余角和补角的概念
- 格式:ppt
- 大小:82.50 KB
- 文档页数:5
关于余角和补角的知识点1.什么是角度角度是指由两条射线相交形成的图形,一般用字母来表示,如∠A BC。
角度由两条射线的起点A、公共顶点B和终点C确定。
2.角的度量单位角的度量单位有两种常用表示方法:度(°)和弧度(ra d)。
其中,1弧度等于57.3°,1°等于π/180弧度。
在数学中,常用度作为角的度量单位。
3.余角和补角的概念余角指的是两个角的度数之和等于90°时,这两个角互为余角。
补角则是两个角的度数之和等于180°时,这两个角互为补角。
4.余角和补角的计算方法4.1余角的计算方法当已知角度α时,可以通过计算90°减去α得到其余角的度数。
例子:若角α的度数为60°,则其余角的度数为90°-60°=30°。
4.2补角的计算方法已知角度β时,可以通过计算180°减去β得到其补角的度数。
例子:若角β的度数为45°,则其补角的度数为180°-45°=135°。
5.余角和补角的性质5.1余角和补角的和等于90°(或180°)根据余角和补角的定义,两个互为余角的角的度数之和等于90°,而互为补角的角的度数之和等于180°。
例子:若角θ的余角的度数为40°,则角θ的补角的度数为90°-40°=50°。
5.2余角和补角的度数不唯一一个角的余角和补角的度数并不唯一,因为角的度数可以是任意实数。
例子:若角ω的度数为30°,则其余角的度数可以是60°、120°等,其补角的度数可以是150°、210°等。
结论余角和补角是角度的重要概念,它们不仅在几何图形的角度计算中有重要作用,而且在物理和工程问题中也具有广泛应用。
通过理解余角和补角的定义、计算方法和性质,我们能够更好地解决与角度相关的问题,并在实际应用中灵活运用。
余角和补角和对顶角令狐采学余角:如果两个角的和是一个直角,那么称这两个角互为余角,简称互余,也可以说其中一个角是另一个角的余角。
∠A +∠C=90°,∠A= 90°-∠C ,∠C的余角=90°-∠C 即:∠A的余角=90°-∠A补角:如果两个角的和是一个平角,那么这两个角叫互为补角.其中一个角叫做另一个角的补角∠A +∠C=180°,∠A= 180°-∠C ,∠C的补角=180°-∠C 即:∠A 的补角=180°-∠A对顶角:一个角的两边分别是另一个角的反向延长线,这两个角是对顶角。
两条直线相交后所得的只有一个公共顶点且两个角的两边互为反向延长线,这样的两个角叫做互为对顶角。
两条直线相交,构成两对对顶角。
对顶角相等.对顶角与对顶角相等.对顶角是对两个具有特殊位置的角的名称;对顶角相等反映的是两个角间的大小关系。
补角的性质:同角的补角相等。
比如:∠A+∠B=180°,∠A+∠C=180°,则:∠C=∠B。
等角的补角相等。
比如:∠A+∠B=180°,∠D+∠C=180°,∠A=∠D则:∠C=∠B。
余角的性质:同角的余角相等。
比如:∠A+∠B=90°,∠A+∠C=90°,则:∠C=∠B。
等角的余角相等。
比如:∠A+∠B=90°,∠D+∠C=90°,∠A=∠D则:∠C=∠B。
注意:①钝角没有余角;②互为余角、补角是两个角之间的关系。
如∠A+∠B+∠C=90°,不能说∠A、∠B、∠C互余;同样:如∠A+∠B+∠C=180°,不能说∠A、∠B、∠C互为补角;③互为余角、补角只与角的度数相关,与角的位置无关。
只要它们的度数之和等于90°或180°,就一定互为余角或补角。
余角与补角概念认识提示:(1)定义中的“互为”一词如何理解?如果∠1与∠2互余,那么∠1的余角是∠2 ,同样∠2的余角是∠1 ;如果∠1与∠2互补,那么∠1的补角是∠2 ,同样∠2的补角是∠1。
