣厂某车间计划用 10天加工一批出口童装和成人装共360件,该车间的加工能力是:每天能单独加工童装45件或成人装30件.(1)该车间应安排几天加工童装,几天加工成人装,才能如期完成任务?(2 )若加工童装一件可获利 80元,加工成人装一件可获利120元,那么该车间加工完这批服装后,共可获利多少元?17.某中学拟组织七年级师生去张家界森林公园春游•下面是李老师和小芳、小明同学有关租车问题的对话:李老师:“客运公司有 45座和33座两种型号的客车可供租用,45座客车每辆每天的租金比33座的贵200元.”小芳:“我们学校八年级师生昨天在这个客运公司租了4辆45座和2辆33座的客车到张家界森林公园春游,一天的租金共计4400元.”小明:“我们七年级师生租用6辆45座和2辆33座的客车正好坐满.”根据以上对话,解答下列问题:(1 )客运公司45座和33座的客车每辆每天的租金分别是多少元?(2)按小明提出的租车方案,七年级师生到该公司租车一天,共需租金多少元?18.某工程队承包了一段全长1957米的隧道工程,甲乙两个班组分别从南北两端同时掘进,已知甲组比乙组每天多掘进0.5米,经过6天施工,甲乙两组共掘进 57米,那么甲乙两个班组平均每天各掘进多少米?19.某校组织初二年级 400名学生到威海参加拓展训练活动,已知用3辆小客车和1辆大客车每次可运送学生 105人,用1辆小客车和2辆大客车每次可运送学生 110人.(1)每辆小客车和每辆大客车各能坐多少名学生?(2)若计划租小客车 m辆,大客车n辆,一次送完,且恰好每辆车都坐满:①请你设计出所有的租车方案;②若小客车每辆租金 250元,大客车每辆租金 350元,请选出最省线的租车方案,并求出最少租金.20.2012年12月1日,世界上第一条地处高寒地区的高铁线路--哈大高铁正式通车运营.哈大高铁列车共 8节车厢编组,可供511位乘客乘坐,每节一等座车厢有52个座位,每节二等座车厢有 80个座位,其中8号车厢和4号车厢均为二等座车厢, 8号车厢为观光车厢共 68个座位;4号车厢为方便残疾人使用而设置了一个超大卫生间,共71个座位;5号车厢是餐车.试求该列车一等车厢和二等车厢各有多少节?21.为了鼓励市民节约用水,某市居民生活用水按阶梯式水价计费,下表是该市居民“一户一表”生活用水阶梯式计费价格表的一部分信:(水价计费=自来水销售费用+污水处理费用)已知小王家2012年4月份用水20吨,交水费66元;5月份用水25吨,交水费91 元(1 )求a、b的值;(2) 6月份小王家用水 32吨,应交水费多少元.22.某商场新进一种服装,每套服装售价1000元,若将裤子降价10%,上衣涨价5% ,调价后这套服装的单价比原来提高了2%,这套服装原来裤子和上衣的单价分别是多少?套一居室,他准备将房子的地面铺上地砖,地面结构如图所示,根据图中所给的数据(单位:米),解答下列问题:(1)用含m,n的代数式表示地面的总面积S;(2)已知客厅面积是卫生间面积的 8倍,且卫生间、卧室、厨房面积的和比客厅还少 3平方米,如果铺1平方米地砖的平均费用为100元,那么小李铺地砖的总费用为多少元?24.两人骑自行车在400米环形跑道上用不变的速度行驶,当他们按相反的方向行驶时, 每20秒名相遇一次;若按同一方向行驶,那么每 100秒钟相遇一次,问两个的速度各是多少?25.某商场计划拨款9万元从厂家购进50台电视机,已知该厂家生产三种不同型号的电视机,出厂价分别为:甲种每台 1 500元,乙种每台2 100元,丙种每台2 500 元,若商场同时购进其中两种不同型号电视机共50台,用去9万元,请你研究一下商场的进货方案.26.有甲、乙两班学生,已知乙班比甲班少4人,如果从乙班调17人到甲班,那么甲班人数比乙班人数的 3倍还多2人,求甲、乙两班原来各有多少人.27.某数学兴趣小组研究我国古代《算法统宗》里这样一首诗:我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.诗中后两句的意思是:如果每一间客房住7人,那么有7人无房可住;如果每一间客房住 9人,那么就空出一间房.(1 )求该店有客房多少间?房客多少人?(2)假设店主李三公将客房进行改造后,房间数大大增加.每间客房收费20钱,且每间客房最多入住 4人,一次性定客房18间以上(含18间),房费按8折优惠.若诗中“众客”再次一起入住,他们如何订房更合算?28.某体育文化用品商店购进篮球和排球共30个,进价和售价如下表,全部销售完后共获利润660元.(1)请利用二元一次方程组求购进篮球和排球各多少个?2)销售8个篮球的利润与销售几个排球的利润相等?29.为了拉动内需,全国各地汽车购置税补贴活动在2009年正式开始,某经销商在政策出台前一个月共售出某品牌汽车的手动型和自动型共960台,政策出台后的第一个月售出这两种型号的汽车共1228台,其中手动型和自动型汽车的销售量分别比政策出台前一个月增长 30%和25% .(1)在政策出台前一个月,销售的手动型和自动型汽车分别为多少台?(2)若手动型汽车每台价格为 8万元,自动型汽车每台价格为9万元.根据汽车补贴政策,政府按每台汽车价格的5%给购买汽车的用户补贴,问政策出台后的第一个月,政府对这1228台汽车用户共补贴了多少万元?30.华华在A、B两家超市发现他看中的 MP3的单价相同,书包的单价也相同,这两件商品单价之和是 452元,且MP3的单价比书包的单价的 4倍少8元,(1)求华华看中的 MP3和书包的单价各是多少元?(2 )某一天华华上街,恰好赶上商家促销,超市A所有商品打八折销售,超市 B全场购物满100元返购物券30元销售(不足100元不返券,购物券全场通用,不兑现金),但他只带了 400元钱,在这两家超市,他能购买到这两件物品吗?如果两家超市都能买到,到哪一家买比较省钱?0 □礦式纸盒图乙二元一次方程应用题 2一、解答题1•平顶山市某中学举行“我爱中华”征文活动,七年级和八年级共收到征文118篇,且七年级收到的征文篇数是八年级收到的征文篇数的一半还少 2篇,求七年级和八年级各收到的征文有多少篇?2•某工厂用如图甲所示的长方形和正方形纸板,做成如图乙所示的竖式与横式两种无盖 的长方体纸盒.(长方形的宽与正方形的边长相等)(1 )现有正方形纸板 50张,长方形纸板100张,若要做竖式纸盒个 x,横式纸盒y 个.①根据题意,完成以下表格:竖式纸盒(个) 横式纸盒(个) xy正方形纸板(张) x长方形纸板(张)3y②若纸板全部用完,求 x 、y 的值;(2 )若有正方形纸板 90张,长方形纸板 a 张(a 是整数),做成上述两种纸盒,纸板 恰好全部用完.已知 164 v a v 174,求a 的值.3•全民健身和医疗保健是社会普遍关注的问题, 2014年,某社区共投入30万元用于购买健身器材和药品.2015年,该社区购买健身器材的费用比上一年增加50%,购买药品的费用比上一年减少,但社区在这两方面的总投入仍与2014年相同.