2.3平行线的性质
- 格式:ppt
- 大小:472.00 KB
- 文档页数:10
平行线的性质及推导方法平行线,是指在同一个平面内,永不相交的两条直线。
平行线的性质与推导方法是几何学中的重要内容,下面我们将详细介绍平行线的性质及推导方法。
一、平行线的性质1. 平行线定理:如果一条直线与两条平行线相交,那么这条直线将被两条平行线所截成的锐角和钝角互补。
证明:设直线l与平行线m和n相交于A点,BC与m、n平行。
由平行线的性质可知∠ABC=∠ACD,又∠ABC+∠ACD=180°(线l与m、n相交,∠ABC和∠ACD互补),所以∠ABC和∠ACD互补。
2. 平行线的性质之间的关系:如果两条平行线被一条交线所截,那么它们与这条交线所构成的内错角、内外错角、对顶角以及同位角是相等的。
证明:设直线l与平行线m和n相交于点O,AB与m平行,CD与n平行。
先证明内错角相等,连接AC、BD。
由三角形的内角和为180°可知∠ACB+∠BCA+∠CDA+∠DAB=180°,∠ACB+∠BCA+∠ADB=180°(∠CDA和∠DAB互补),所以∠ACB+∠BCA+∠CDA+∠DAB=∠ACB+∠BCA+∠ADB,化简得∠CDA=∠ADB。
同理可证∠ACD=∠ABC,∠BAC=∠DCB,∠ADC=∠BCD。
二、平行线的推导方法1. 利用平行线的性质证明线段比例关系。
证明:设AB与CD分别是平行线m和n上的两个点,交线AC与BD相交于E点。
若已知AE:EC=BD:DE,要证明AB:BC=BD:DC(即证明∆ABD∽∆CBD)。
由已知的比例关系可得:AE/EC=BD/DE,即AE/BD=EC/DE。
又因为∠AEB和∠CDE为同位角,根据同位角定理可知∠AEB=∠CDE。
由此可得∆ABE∽∆CDE,进一步得出AB:BE=CD:DE。
同理可证∆CBD∽∆ADE,从而得出BC:BD=DE:DA。
综合上述比例关系,可以得出AB:BC=BD:DC,证明了平行线性质下的线段比例关系。
平行线的判定定理和性质定理[一]、平行线的判定一、填空1.如图1,若∠A=∠3,则 ∥ ; 若∠2=∠E ,则 ∥ ; 若∠ +∠ = 180°,则 ∥ .2.若a⊥c,b⊥c,则a b .3.如图2,写出一个能判定直线l 1∥l 2的条件: . 4.在四边形ABCD 中,∠A +∠B = 180°,则 ∥ ( ). 5.如图3,若∠1 +∠2 = 180°,则 ∥ 。
6.如图4,∠1、∠2、∠3、∠4、∠5中, 同位角有 ; 内错角有 ;同旁内角有 . 7.如图5,填空并在括号中填理由:(1)由∠ABD =∠CDB 得 ∥ ( ); (2)由∠CAD =∠ACB 得 ∥ ( );(3)由∠CBA +∠BAD = 180°得 ∥ ( )8.如图6,尽可能多地写出直线l 1∥l 2的条件: .9.如图7,尽可能地写出能判定AB∥CD 的条件来: . 10.如图8,推理填空:(1)∵∠A =∠ (已知), ∴AC∥ED( );(2)∵∠2 =∠ (已知), ∴AC∥ED( ); (3)∵∠A +∠ = 180°(已知), ∴AB∥FD( );(4)∵∠2 +∠ = 180°(已知), ∴AC∥ED( ); 二、解答下列各题11.如图9,∠D =∠A,∠B =∠FCB,求证:E D∥CF.A CB 4 1 2 3 5 图4 a b c d 1 2 3 图3 A BC ED 1 2 3 图1 图2 4 3 2 1 5 a b 1 2 3A F C DB E图8EB AF D C 图9A D CB O 图5 图6 5 1 24 3 l 1 l 2 图75 4 3 2 1 A D C B12.如图10,∠1∶∠2∶∠3 = 2∶3∶4, ∠AFE = 60°,∠BDE =120°,写出图中平行的直线,并说明理由.13.如图11,直线AB 、CD 被EF 所截,∠1 =∠2,∠CNF =∠BME。
平行线与平行线的性质定理平行线是几何学中的重要概念,自古以来就引起人们的关注与探索。
在欧几里得的《几何原本》中,有关平行线的性质定理被详细地论述。