余角和补角和对顶角余角:假如两个角的和是一个直角,那么称这两个角互为余角,简称互余,也可以说个中一个角是另一个角的余角.∠A +∠C=90°,∠A= 90°-∠C ,∠C的余角=90°-∠C 即:∠A的余角=90°-∠A补角:假如两个角的和是一个平角,那么这两个角叫互为补角.个中一个角叫做另一个角的补角∠A +∠C=180°,∠A= 180°-∠C ,∠C的补角=180°-∠C 即:∠A的补角=180°-∠A对顶角:一个角的双方分离是另一个角的反向延伸线,这两个角是对顶角.两条直线订交后所得的只有一个公共极点且两个角的双方互为反向延伸线,如许的两个角叫做互为对顶角.两条直线订交,构成两对对顶角.对顶角相等.对顶角与对顶角相等.对顶角是对两个具有特别地位的角的名称;对顶角相等反应的是两个角间的大小关系.补角的性质:同角的补角相等.比方:∠A+∠B=180°,∠A+∠C=180°,则:∠C=∠B.等角的补角相等.比方:∠A+∠B=180°,∠D+∠C=180°,∠A=∠D则:∠C=∠B.余角的性质:同角的余角相等.比方:∠A+∠B=90°,∠A+∠C=90°,则:∠C=∠B.等角的余角相等.比方:∠A+∠B=90°,∠D+∠C=90°,∠A=∠D则:∠C=∠B.留意:①钝角没有余角;②互为余角.补角是两个角之间的关系.如∠A+∠B+∠C=90°,不克不及说∠A.∠B.∠C互余;同样:如∠A+∠B+∠C=180°,不克不及说∠A.∠B.∠C互为补角;③互为余角.补角只与角的度数相干,与角的地位无关.只要它们的度数之和等于90°或180°,就必定互为余角或补角.余角与补角概念熟悉提醒:(1)界说中的“互为”一词若何懂得?假如∠1与∠2互余,那么∠1的余角是∠2 ,同样∠2的余角是∠1 ;假如∠1与∠2互补,那么∠1的补角是∠2 , 同样∠2的补角是∠1.(2)互余.互补的两角是否必定有公共极点或公共边?两角互余或互补,只与角的度数有关,与地位无关.(3)∠1 + ∠2 + ∠3 = 90°(180°),能说∠1 .∠2. ∠3 互余(互补)吗?不克不及,互余或互补是两个角之间的数目关系.已知∠A与∠B互余,∠B与∠C互补,若∠A=50°,则∠C的度数是[ D ] A.40°B.50°C.130°D.140°假如∠A的补角是它的余角的4倍,则∠A=______度.设∠A为x,则∠A的余角为90°-x,补角为180°-x,依据题意得,180°-x=4(90°-x),解得x=60°.故答案为:60.已知∠ α=50°17',则∠α的余角和补角分离是[ B ]A.49°43',129°43'B.39°43',129°43'C .39°83',129°83'D.129°43′,39°43′两个角的比是6:4,它们的差为36°,则这两个角的关系是( )A .互余B .相等C .互补D .以上都不合错误设一个角为6x,则另一个角为4x, 则有6x-4x=36°,∴x=18°,则这两个角分离为108°,72°, 而108°+72°=180°∴这两个角的关系为互补. 故选C .假如∠A=35°18′,那么∠A 的余角等于______.假如∠A=35°18′,那么∠A 的余角等于90°-35°18′=54°42′. 故填54°42′.已知∠1和∠2互补,∠3和∠2互余,求证:∠3= =21(∠1-∠2).证实:由题意得:∠2+∠3=90°,∠1+∠2=180°,∴2(∠2+∠3)=∠1+∠2, 故可得:∠3=21(∠1-∠2) 如图,∠1的邻补角是[ ]A.∠BOCB.∠BOC 和∠AOFC.∠AOFD.∠BOE 和∠AOF两个角互为补角,那么这两个角大小 [ D ]假如两个角互为补角,那么这两个角必定互为邻补角,证实此命题真——加原因 假如两个角互为补角,那么这两个角必定互为邻补角,这是假命题.假如两个角互为领补角,那么这两个角必定互为补角,这是真命题.譬如说,两直线平行,同旁内角互补,但互为同旁内角的两个角必定不互为领补角.假如两个角互补,那它们是邻补角”——————为什么说这个是假命题?两条平行线切出的同旁内角也互补,但是它们不是邻补角.所以说:“假如两个角互补,那它们是邻补角”是假命题!