(1 )求2014年社区购买药品的总费用; (2)据统计,2014年该社区积极健身的家庭达到 200户,社区用于这些家庭的药品费用明显减少,只占当年购买药品总费用的 .,与2014年相比,如果2015年社区内健 身家庭户数增加的百分比与平均每户健身家庭的药品费用降低的百分比均为 50%,那 么,2015年该社区用于健身家庭的药品费用就是当年购买健身器材费用的几分之几? 总费用是26.5每公顷费用(万兀) 每公顷获利(万兀)茄子 1.7 2.4 西红柿 1.8 2.6 4.去年春季,蔬菜种植场在15公顷的大棚地里分别种植了茄子和西红柿, 万元.其中,种植茄子和西红柿每公顷的费用和每公顷获利情况如表: 请解答下列问题: (1) 求出茄子和西红柿的种植面积各为多少公顷? (2) 种植场在这一季共获利多少万元? 5•大学生小王积极相应“自主创业”的号召, 准 备投资销售一种进价为每件 40元的小家电,通 过试营销发现,当销售单价在 40元至90元之 间(含40元和90元)时,每月的销售量y (件) 与销售单价x (元)之间满足等式 y=ax+b ,其 中a 、b 为常数. (1)根据图中提供的信息,求a 、b 的值; 2)求销售该款家电120件时所获利润是多少? (提示:利润=实际售价-进价)6•江堤边一洼地发生了管涌,江水不断地涌出,假定每分钟涌出的水量相等,如果用两台抽水机抽水,40分钟可抽完;如果用 4台抽水机抽水,16分钟可抽完,如果要在 10分钟内抽完水,那么至少需要抽水机多少台.(1999年全国初中数学联合竞赛试题)7•甲乙两地间的距离为 600千米,一辆客车从甲地出发前往乙地,同时一辆货车从乙地出发前往甲地,客车比货车平均每小时多行驶20千米,3小时后两车相遇,分别求客车、货车的速度.8•某景点的门票价格如下表:某校八年级(一)、(二)两班共102人去游览该景点,其中(一)班不足 50人,(二)班多于50人但不足60人,如果两班都以班为单位分别购票,则一共付款1118元.(1 )两班各有多少名学生?2)如果你是购票决策人,将如何购票能够省钱?可节省多少钱?9.解方程组(册+ 5y二15(1)甲由于看错了方程(1)中的a,得到方程组的解为卜二-3 ;(4x-4y= -2 ⑵”二-1乙看错了方程(2)中的b,得到方程组的解为_ :.求.—的值.ly = 410.甲、乙两人共同解方程组(Sx-ay = 16①由于甲同学看错了方程①中的a,得到方fix ^4y = l②程组的解为p = -4,乙看错了方程②中的 b,得到方程组的解为林=5 •请计算代数y = &=一9式 a2007 b2008的值.11.某牛奶加工厂现有鲜奶 9t,若在市场上直接销售鲜奶,每吨可获利润500元,制成酸奶销售,每吨可获利润 1 200元,制成奶片销售,每吨可获利 2 000元.该厂的生产能力是:如制成酸奶,每天可加工3t,制成奶片,每天可加工 1t,受人员限制,两种加工方式不可同时进行,受气温限制,这批牛奶需在4天内全部销售或加工完毕,为此,该厂设计了两种方案:方案一:尽可能多的制成奶片,其余鲜奶直接销售;方案二:一部分制成奶片,其余制成酸奶销售,并恰好4天完成.你认为选择哪种方案获利最多,为什么?12.某超市为“开业三周年”举行了店庆活动. 对A、B两种商品实行打折出售. 打折前,购买5件A商品和1件B商品需用84元;购买6件A商品和3件B商品需用108元.而店庆期间,购买 50件A商品和50件B商品仅需960元,这比不打折少花多少钱?13.红星服装厂要生产一批某种型号的学生服装,已知3米长的布料可做上衣 2件或裤子3条,一件上衣和一条裤子为一套,计划用600米长的这种布料生产,应分别用多少布料生产上衣和裤子才能恰好配套?共能生产多少套?14.某体育彩票经销商计划用 45000元从省体彩中心购进彩票 20扌L,每扎1000张,已知体彩中心有A、B、C三种不同价格的彩票,进价分别是 A彩票每张1.5元,B彩票每张2元,C彩票每张2.5元.(1)若经销商同时购进两种不同型号的彩票 20扌L,用去45000元,请你设计进票方案;(2)若销售A型彩票一张获手续费 0.2元,B型彩票一张获手续费 0.3元,C型彩票一张获手续费0.5元•在购进两种彩票的方案中,为使销售完时获得手续费最多,你选择哪种进票方案?(3)若经销商准备用45000元同时购进 A、B、C三种彩票20扌L,请你设计进票方案.。
《建立二元一次方程组》拓展训练一、选择题1.已知关于x,y的方程组,则下列结论中正确的是()①当a=5时,方程组的解是;②当x,y的值互为相反数时,a=20;③不存在一个实数a使得x=y;④若22a﹣3y=27,则a=2.A.①②④B.②③C.②③④D.③④2.表格中上下每对x、y的值都是同一个二元一次方程的解,则这个方程为()x﹣1012y852﹣1 A.5x+y=3B.x+y=5C.2x﹣y=0D.3x+y=53.方程组的解为,则被遮盖的两个数分别为()A.2,1B.2,3C.5,1D.2,44.若关于x,y的二元一次方程组的解也是二元一次方程2x+3y=6的解,则k的值为()A.B.C.﹣D.﹣5.方程组的解为,则被遮盖的两个数分别为()A.2,1B.5,1C.2,3D.2,46.已知是关于x,y的二元一次方程组的解,则a+b的值是()A.1B.3C.6D.87.小亮解方程组的解为,由于不小心滴上了两滴墨水,刚好遮住了两个数●和★,则两个数●与★的值为()A.B.C.D.8.在方程(k2﹣4)x2+(2﹣3k)x+(k+1)y+3k=0中,若此方程为二元一次方程,则k值为()A.﹣2B.2或﹣2C.2D.以上答案都不对9.已知方程组中x,y的互为相反数,则m的值为()A.2B.﹣2C.0D.410.已知是方程组的解,则a、b的值为()A.a=﹣1,b=3B.a=1,b=3C.a=3,b=1D.a=3,b=﹣1二、填空题11.已知关于x,y的方程组,给出下列四个结论:①当a=5时,方程组的解是;②当x,y的值互为相反数时,a=20;③不存在一个实数a,使得x=y;④若22a﹣3y=27,则a=2.其中正确的结论是.(填序号即可)12.方程组:的解是.13.写出一个关于x,y的二元一次方程组,这个方程组的解为,那么你所写的方程组14.对任意两个正整数x、y,定义一个运算“★”为x★y=(x+2xy+y),若正整数a、b满足a★b=1154,则有序正整数对(a,b)共有对.15.已知m,n均为正整数,且满足,则当m=时,n取得最小值.三、解答题16.已知:都是关于x、y方程y+mx=1的解,(1)若a=b=3,求m的值并直接写出c和d的关系式;(2)a+c=12,b+d=4m+4,比较b和d的大小.17.对于两个两位数p和q,将其中任意一个两位数的十位上的数字和个位上的数字分别放置于另一个两位数十位上数字与个位上的数字之间和个位上的数字的右边,就可以得到两个新四位数,把这两个新四位数的和与11的商记为F(p,q).例如:当p=23,q=15时,将p十位上的2放置于q中1与5之间,将p个位上的3位置于q中5的右边,得到1253.