本文将对平行线及其性质定理进行探讨。
1. 平行线的定义及基本性质平行线的定义:在平面几何中,如果两条直线在同一个平面内且永不相交,那么这两条直线被称为平行线。
记作AB || CD。
平行线的基本性质:- 平行线之间的距离是恒定的,任意一点到平行线的距离相等。
- 平行线的斜率相等或者相互垂直的直线之间的斜率乘积为-1。
2. 平行线的性质定理2.1. 平行线的传递性:如果一条直线与另外两条直线分别平行,那么这两条直线也是平行的。
2.2. 平行线的对应角定理:当一条直线与两条平行线相交时,所形成的对应角相等。
2.3. 平行线的同位角定理:当一条直线与两条平行线相交时,所形成的同位角互为对应角,且相等。
2.4. 平行线的内错角定理:当两条平行线被一条截断时,所形成的内错角互为对应角,且相等。
2.5. 平行线的外错角定理:当两条平行线被一条截断时,所形成的外错角互为对应角,且相等。
2.6. 平行线的平行截线定理:当一条直线与两条平行线相交时,所形成的截线与平行线的交线段成比例。
3. 平行线定理的应用平行线定理是几何学中重要的基础理论,在实际应用中有着广泛的运用,例如:3.1. 建筑设计中,利用平行线定理可以确保建筑结构的平衡和稳定性。
3.2. 地图制作中,通过研究平行线定理可以实现地图的精确绘制与测量。
3.3. 工程规划中,运用平行线定理可以合理安排道路、桥梁等建设。
4. 总结平行线与平行线的性质定理是几何学中的基础理论,对于理解和应用几何知识具有重要意义。
通过对平行线的定义及性质定理的论述,我们可以深入了解平行线的特点以及其在实际中的应用价值。
温习这些性质定理有助于提升几何学的理解能力,培养逻辑思维和分析问题的能力。
同时,我们也可以发现平行线定理对于解决实际问题具有指导作用,能够有效地应用于各个领域的设计与规划中。
人教版初中数学教案第一篇:人教版初中数学平行线的性质教案2.3平行线的性质一、教材分析:本节课是人民教育出版社义务教育课程标准实验教科书(五四学制)七年级上册第2章第3节平行线的性质,它是平行线及直线平行的继续,是后面研究平移等内容的基础,是?空间与图形?的重要组成部分。
二、教学目标:1.知识与技能:掌握平行线的性质,能应用性质解决相关问题。
数学思考:在平行线的性质的探究过程中,让学生经历观察、比较、联想、分析、归纳、猜想、概括的全过程。
2.解决问题:通过探究平行线的性质,使学生形成数形结合的数学思想方法,以及建模能力、创新意识和创新精神。
3.情感态度与价值观:在探究活动中,让学生获得亲自参与研究的情感体验,从而增强学生学习数学的热情和勇于探索、锲而不舍的精神。
三、教学重、难点:重点:平行线的性质难点:?性质1?的探究过程四、教学方法:引导发现法?与?动像探索法?五、教具、学具:教具:多媒体课件学具:三角板、量角器。
六、教学媒体:大屏幕、实物投影七、教学过程:(一)创设情境,设疑激思:1.播放一组幻灯片。
内容:①火车行驶在铁轨上;②游泳池;③横格纸。
2.声音:日常生活中我们经常会遇到平行线,你能说出直线平行的条件吗?学生活动:思考回答。
①同位角相等两直线平行;②内错角相等两直线平行;③同旁内角互补两直线平行;教师:首先肯定学生的回答,然后提出问题。
问题:若两直线平行,那么同位角、内错角、同旁内角各有什么关系呢?引出课题——平行线的性质。
(二)数形结合,探究性质1.画图探究,归纳猜想任意画出两条平行线(a‖b),画一条截线c与这两条平行线相交,标出8个角(如图)。
问题一:指出图中的同位角,并度量这些角,把结果填入下表:第一组第二组第三组第四组同位角∠1∠5角的度数数量关系学生活动:画图——度量——填表——猜想结论:两直线平行,同位角相等。
问题二:再画出一条截线d,看你的猜想结论是否仍然成立?学生:探究、讨论,最后得出结论:仍然成立。