因为邻补角是相邻的两个角互补,那么这两个角是互为邻补角,而互补的两个角有不相邻的,比方四边形的两个对角互补,则这四点共圆假如一个角是36°,那么 [ D ].它的余角是64° B.它的补角是64° C.它的余角是144° D.它的补角是144°下列说法中:①同位角相等;②两点之间,线段最短;③假如两个角互补,那么它们是邻补角;④两个锐角的和是锐角;⑤同角或等角的补角相等.准确的个数是( ) A .2个 B .3个 C .4个 D .5个①同位角相等,说法错误;②两点之间,线段最短,说法准确;③假如两个角互补,那么它们是邻补角,说法错误;④两个锐角的和是锐角,说法错误;⑤同角或等角的补角相等,说法准确;说法准确的共有2个,故选:A.下列说法准确的是()A.小于平角的角是锐角B.相等的角是对顶角C.邻补角的和等于180°D.同位角相A.小于平角的角有:锐角.直角.钝角,故本选项错误;B.对顶角相等,相等的角不必定是对顶角,故本选项错误;C.邻补角的和等于180°准确,故本选项准确;D.只有两直线平行,才有同位角相等,故本选项错误.故选C.下列说法准确的是() A.相等的角是对顶角 B.对顶角相等 C.同位角相等 D.锐角大于它的余角A.相等的角是对顶角,说法错误;B.对顶角相等,说法准确;C.同位角相等,说法错误;D.锐角大于它的余角,说法错误;故选:B.下列说法中,准确的是()A.对顶角相等B.内错角相等C.锐角相等D.同位角相等A.对顶角相等,说法准确;B.内错角相等,说法错误,只有两直线平行时,内错角才相等;C.锐角相等,说法错误,例如30°角和20°角;D.同位角相等,说法错误,只有两直线平行时,同位角才相等;故选:A.三条直线订交于一点可以构成几对对顶角?两条直线消失 2*(2-1)=2对对顶角三条直线消失 3*(3-1)=6对对顶角四条直线消失 4*(4-1)=12对对顶角依次类推,n条直线订交于一点有n*(n-1)对对顶角三条直线订交于一点,共可构成______对对顶角.如图,单个的角是对顶角的有3对,两个角的复合角是对顶角的有3对,所以,共有对顶角3+3=6对.故答案为:6.三条直线订交与一点,能构成几对对顶角?四条呢?五条呢?N条呢?我要办法和答案!三条直线订交与一点,6对;四条直线订交与一点,12对;五条直线订交与一点,20对;N条直线订交与一点,N(N-1)对;假如有n条直线订交于一点,有若干对对顶角?n的平方减去2条数个数2 2=2x13 6=3x24 12=4x35 20=5x4…………n n(n-1)三条直线订交于一点,对顶角最多有______对.把三条直线订交于一点,拆成三种两条直线交于一点的情形,因为两条直线订交于一点,形成两对对顶角,所以三条直线订交于一点,有3个两对对顶角,共6对对顶角两条直线订交,有一个交点.三条直线订交,最多有若干个交点?四条直线呢?你能发明什么纪律吗?这个其实就是组合问题.因为两条线构成一个交点,所以三条线时,从三条线中取两条线,有3*2/2=3种取法,所以有3个交点.四条线中取两条,有4*3/2=6种取法,所以有6个交点.n条线中取两条,有n(n-1)/2种取法,所以有n(n-1)/2个交点.邻补角是互补的角是真命题吗当然是,邻补角相加等于180度就是互补啊互补的角是邻补角是真命题照样假命题若是真命题,请举反例两个角有一条公共边,它们的另一条边互为反向延伸线,具有这种关系的两个角称为互为邻补角.可以随意画两个没有公共边的角,比方1个60度,另一个120度,显然它们是互补的,但是其实不是邻补角所以互补的角是邻补角这是一个假命题应当说邻补角是互补的角,这才是真命题既相邻又互补的两个角是邻补角吗两条平行线切出的同旁内角也互补,但是它们不是邻补角.所以说:“假如两个角互补,那它们是邻补角”是假命题!成互补关系的两个角互为邻补角是对照样错不合错误相邻的两个角互补称之为邻补角像两直线平行,同旁内角互补(这两个互补的角不相邻).互补的两个角是邻补角用因为所以答因为两个角是邻补角所以两个角互补反过来不成立。