将q十位上的1放置于p 中2和3之间,将q个位上的5放置于p中3的右边,得到2135.这两个新四位数的和为1253+2135=3388,3388÷11=308,所以F (23,15)=308.(1)计算:F (13,26);(2)若a=10+m,b=10n+5,(0≤m≤9,1≤n≤9,m,n均为自然数).当150F (a,18)+F(b,26)=32761时,求m+n的值.18.已知和是二元一次方程mx﹣3ny=5的两个解.(1)求m、n的值;(2)若x<﹣2,求y的取值范围.19.已知关于x,y的方程组(1)请直接写出方程x+2y﹣6=0的所有正整数解;(2)若方程组的解满足x+y=0,求m的值;(3)无论实数m取何值,方程x﹣2y+mx+5=0总有一个固定的解,请直接写出这个解?20.已知关于x,y的方程组(1)请直接写出方程x+2y﹣6=0的所有正整数解;(2)若方程组的解满足x+y=0,求m的值;(3)无论实数m取何值,方程x﹣2y+mx+5=0总有一个固定的解,请直接写出这个解?(4)若方程组的解中x恰为整数,m也为整数,求m的值.《建立二元一次方程组》拓展练习参考答案与试题解析一、选择题1.已知关于x,y的方程组,则下列结论中正确的是()①当a=5时,方程组的解是;②当x,y的值互为相反数时,a=20;③不存在一个实数a使得x=y;④若22a﹣3y=27,则a=2.A.①②④B.②③C.②③④D.③④【分析】①把a=5代入方程组求出解,即可做出判断;②根据题意得到x+y=0,代入方程组求出a的值,即可做出判断;③假如x=y,得到a无解,本选项正确;④根据题中等式得到2a﹣3y=7,代入方程组求出a的值,即可做出判断.【解答】解:①把a=5代入方程组得:,解得:,本选项错误;②由x与y互为相反数,得到x+y=0,即y=﹣x,代入方程组得:,解得:a=20,本选项正确;③若x=y,则有,可得a=a﹣5,矛盾,故不存在一个实数a使得x=y,本选项正确;④方程组解得:,由题意得:2a﹣3y=7,把x=25﹣a,y=15﹣a代入得:2a﹣45+3a=7,解得:a=,本选项错误,则正确的选项有②③,故选:B.【点评】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.2.表格中上下每对x、y的值都是同一个二元一次方程的解,则这个方程为()x﹣1012y852﹣1 A.5x+y=3B.x+y=5C.2x﹣y=0D.3x+y=5【分析】设方程为y=kx+b,把x与y的两对值代入求出k与b的值,即可确定出方程.【解答】解:设方程为y=kx+b,把(0,5)与(1,2)代入得:,解得:,∴这个方程为y=﹣3x+5,即3x+y=5,故选:D.【点评】此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.3.方程组的解为,则被遮盖的两个数分别为()A.2,1B.2,3C.5,1D.2,4【分析】把x=2代入方程组第二个方程求出y的值,再将x与y的值代入第一个方程左边求出所求即可.【解答】解:把x=2代入x+y=3得:y=1,把x=2,y=1代入得:2x+y=4+1=5,则被遮盖的两个数分别为5,1,故选:C.【点评】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.4.若关于x,y的二元一次方程组的解也是二元一次方程2x+3y=6的解,则k的值为()A.B.C.﹣D.﹣【分析】把k看做已知数表示出方程组的解,代入已知方程计算即可求出k的值.【解答】解:,①+②得:2x=14k,解得:x=7k,①﹣②得:2y=﹣4k,解得:y=﹣2k,把x=7k,y=﹣2k代入方程得:14k﹣6k=6,解得:k=,故选:A.【点评】此题考查了二元一次方程组的解,以及二元一次方程的解,方程组的即为能使方程组中两方程都成立的未知数的值.5.方程组的解为,则被遮盖的两个数分别为()A.2,1B.5,1C.2,3D.2,4【分析】把x=2代入x+y=3中求出y的值,确定出2x+y的值即可.【解答】解:把x=2代入x+y=3中,得:y=1,把x=2,y=1代入得:2x+y=4+1=5,故选:B.【点评】此题考查了二元一次方程组的解,熟练掌握运算法则是解本题的关键.6.已知是关于x,y的二元一次方程组的解,则a+b的值是()A.1B.3C.6D.8【分析】把x与y的值代入方程组计算求出a与b的值,即可确定出原式的值.【解答】解:把代入方程组得:,即,则a+b=﹣3+11=8,故选:D.【点评】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.7.小亮解方程组的解为,由于不小心滴上了两滴墨水,刚好遮住了两个数●和★,则两个数●与★的值为()A.B.C.D.【分析】根据题意可以分别求出●与★的值,本题得以解决.【解答】解:∵方程组的解为,∴将x=5代入2x﹣y=12,得y=﹣2,将x=5,y=﹣2代入2x+y得,2x+y=2×5+(﹣2)=8,∴●=8,★=﹣2,故选:D.【点评】本题考查二元一次方程组的解,解题的关键是明确题意,求出所求数的值.8.在方程(k2﹣4)x2+(2﹣3k)x+(k+1)y+3k=0中,若此方程为二元一次方程,则k值为()A.﹣2B.2或﹣2C.2D.以上答案都不对【分析】根据二元一次方程必须符合以下三个条件:方程中只含有2个未知数;含未知数项的最高次数为一次;方程是整式方程,可得答案.【解答】解:由(k2﹣4)x2+(2﹣3k)x+(k+1)y+3k=0,得k2﹣4=0,解得k=±2,故选:B.【点评】本题考查了二元一次方程的定义,利用二次项的系数为零得出方程是解题关键.9.已知方程组中x,y的互为相反数,则m的值为()A.2B.﹣2C.0D.4【分析】根据x与y互为相反数得到x+y=0,即y=﹣x,代入方程组即可求出m 的值.【解答】解:由题意得:x+y=0,即y=﹣x,代入方程组得:,解得:m=x=2,故选:A.【点评】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.10.已知是方程组的解,则a、b的值为()A.a=﹣1,b=3B.a=1,b=3C.a=3,b=1D.a=3,b=﹣1【分析】所谓“方程组”的解,指的是该数值满足方程组中的每一方程.本题将解代回方程组,即可求出a,b.【解答】解:∵是方程的解,∴把代入方程组,得,∴.故选:B.【点评】解二元一次方程组的基本思想是“消元”,基本方法是代入法和加减法.二、填空题11.已知关于x,y的方程组,给出下列四个结论:①当a=5时,方程组的解是;②当x,y的值互为相反数时,a=20;③不存在一个实数a,使得x=y;④若22a﹣3y=27,则a=2.其中正确的结论是②③.(填序号即可)【分析】方程组利用加减消元法表示出x与y,即可作出判断.【解答】解:,①﹣②×3得:y=15﹣a,把y=15﹣a代入②得:x=25﹣a,①当a=5时,方程组的解为,不符合题意;②当x,y互为相反数时,x+y=0,即15﹣a+25﹣a=0,解得:a=20,符合题意;③当x=y时,15﹣a=25﹣a,无解,符合题意;④若22a﹣3y=27,得到2a﹣3y=7,即2a﹣45+3a=7,解得:a=,不符合题意,则其中正确的结论是②③,故答案为:②③【点评】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.12.方程组:的解是.【分析】方程组整理后,利用加减消元法求出解即可.【解答】解:方程组整理得:,①×2+②得:15y=﹣15,即y=﹣1,把y=﹣1代入①得:x=2,则方程组的解为.故答案为:.【点评】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.13.写出一个关于x,y的二元一次方程组,这个方程组的解为,那么你所写的方程组是(答案不唯一)。