平行线的性质知识点1平行线的性质平行线的性质:性质1 两条平行线被第三条直线所截,同位角相等.简单说成:两直线平行,同位角相等.如图1,∵a∥b,∴∠4=∠2.性质2 两条平行线被第三条直线所截,内错角相等.简单说成:两直线平行,内错角相等.如图2,∵a∥b,∴∠4=∠5.性质3 两条平行线被第三条直线所截,同旁内角互补.简单说成:同旁内角互补,两直线平行.如图3,∵a∥b,∴∠4+∠1=180°.【典例】1.如图1,对于直线MN同侧的两个点A,B,若直线MN上的点P满足∠APM=∠BPN,则称点P为A,B在直线MN上的反射点.已知如图2,MN∥HG,AP∥BQ,点P为A,B在直线MN上的反射点,判断点B是否为P,Q在直线HG上的反射点,并说明理由.【方法总结】依据点P为A,B在直线MN上的反射点,即可得到∠APM=∠BPQ,再根据平行线的性质,即可得到∠PAB=∠PBA,经过等量代换可得∠PBA=∠QBG,所以点B是P,Q在直线HG 上的反射点.本题是新定义题,正确理解“反射点”的概念和特征,并熟练应用平行线的性质是解题的关键.【随堂练习】1.如图,已知AM∥BN,∠A=80°,点P是射线AM上动点(与A不重合),BC、BD分别平分∠ABP和∠PBN,交射线AM于C、D.(1)求∠CBD的度数;(2)当点P运动时,那么∠APB:∠ADB的度数比值是否随之发生变化?若不变,请求出这个比值;若变化,请找出变化规律;(3)当点P运动到使∠ACB=∠ABD时,求∠ABC的度数.2.如图1,AM∥CN,点B为平面内一点,AB⊥BC于B,过B作BD⊥AM.(1)求证:∠ABD=∠C;(2)如图2,在(1)问的条件下,分别作∠ABD、∠DBC的平分线交DM于E、F,若∠BFC=1.5∠ABF,∠FCB=2.5∠BCN,①求证:∠ABF=∠AFB;②求∠CBE的度数.3.已知直线l1∥l2,直线l3与l1、l2分别交于C、D两点,点P是直线l3上的一动点,如图①,若动点P在线段CD之间运动(不与C、D两点重合),问在点P的运动过程中是否始终具有∠3+∠1=∠2这一相等关系?试说明理由;如图②,当动点P在线段CD之外且在CD的上方运动(不与C、D两点重合),则上述结论是否仍成立?若不成立,试写出新的结论,并说明理由.知识点2 平行线的判定与性质的综合运用两直线平行⇔同位角相等.两直线平行⇔内错角相等.同旁内角互补⇔两直线平行.“⇔”叫做“等价于”,即由左边能推出右边,由右边也能推出左边.【典例】1.如图,已知∠1=∠2,∠3=∠4,∠5=∠A,试说明:BE∥CF.2.学习完平行线的性质与判定之后,我们发现借助构造平行线的方法可以帮我们解决许多问题.(1)小明遇到了下面的问题:如图1,l1∥l2,点P在l1、l2内部,探究∠A,∠APB,∠B的关系.小明过点P作l1的平行线,可证∠APB,∠A,∠B之间的数量关系是:∠APB=____________________.(2)如图2,若AC∥BD,点P在AC、BD外部,∠A,∠B,∠APB的数量关系是否发生变化?(3)已知:如图3,三角形ABC,试说明:∠A+∠B+∠C=180°.【方法总结】平行线的判定是由角的关系得到两直线平行,平形线的性质是由两直线平行得到角之间的关系,他们都可以作为说理的依据.其他常见的说理依据有:已知、等量代换、对顶角相等、等角的余角相等、等角的补角相等、平行于同一条直线的两条直线互相平行、三角形的内角和等于180°等.【随堂练习】1.阅读下列材料:已知:如图1,直线AB∥CD,点E是AB、CD之间的一点,连接BE、DE得到∠BED.求证:∠BED=∠B+∠D.小冰是这样做的:证明:过点E作EF∥AB,则有∠BEF=∠B.∵AB∥CD,∴EF∥CD.∴∠FED=∠D.∴∠BEF+∠FED=∠B+∠D.图1即∠BED=∠B+∠D.请利用材料中的结论,完成下面的问题:已知:直线AB∥CD,直线MN分别与AB、CD交于点E、F.(1)如图2,∠BEF和∠EFD的平分线交于点G.猜想∠G的度数,并证明你的猜想;(2)如图3,EG1和EG2为∠BEF内满足∠1=∠2的两条线,分别与∠EFD的平分线交于点G1和G2.求证:∠FG1E+∠G2=180°.2.先阅读下面的解题过程,再解答问题:如图①,已知AB∥CD,∠B=40°,∠D=30°,求∠BED的度数.解:过点E作EF∥AB,则AB∥CD∥EF,因为EF∥AB,所以∠1=∠B=40°又因为CD∥EF,所以∠2=∠D=30°所以∠BED=∠1+∠2=40°+30°=70°.如图②是小军设计的智力拼图玩具的一部分,现在小军遇到两个问题,请你帮他解决:(1)如图②∠B=45°,∠BED=75°,为了保证AB∥CD,∠D必须是多少度?请写出理由.(2)如图②,当∠G、∠GFP、∠P满足什么关系时,GH∥PQ,请直接写出满足关系的式子,并在如图②中画出需要添加的辅助线.。