《实际问题与二元一次方程组》拓展练习一、选择题(本大题共5小题,共25.0分)1.(5分)童威购买7块橡皮、5个作业本、1支圆珠笔共花费20元;购买10块橡皮、7个作业本、1支圆珠笔共花费26元;若购买11个橡皮、8个作业本、2支圆珠笔则要花费()元.A.31B.32C.33D.342.(5分)小杨在商店购买了a件甲种商品,b件乙种商品,共用213元,已知甲种商品每件5元,乙种商品每件19元,那么a+b的最大值是()A.37B.27C.23D.203.(5分)小王沿街匀速行走,发现每隔6分钟从背后驶过一辆18路公交车,每隔3分钟从迎面驶来一辆18路公交车.假设每辆18路公交车行驶速度相同,而且18路公交车总站每隔固定时间发一辆车,那么发车间隔的时间是()A.3分钟B.4分钟C.5分钟D.6分钟4.(5分)甲是乙现在的年龄时,乙8岁,乙是甲现在的年龄时,甲26岁,那么()A.甲比乙大6岁B.甲比乙大9岁C.乙比甲大18岁D.乙比甲大34岁5.(5分)用白铁皮做罐头盒,每张铁皮可做盒身25个,或做盒底40个,一个盒身与两个盒底配成一套罐头盒.现有36张白铁皮,用多少张制盒身,多少张制盒底可以使盒身与盒底正好配套?①设用x张制盒身,可得方程2×25x=40(36﹣x);②设用x张制盒身,可得方程25x=2×40(36﹣x);③设用x张制盒身,y张制盒底,可得方程组;④设用x张制盒身,y张制盒底,可得方程组;其中正确的是()A.①④B.②③C.②④D.①③二、填空题(本大题共5小题,共25.0分)6.(5分)国庆期间某外地旅行团来重庆的网红景点打卡,游览结束后旅行社对该旅行团做了一次“我最喜爱的巴渝景点”问卷调查(每名游客都填了调査表,且只选了一个景点),統计后发现洪崖洞、长江索道、李子坝轻轨站、磁器口榜上有名.其中选李子坝轻轨站的人数比选磁器口的少8人;选洪崖洞的人数不仅比选磁器口的多,且为整数倍;选磁器口与洪崖洞的人数之和是选李子坝轻轨站与长江索道的人数之和的5倍;选长江索道与洪崖洞的人数之和比选李子坝轻轨站与磁器口的人数之和多24人.则该旅行团共有人.7.(5分)如果1台大收割机和1台小收割机每小时各收割小麦x公顷和y公顷,那么2台大收割机和5台小收割机1小时收割小麦公顷,3台大收割机和2台小收割机1小时收割小麦公顷.8.(5分)根据下图给出的信息可知,足球的单价为元.9.(5分)某长方形的周长是44,若宽的3倍比长多6,则该长方形的长等于.10.(5分)某电信局现有300部已申请装机的电话等待装机.假设每天新申请装机的电话部数相同,该电信局每个电话装机小组每天装的电话部数也相同,那么安排3个装机小组,恰好30天可将需要装机的电话全部装完;如果安排5个装机小组,则恰好10天可将需要装机的电话全部装完.试求每个电话装机小组每天装机多少部?每天有多少部新申请装机的电话?三、解答题(本大题共5小题,共50.0分)11.(10分)如图,这是一个矩形养鸡场的平面图,一边靠墙(有阴影的直线),其余边用60米的篱笆围成.养鸡场被分割成三个面积相等的矩形区域①、②、③.且AD>AB.若养鸡场的总面积为162平方米,求AD的长.12.(10分)如图,为了美化校园,在长为60米,宽为32米的长方形空地中,沿着平行于长方形各边的方向,分割出三个全等的正方形和两个全等的长方形作为花圃.设小正方形的边长为a米,小长方形的长和宽分别为b米、c 米.(1)请用含有a、b、c的代数式表示AB、AD长度;(2)若小正方形的边长恰好是小长方形的宽的2倍,试求出花圃的总面积S.13.(10分)小明到某服装商场进行社会调查,了解到该商场为了激励营业员的工作积极性,实行“月总收入=基本工资+计件奖金”的方法,并获得如下信息:营业员A:月销售件数200件,月总收入3400元;营业员B:月销售件数300件,月总收入3700元;假设营业员的月基本工资为x元,销售每件服装奖动y元.(1)求x、y的值;(2)商场为了多销售服装,对顾客推荐一种购买方式:如果购买甲服装3件,乙服装2件,丙服装1件共需390元;如果购买甲服装1件,乙服装2件,丙服装3件共需370元.某顾客想购买甲、乙、丙服装各一件共需多少元?14.(10分)阅读材料:小明是个爱动脑筋的学生,他在学习了二元一次方程组后遇到了这样一道题目:现有8个大小相同的长方形,可拼成如图1、2所示的图形,在拼图②时,中间留下了一个边长为2的小正方形,求每个小长方形的面积.小明设小长方形的长为x,宽为y,观察图形得出关于x、y的二元一次方程组,解出x、y的值,再根据长方形的面积公式得出每个小长方形的面积.解决问题:(1)请按照小明的思路完成上述问题:求每个小长方形的面积;(2)某周末上午,小明在超市帮妈妈买回一袋纸杯,他把纸杯整齐地叠放在一起,如图3所示.若小明把13个纸杯整齐叠放在一起时,它的高度约是cm;(3)小明进行自主拓展学习时遇到了以下这道题目:如图,长方形ABCD中放置8个形状、大小都相同的小长方形(尺寸如图4),求图中阴影部分的面积,请给出解答过程.15.(10分)运输360吨化肥,装载了6节火车车厢和15辆汽车,运输580吨化肥,装载了10节火车车厢和20辆汽车,每节火车车厢和每辆汽车平均各装多少吨化肥?《实际问题与二元一次方程组》拓展练习参考答案与试题解析一、选择题(本大题共5小题,共25.0分)1.(5分)童威购买7块橡皮、5个作业本、1支圆珠笔共花费20元;购买10块橡皮、7个作业本、1支圆珠笔共花费26元;若购买11个橡皮、8个作业本、2支圆珠笔则要花费()元.A.31B.32C.33D.34【分析】首先假设铅笔的单价是x元,作业本的单价是y元,圆珠笔的单价是z 元.购买铅笔11支,作业本8本,圆珠笔2支共需a元.根据题目说明列出方程组,解方程组求出a的值,即为所求结果.【解答】解:设铅笔的单价是x元,作业本的单价是y元,圆珠笔的单价是z元.购买铅笔11支,作业本5本,圆珠笔2支共需a元.则由题意得:,由②﹣①得3x+2y=6 ④由②+①得17x+12y+2z=46 ⑤由⑤﹣④×2﹣③得0=46﹣12﹣a∴a=34故选:D.【点评】此题主要考查了方程组的应用,解答此题的关键是列出方程组,用加减消元法求出方程组的解.2.(5分)小杨在商店购买了a件甲种商品,b件乙种商品,共用213元,已知甲种商品每件5元,乙种商品每件19元,那么a+b的最大值是()A.37B.27C.23D.20【分析】根据题意得出关于a和b的二元一次方程,然后用b表示出a,继而用b表示出a+b,然后可以利用函数的思想得出a+b取得最值的条件,即能得出答案.【解答】解:由题意得,5a+19b=213,∴a=,∴a+b=+b=,∵a+b是关于b的一次函数且a+b随b的增大而减小,∴当b最小时,a+b取最大值,又∵a,b是正整数,∴当b=2时,a+b的最大值=37.故选:A.【点评】本题考查二元一次不定方程的应用,技巧性较强,解答本题的关键是函数思想的应用,同学们要注意掌握这种解题思想,它会在以后的解题中经常用到.3.(5分)小王沿街匀速行走,发现每隔6分钟从背后驶过一辆18路公交车,每隔3分钟从迎面驶来一辆18路公交车.假设每辆18路公交车行驶速度相同,而且18路公交车总站每隔固定时间发一辆车,那么发车间隔的时间是()A.3分钟B.4分钟C.5分钟D.6分钟【分析】设同向行驶的相邻两车的距离及车、小王的速度为未知数,等量关系为:6×车速﹣6×小王的速度=同向行驶的相邻两车的距离;3×车速+3×小王的速度=同向行驶的相邻两车的距离;把相关数值代入可得同向行驶的相邻两车的距离及车的速度关系式,相除可得所求时间.【解答】解:设18路公交车的速度是x米/分,小王行走的速度是y米/分,同向行驶的相邻两车的间距为s米.每隔6分钟从背后开过一辆18路公交车,则6x﹣6y=s.①每隔3分钟从迎面驶来一辆18路公交车,则3x+3y=s.②由①,②可得s=4x,所以.即18路公交车总站发车间隔的时间是4分钟.故选:B.【点评】本题考查二元一次方程组的应用;根据追及问题和相遇问题得到两个等量关系是解决本题的关键;设出所需的多个未知数是解决本题的突破点.4.(5分)甲是乙现在的年龄时,乙8岁,乙是甲现在的年龄时,甲26岁,那么()A.甲比乙大6岁B.甲比乙大9岁C.乙比甲大18岁D.乙比甲大34岁【分析】设甲现在的年龄是x岁,根据已知甲是乙现在的年龄时,乙8岁.乙是甲现在的年龄时,甲26岁,可列方程求解.【解答】解:甲现在的年龄是x岁,则乙现在的年龄为(2x﹣26)岁,根据题意得:x+8=2(2x﹣26)解得x=202x﹣26=14岁,20﹣14=6答:甲比乙大6岁;故选:A.【点评】本题考查了一元一次方程的应用,重点考查理解题意的能力,甲、乙年龄无论怎么变,年龄差是不变的.5.(5分)用白铁皮做罐头盒,每张铁皮可做盒身25个,或做盒底40个,一个盒身与两个盒底配成一套罐头盒.现有36张白铁皮,用多少张制盒身,多少张制盒底可以使盒身与盒底正好配套?①设用x张制盒身,可得方程2×25x=40(36﹣x);②设用x张制盒身,可得方程25x=2×40(36﹣x);③设用x张制盒身,y张制盒底,可得方程组;④设用x张制盒身,y张制盒底,可得方程组;其中正确的是()A.①④B.②③C.②④D.①③【分析】根据题意可知,本题中的相等关系是:(1)盒身的个数×2=盒底的个数;(2)制作盒身的白铁皮张数+制作盒底的白铁皮张数=36,再列出方程(组)即可.【解答】解:设用x张制盒身,可得方程2×25x=40(36﹣x);故①正确;②错误;设用x张制盒身,y张制盒底,可得方程组;故③正确;④错误;故选:D.【点评】此题考查从实际问题中抽出二元一次方程组,根据题目给出的条件,找出合适的等量关系注意运用本题中隐含的一个相等关系:“一个盒身与两个盒底配成一套盒”.二、填空题(本大题共5小题,共25.0分)6.(5分)国庆期间某外地旅行团来重庆的网红景点打卡,游览结束后旅行社对该旅行团做了一次“我最喜爱的巴渝景点”问卷调查(每名游客都填了调査表,且只选了一个景点),統计后发现洪崖洞、长江索道、李子坝轻轨站、磁器口榜上有名.其中选李子坝轻轨站的人数比选磁器口的少8人;选洪崖洞的人数不仅比选磁器口的多,且为整数倍;选磁器口与洪崖洞的人数之和是选李子坝轻轨站与长江索道的人数之和的5倍;选长江索道与洪崖洞的人数之和比选李子坝轻轨站与磁器口的人数之和多24人.则该旅行团共有48人.【分析】设选李子坝轻轨站的有x人,选长江索道的有y人,选洪崖洞的有a(x+8)人,根据:选磁器口与洪崖洞的人数之和是选李子坝轻轨站与长江索道的人数之和的5倍,选长江索道与洪崖洞的人数之和比选李子坝轻轨站与磁器口的人数之和多24人,列出方程组,组中两个方程相减得到二元一次方程,由于人数为正整数,得到x、y所有可能值,代入方程组中,只有满足a为整数倍的才合题意.然后计算出该团人数.【解答】解:设选李子坝轻轨站的有x人,选长江索道的有y人,则选磁器口的有(x+8)人,选洪崖洞的有a(x+8)人,根据题意得:,②可变形为:(a﹣1)(x+8)=24+x﹣y③,①+③,得2a(x+8)=24+6x+4y,即a=;①﹣③,得x+3y=20.∵x、y都是正整数,∴或或或或或当、、、、时,a=都不是整数,不合题意.当时,a===3.∴选李子坝轻轨站的有2人,选长江索道的有6人,选磁器口的有10人,选洪崖洞的有30人,由于每名游客都填了调査表,且只选了一个景点,所以该旅行团共有2+6+10+30=48(人).故答案为:48【点评】本题考查了二元一次方程的正整数解、二元一次方程组等知识点,题目难度较大,根据方程组得到二元一次方程,是解决本题的关键.7.(5分)如果1台大收割机和1台小收割机每小时各收割小麦x公顷和y公顷,那么2台大收割机和5台小收割机1小时收割小麦(2x+5y)公顷,3台大收割机和2台小收割机1小时收割小麦(3x+2y)公顷.【分析】根据代数式的表示方法,利用台大收割机和1台小收割机1小时各收割小麦x公顷和y公顷可表示出2台大收割机和5台小收割机1小时收割的工作量和3台大收割机和2台小收割机1小时收割小麦的工作量.【解答】解:由于1台大收割机和1台小收割机1小时各收割小麦x公顷和y公顷.根据题意得么2台大收割机和5台小收割机1小时收割小麦(2x+5y)公顷,3台大收割机和2台小收割机1小时收割小麦(3x+2y)公顷.故答案为(2x+5y),(3x+2y).【点评】本题考查了二元一次方程组解的应用:找出问题中的已知条件和未知量及它们之间的关系,再找出题中的两个关键的未知量,并用字母表示出来.然后列方程组,解方程组即可.也考查了列代数式.8.(5分)根据下图给出的信息可知,足球的单价为20元.【分析】根据题意可知,本题中的等量关系是“44元”和“26元”,列方程组求解即可.【解答】解:设球的单价是x元,玩具的单价是y元.则解得所以足球的单价为20元.故填20.【点评】解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.利用二元一次方程组求解的应用题一般情况下题中要给出2个等量关系,准确的找到等量关系并用方程组表示出来是解题的关键.9.