2.3平行线的性质1.理解平行线的性质;(重点)2.能运用平行线的性质进行推理证明.(重点、难点)一、情境导入窗户的内窗的两条竖直的边是平行的,在推动过程中,两条竖直的边与窗户外框形成的两个角∠1、∠2有什么数量关系?二、合作探究探究点:平行线的性质【类型一】两直线平行,同位角相等如图,直线a,b与直线c,d相交,若∠1=∠2,∠3=70°,则∠4的度数是()A.35°B.70°C.90°D.110°解析:由∠1=∠2,可根据“同位角相等,两直线平行”判断出a∥b,可得∠3=∠5.再根据邻补角互补可以计算出∠4的度数.∵∠1=∠2,∴a∥b,∴∠3=∠5.∵∠3=70°,∴∠5=70°,∴∠4=180°-70°=110°.故选D.方法总结:此题主要考查了平行线的判定方法与性质1,关键是掌握平行线的判定定理与性质定理,平行线的判定是由角的数量关系判断两直线的位置关系.平行线的性质是由平行关系来寻找角的数量关系.【类型二】两直线平行,内错角相等如图,∠A=∠D,如果∠B=20°,那么∠C为()A.40°B.20°C.60°D.70°解析:∵∠A=∠D,∴AB∥CD.∵AB∥CD,∠B=20°,∴∠C=∠B=20°.故选B.【类型三】两直线平行,同旁内角互补如图,已知∠1=85°,∠2=95°,∠4=125°,则∠3的度数为()A.95°B.85°C.70°D.55°解析:根据“对顶角相等”得到∠5=∠1=85°,再由“同旁内角互补,两直线平行”得到a∥b,最后根据“两直线平行,同旁内角互补”即可得到结论.如图,∵∠5=∠1=85°,∴∠5+∠2=85°+95°=180°,∴a∥b,∴∠3+∠4=180°.∵∠4=125°,∴∠3=55°.故选D.【类型四】平行线性质的实际应用一大门的栏杆如图所示,BA垂直于地面AE于A,CD平行于地面AE,则∠ABC+∠BCD=________度.解析:过B作BF∥AE,则CD∥BF∥AE.根据平行线的性质即可求解.过B作BF∥AE,则CD∥BF∥AE,∴∠BCD+∠1=180°.又∵AB⊥AE,∴AB⊥BF,∴∠ABF=90°,∴∠ABC+∠BCD=90°+180°=270°.故答案为270.【类型五】平行线性质与判定中的探究型问题如图,AB∥CD,E,F分别是AB,CD之间的两点,且∠BAF=2∠EAF,∠CDF=2∠EDF.(1)判定∠BAE,∠CDE与∠AED之间的数量关系,并说明理由;(2)求出∠AFD与∠AED之间的数量关系.解析:平行线中的拐点问题,通常需过拐点作平行线.解:(1)∠AED=∠BAE+∠CDE.理由如下:过点E作EG∥AB.∵AB∥CD,∴AB∥EG ∥CD,∴∠AEG=∠BAE,∠DEG=∠CDE.∵∠AED=∠AEG+∠DEG,∴∠AED=∠BAE+∠CDE ;(2)同(1)可得∠AFD =∠BAF +∠CDF .∵∠BAF =2∠EAF ,∠CDF =2∠EDF ,∴∠BAE+∠CDE =32∠BAF +32∠CDF ,∴∠AED =32∠AFD . 方法总结:无论平行线中的何种问题,都可转化到基本模型中去解决,把复杂的问题分解到简单模型中,问题便迎刃而解.三、板书设计平行线的性质:性质1:两条平行线被第三条直线所截,同位角相等;性质2:两条平行线被第三条直线所截,内错角相等;性质3:两条平行线被第三条直线所截,同旁内角互补.平行线的性质是几何证明的基础,教学中注意基本的推理格式的书写,培养学生的逻辑思维能力,鼓励学生勇于尝试.在课堂上,力求体现学生的主体地位,把课堂交给学生,让学生在动口、动手、动脑中学数学。