(5分)某长方形的周长是44,若宽的3倍比长多6,则该长方形的长等于15.【分析】根据题意可知,本题中的相等关系是“周长是44”和“宽的3倍比长多6”,列方程组求解即可.【解答】解:设长方形的长为x,宽为y.则,解得.则该长方形的长等于15.故填15.【点评】解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.利用二元一次方程组求解的应用题一般情况下题中要给出2个等量关系,准确的找到等量关系并用方程组表示出来是解题的关键.10.(5分)某电信局现有300部已申请装机的电话等待装机.假设每天新申请装机的电话部数相同,该电信局每个电话装机小组每天装的电话部数也相同,那么安排3个装机小组,恰好30天可将需要装机的电话全部装完;如果安排5个装机小组,则恰好10天可将需要装机的电话全部装完.试求每个电话装机小组每天装机多少部?每天有多少部新申请装机的电话?【分析】设每个电话装机小组每天装机x部,每天有y部新申请装机的电话,根据题意所述的两个等量关系可得出方程组,解出即可得出答案.【解答】解:设每个电话装机小组每天装机x部,每天有y部新申请装机的电话,根据题意得:,解得:,答:每个装机小组每天装机10部,每天有20部新申请装机的电话.【点评】本题考查了二元一次方程的应用,解答本题的关键是仔细审题,设出未知数,根据等量关系得出方程组.三、解答题(本大题共5小题,共50.0分)11.(10分)如图,这是一个矩形养鸡场的平面图,一边靠墙(有阴影的直线),其余边用60米的篱笆围成.养鸡场被分割成三个面积相等的矩形区域①、②、③.且AD>AB.若养鸡场的总面积为162平方米,求AD的长.【分析】设AD的长度为x,结合题意得到其它几条线段的长度,由矩形的面积公式列出方程并解答.【解答】解:设CE的长度为x,AD的长度为y,依题意得:,解得,,当时,AB=(60﹣2y﹣3x)+x=13.5,此时AB>AD.∵AD>AB,∴,不合题意,舍去.答:AD的长度为18米.【点评】考查了二元一次方程组的应用,解题的关键是读懂题意,找准等量关系,列出方程组并解答.注意:限制性条件AD>AB的存在.12.(10分)如图,为了美化校园,在长为60米,宽为32米的长方形空地中,沿着平行于长方形各边的方向,分割出三个全等的正方形和两个全等的长方形作为花圃.设小正方形的边长为a米,小长方形的长和宽分别为b米、c 米.(1)请用含有a、b、c的代数式表示AB、AD长度;(2)若小正方形的边长恰好是小长方形的宽的2倍,试求出花圃的总面积S.【分析】(1)观察图形,可得出:AB=3a+2b,AD=3a+2c;(2)由AB=60、AD=32及a=2c,即可得出关于a、b、c的方程组,解之即可得出结论.【解答】解:(1)根据题意得:AB=3a+2b,AD=3a+2c.(2)根据题意得:,解得:,∴S=3a2+2bc=3×82+2×18×4=336.答:花圃的总面积S为336平方米.【点评】本题考查了列代数式以及三元一次方程组的应用,解题的关键是:(1)观察图形,用含a、b、c的代数式表示出AB、AD;(2)找准等量关系,正确列出三元一次方程组.13.(10分)小明到某服装商场进行社会调查,了解到该商场为了激励营业员的工作积极性,实行“月总收入=基本工资+计件奖金”的方法,并获得如下信息:营业员A:月销售件数200件,月总收入3400元;营业员B:月销售件数300件,月总收入3700元;假设营业员的月基本工资为x元,销售每件服装奖动y元.(1)求x、y的值;(2)商场为了多销售服装,对顾客推荐一种购买方式:如果购买甲服装3件,乙服装2件,丙服装1件共需390元;如果购买甲服装1件,乙服装2件,丙服装3件共需370元.某顾客想购买甲、乙、丙服装各一件共需多少元?【分析】(1)根据“月销售件数200件,月总收入3400元,月销售件数300件,月总收入3700元”,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设购买一件甲服装需要a元,购买一件乙服装需要b元,购买一件丙服装需要c元,根据“购买甲服装3件,乙服装2件,丙服装1件共需390元;购买甲服装1件,乙服装2件,丙服装3件共需370元”,即可得出关于a、b、c的三元一次方程组,利用(①+②)÷4即可求出购买甲、乙、丙服装各一件的总费用.【解答】解:(1)根据题意得:,解得:.(2)设购买一件甲服装需要a元,购买一件乙服装需要b元,购买一件丙服装需要c元,根据题意得:,(①+②)÷4,得:a+b+c=190.答:购买甲、乙、丙服装各一件共需190元.【点评】本题考查了二元一次方程组的应用以及三元一次方程组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)找准等量关系,正确列出三元一次方程组.14.(10分)阅读材料:小明是个爱动脑筋的学生,他在学习了二元一次方程组后遇到了这样一道题目:现有8个大小相同的长方形,可拼成如图1、2所示的图形,在拼图②时,中间留下了一个边长为2的小正方形,求每个小长方形的面积.小明设小长方形的长为x,宽为y,观察图形得出关于x、y的二元一次方程组,解出x、y的值,再根据长方形的面积公式得出每个小长方形的面积.解决问题:(1)请按照小明的思路完成上述问题:求每个小长方形的面积;(2)某周末上午,小明在超市帮妈妈买回一袋纸杯,他把纸杯整齐地叠放在一起,如图3所示.若小明把13个纸杯整齐叠放在一起时,它的高度约是20 cm;(3)小明进行自主拓展学习时遇到了以下这道题目:如图,长方形ABCD中放置8个形状、大小都相同的小长方形(尺寸如图4),求图中阴影部分的面积,请给出解答过程.【分析】(1)设小长方形的长为x,宽为y,观察图形即可得出关于x、y的二元一次方程组,解之即可得出x、y的值,再根据长方形的面积公式即可得出每个小正方形的面积;(2)通过理解题意可知本题存在两个等量关系,即单独一个纸杯的高度+3个纸杯叠放在一起比单独的一个纸杯增高的高度=9,单独一个纸杯的高度+8个纸杯叠放在一起比单独的一个纸杯增高的高度=14.根据这两个等量关系可列出方程组;(3)设小长方形的面积为x,宽为y,根据长方形ABCD的长为19,宽的两种不同表达方式列出方程组求出小长方形的长和宽,进一步求出图中阴影部分的面积.【解答】解:(1)设小长方形的长为x,宽为y,根据题意得:,解得:,∴xy=10×6=60.故每个小长方形的面积为60;(2)设每两个纸杯叠放在一起比单独的一个纸杯增高xcm,单独一个纸杯的高度为ycm,则,解得,则12x+y=12×1+8=20.即小明把13个纸杯整齐叠放在一起时,它的高度约是20cm.(3)设小长方形的长为x,宽为y,根据题意得,解得,=19×(7+3×3)﹣8×10×3=64.∴S阴影故答案为:64.【点评】考查了二元一次方程组的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.15.(10分)运输360吨化肥,装载了6节火车车厢和15辆汽车,运输580吨化肥,装载了10节火车车厢和20辆汽车,每节火车车厢和每辆汽车平均各装多少吨化肥?【分析】设每节火车车厢平均装x吨化肥,每辆汽车平均装y吨化肥,根据运输360吨化肥,装载了6节火车车厢和15辆汽车;运输580吨化肥,装载了10节火车车厢和20辆汽车,列方程组求解.【解答】解:设每节火车车厢平均装x吨化肥,每辆汽车平均装y吨化肥,由题意得,,解得:.答:每节火车车厢平均装50吨化肥,每辆汽车平均装4吨化肥.【点评】本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组求解.。
二元一次方程组教学设计篇1:二元一次方程组教学设计教学目标1、认识二元一次方程和二元一次方程组.2、了解二元一次方程和二元一次方程组的解,会求二元一次方程的正整数解.重点、难点重点:理解二元一次方程组的解的意义难点:求二元一次方程的正整数解教学过程一、复习导入什么是一元一次方程?“元”指什么?“次”指什么?什么是方程的解?设计意图:通过学生复习以前的内容,知道用元与次的含义,为这节课所学的二元一次方程组奠定基础。
二、观看视频观看洋葱视频关于二元一次方程组的内容,通过熟悉的鸡兔同笼问题来引发思考。
视频内容设计意图:用视频吸引学生注意力,引起学生的认知冲突,从而激发学生的学习兴趣和求知欲望,通过视频内容,学生已激发了强烈的求知欲望,产生了强劲的学习动力,此时我把学生带入下一环节。
三、探究新知根据视频内容归纳出二元一次方程的定义:含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程.把两个二元一次方程合在一起,就组成了一个二元一次方程组.提问:对比两个方程,你能发现它们之间的关系吗?师生共同总结二元一次方程组的概念像这样方程组中有两个个未知数,含有每个未知数的项的次数都是1,并且一共有两个方程,像这样的方程组叫做二元一次方程组.探究二元一次方程组的解:满足x+y=10的值有哪些?请填入表中:使二元一次方程两边相等的未知数的值,叫做二元一次方程的解,记作.满足方程2x+y=16且符合问题的实际意义的x 、y的值如下表:不难发现x=6,y=4既是x+y=10的解,也是2x+y=16的解,也就是说是这两个方程的公共解,我们把它们叫做方程组的解。
归纳二元一次方程组的解的定义:二元一次方程组中的两个方程的公共解叫做二元一次方程组的解.思考:3x+y=10的解有多少个?一个解有几个数?正整数解有几个?带着问题让学生观看洋葱数学视频二元一次方程组的解视频内容设计意图:现代数学教学论指出,数学知识的教学必须在学生自主探索,经验归纳的基础上获得,教学中必须展现思维的过程性,在这里,通过学习用坐标表示平移观察分析、独立思考、小组交流等活动,引导学生归纳。
二元一次方程组拓展提高题一、选择题1、若a +b =3,a ﹣b =7则ab =( )A .﹣10B .﹣40 C .10 D .402、已知方程组则x +y 的值( )A .﹣1B .0C .2 D .33x y 2y x +1....①xy+2x -y=7; ②4x+1=x -y ; ③1x+y=5; ④x=y ; ⑤x 2-y 2=2 ⑥6x -2y ⑦x+y+z=1 ⑧y (y -1)=2y 2-y 2+x A .1 B .2 C .3 D .45、已知3-x+2y=0,则3x-6y+9的值( )A.3 B.9 C.18 D.276、以方程组21y x y x =-+⎧⎨=-⎩的解为坐标的点(,)x y 在平面直角坐标系中的位置是( )A .第一象限 B .第二象限 C .第三象限 D .第四象限7、如图,两根铁棒直立于桶底水平的木桶中,在桶中加入水后,一根露出水面的长度是它的,另一根露出水面的长度是它的.两根铁棒长度之和为220cm ,此时木桶中水的深度是 cm .8、四川雅安地震期间,为了紧急安置60名地震灾民,需要搭建可容纳6人或4人的帐篷,若所搭建的帐篷恰好(即不多不少)能容纳这60名灾民,则不同的搭建方案有 A .4种 B .11种 C .6种 D .9种 二、填空题9、若方程组,则3(x +y )﹣(3x ﹣5y )的值是 .10、已知是二元一次方程组的解,则m +3n 的立方根为11、已知4x a +2b ﹣5﹣2y 3a ﹣b ﹣3=8是二元一次方程,那么a ﹣b = . .已知(3x -2y +1)2与|4x -3y -3|互为相反数,则x =__________,y =__________。
13、.已知y =kx +b ,当x =1时,y =-1,当x =3时,y =-5,则k =__________,b =__________。
14、.若方程组⎩⎨⎧=+=+54ay bx by ax 的解是⎩⎨⎧==12y x ,则a +b =__________。
15、已知方程2x+3y -4=0,用含x 的代数式表示y 为:y=_______;用含y 的代数式表示x 为:x=________.16、如果(a -2)x+(b+1)y=13是关于x ,y 的二元一次方程,则a ,b 满足什么条件17. 若23x y =-⎧⎨=⎩是方程33x y m -=和5x y n +=的公共解,则23m n -= .18. 已知231x y =-⎧⎨=⎩是二元一次方程组11ax by bx ay +=⎧⎨+=⎩的解,则()()a b a b +-的值是 .19、已知x ,y 是有理数,且(│x │-1)2+(2y+1)2=0,则x -y 的值是____________, 已知│x -1│+(2y+1)2=0,且2x -ky=4,则k=_____,,20、程组43235x y kx y -=⎧⎨+=⎩的解与x 与y 的值相等,则k 等于( )21、关于x y 、的二元一次方程组59x y kx y k+=⎧⎨-=⎩的解也是二元一次方程236x y +=的解,则k 的值是 .22、若 4x-3y =0 , 的值23、a-b=2,a-c=21,则(b-c)3-3(b-c)+4=24、方程组42332=-=+ts t s 的解为 25、若|3a+4b-c|+41(c-2b)2=0,则a :b :c=三、解方程组26、 (1)()()41312223x y y x y --=--⎧⎪⎨+=⎪⎩ (2)2320235297x y x y y --=⎧⎪-+⎨+=⎪⎩( 3)) ()()9185232032m n m m n ⎧+=⎪⎪⎨⎪++=⎪⎩ ( 4) 23427x y y z z x x y z +++⎧==⎪⎨⎪++=⎩27、 若()4360,2700,x y z x y z xyz --=+-=≠ 求(1)x :y 的值 (2)x :y::z 值 (3)222222522310x y z x y z+---的值. 28、已知⎩⎨⎧=-+=--082043z y x z y x 则zx yz xy z y x 2222++++的值是29、已知y=3xy+x ,求代数式yxy x yxy x ---+2232的值30、.已知关于x y 、的方程组210320mx y x y +=⎧⎨-=⎩有整数解,即x y 、都是整数,m 是正整数,求m 的值.31、已知关于x y 、的方程组2647x ay x y -=⎧⎨+=⎩有整数解,即x y 、都是整数,a 是正整数,求a 的值.32、:已知关于x y 、的方程组()312y kx by k x =+⎧⎪⎨=-+⎪⎩分别求出k,b 为何值时, 方程组的解为 ⑴有唯一解; ⑵有无数多个解; ⑶无解?33、甲、乙两人同时解方程组⎩⎨⎧=--=+)2(5)1(8ny mx ny mx 由于甲看错了方程⑴中的m ,得到的解是42x y =⎧⎨=⎩,乙看错了方程中⑵的n ,得到的解是25x y =⎧⎨=⎩,试求正确,m n 的值。
求出原方程组的正确的解。
34、已知方程组45321x yx y+=⎧⎨-=⎩和31ax byax by+=⎧⎨-=⎩有相同的解,求222a ab b-+的值.35、已知x=1是关于x的一元一次方程ax-1=2(x-b)的解,y=1是关于y的一元一次方程b(y-3)=2(1-a)的解,在y=ax2+bx-3中,求当x=-3时y值36.某商场计划拨款9万元从厂家购进50台电视机,已知该厂家生产三种不同型号的电视机,出厂价分别是:甲种电视机每台1500元,乙种电视机每台2100元,丙种电视机每台2500元.(1)若商场同时购进其中两种不同型号的电视机共50台,用去9万元,请你研究一下商场的进货方案,(2)若商场销售一台甲种电视机可获利150元,销售一台乙种电视机可获利200元,销售一台丙种电视机可获利250元.在同时购进两种不同型号电视机的方案中,为使销售进获利最多,你会选择哪种进货方案?(3)若商场准备用9万元同时购进三种不同型号的电视机50台,请你设计进货方案.37.防汛指挥部决定冒雨开水泵排水,假设每小时雨水增加量相同,每台水泵排水量也相同.若开一台水泵10小时可排完积水,开两台水泵3小时排完积水,问开三台水泵多少小时可排完积水?38.某人沿公路匀速前进,每隔4min就遇到迎面开来的一辆公共汽车,每隔6min 就有一辆公共汽车从背后超过他.假定汽车速度不变,而且迎面开来相邻两车的距离和从背后开来相邻两车的距离都是1200m,求某人前进的速度和公共汽车的速度,汽车每隔几分钟开出一辆?39.某出租汽车公司有出租车100辆,平均每天每车消耗的汽油费为80元.为了减少环境污染,市场推出一种叫“CNG”改烧汽油为天然气的装置,每辆车改装价格为4000元.公司第一次改装了部分车辆后核算:已改装后的车辆每天的燃料费占剩下未改装车辆每天燃料费用的203,公司第二次再改装同样多的车辆后,所有改装后的车辆每天的燃料费占剩下未改装车辆每天燃料费用的52.问:(1)公司共改装了多少辆出租车?改装后的每辆出租车平均每天的燃料费比改装前的燃料费下降了百分之多少?(2)若公司一次性全部出租车改装,多少天后就可以从节省的燃料费中收回成本?40.某地生产一种绿色蔬菜,若在市场上直接销售,每吨利润为1000元;经粗加工后销售,每吨利润可达4500元;经精加工后销售,每吨利润涨至7500元.当地一家农工商公司收购这种蔬菜140吨,该公司加工厂的生产能力是:如果对蔬菜进行粗加工,每天可加工16吨;如果进行精加工,每天可加工6吨,但两种加工方式不能赔不是进行.受季节条件的限制,公司必须在15天之内将这批蔬菜全部销售或加工完毕,为此公司研究了三种加工方案:方案一:将蔬菜全部进行粗加工;方案二:尽可能多地进行精加工,来不及加工的蔬菜在市场上全部销售;方案三:将部分蔬菜进行粗加工,其余蔬菜进行精加工,并恰好在15天完成.你认为哪种方案获利最多?为什么?1、 解:(1)分三种情况讨论:方案一:甲乙组合:设买甲种电视机x 台,则买乙种电视机(50-x )台,由题意得25502590000)50(21001500=-==-+x x x x方案二:乙丙组合:设买乙种电视机y 台,则买丙种电视机(50-y )台,由题意得)(5.8790000)50(25002100舍去不合题意,y y y ==-+方案三:甲丙组合:设买甲种电视机z 台,则买丙种电视机(50-z )台,由题意得15503590000)50(25001500=-==-+z z z z综上可以买甲乙两种电视机各25台或甲种电视机35台和丙种电视机15台. (2)方案一:)(100002525025150元=⨯+⨯方案三:)(90001525035150元=⨯+⨯为了获得最大利润应该买进甲乙两种型号的电视机各25台.(3)设买甲种型号的电视机x 台,甲种型号的电视机y 台,甲种型号的电视机(50-x -y)台,由题意得yx y x y x y x 523535041090000)50(250021001500-==+=--++易知y 为5的倍数,25,253,27,206,29,159,31,1012,33,515,35,0==================z x y z x y z x y z x y z x y z x y因此有以上六种符合条件的方案.2、 解:设每小时雨水增加量为a ,每台水泵每小时的排水量为b ,则根据积水量相同得ab ab a b 473321010=-⨯=-设用三台水泵需要x 小时将积水排尽,由题意得173010471047310103=-⨯=-⨯-=-x a a ax ax a b ax bx答:用三台水泵需要1730小时将积水排尽. 3、 解:设人前进的速度为am/min ,公共汽车的速度为xm/min ,由题意得)(8.42501200503002501200)300(66120066300120044分===-===--=--==+t x a x x x a x x a x a答:人前进的速度为50m/min ,公共汽车的速度为250m/min ,公共汽车每隔4.8分发一班. 4、 解:(1)出租车公司每次改装x 辆出租车,改装后每辆的燃料费为y 元,由题意得,%40804880)(4840220)2100(8052)100(802032)2100(80522)100(80203=-===-⨯=-⨯⨯⎪⎩⎪⎨⎧-⨯=-⨯=元用整体代换得y x x x x x xy x xy (2)设全部改装需要z 天收回成本,由题意得1251004000100)4880(=⨯=⨯-z z答:公司共改装了40辆出租车,改装后的每辆出租车平均每天的燃料费比改装前的燃料费下降了40%.全部改装需要125天收回成本. 5、解:方案一:)(1400001000140元=⨯方案二:)(725000)615140(10007500615元=⨯-+⨯⨯方案三:设这批蔬菜中有 x 吨进行精加工,则有(140-x )吨进行粗加工,由题意得)(810000450080750060)(801406015161406元吨=⨯+⨯=-==-+x x x x答:由此可以看出,方案三获利最多.。