染色质免疫共沉淀
- 格式:ppt
- 大小:1.26 MB
- 文档页数:18
染色质免疫共沉淀染色质免疫共沉淀(chromatin Immunoprecipitation,ChIP)是一种将DNA和相应的转录因子组装到染色质上的一项技术,可用于彻底研究基因表达调节机制。
1. 什么是染色质免疫共沉淀?染色质免疫共沉淀(ChIP)是一种将DNA和相应的转录因子组装到染色质上的实验方法,用于研究染色质的结构和功能,进而理解基因的表达如何受调控。
它是一种特别有效的去解析染色质和基因表达调节之间的联系的方法,被用于通过生物信息学等方法,研究基因表达调节的蛋白质组织关系。
2. 染色质免疫共沉淀的原理染色质免疫共沉淀的技术根据抗体结合模式可以分为单克隆抗体和聚合物抗体两种,单克隆抗体结合定向抗原,可以较好地用于基因组定点分析,它通过固定DNA模板和抗原抗体相互作用将它们结合到一起,再行沉淀,从而获取DNA模板及其相互作用位点。
聚合物抗体可以扩大辨识特异性,能够克服单克隆抗体的特异性限制,可应用于普适性抗原,可以用于核组学分析,利用共沉淀的方法结合PCR的扩增效应,将小量的DNA模板复制成更多的DNA碱基,以能够清晰地获得与染色质有关的重要信息。
3. 染色质免疫共沉淀的步骤染色质免疫共沉淀的步骤主要有:细胞培养分离、肽激活细胞和抗体免疫沉淀、PCR扩增、核酸电泳分析、数据分析。
首先,要进行细胞培养,用适当的分离方法分离出细胞,接着,激活肽将细胞激活,以提高活细胞中的蛋白质和DNA的表达、组装以及相互作用;然后,添加抗体,抗体结合模板和相应的转录因子,这样可以将抗体和DNA-转录因子复合物结合在一起,继而进行沉淀;接着,将沉淀物进行PCR 扩增,从而将少量的模板复制成多份;接着,使用DNA电泳分析来检测分析结果;最后,利用生物信息学对实验测得的数据进行分析,探索调节染色质和基因表达的蛋白质组织关系及其机制。
以上就是染色质免疫共沉淀的实验步骤。
4. 染色质免疫共沉淀的应用染色质免疫共沉淀在生物学研究方面具有重要的应用价值,在基因组学、核组学、基因表达分析、生物信息学、代谢组学、表观遗传学等方面有着广泛的应用,可用于研究染色质结构,探索基因组变异,鉴定并且定位生物体内转录因子等,是一项重要的新技术。
染色质免疫共沉淀测序技术
1染色质免疫共沉淀
染色质免疫共沉淀(ChIP-seq)是一种使用测序技术来研究染色质蛋白结合DNA及与基因表达的调控的新兴基因组学技术。
它是染色质免疫沉淀(ChIP)技术与高通量测序技术的结合。
通过染色质免疫共沉淀测序技术,可以确定细胞中的基因组上的结合位点,研究特定的蛋白质和DNA,及基因转录的调控机制,以及参与蛋白质-DNA结合的相关机制。
染色质免疫共沉淀测序是将蛋白质-DNA复合物通过染色质免疫沉淀(ChIP)技术进行收集,然后根据分子标记的位点将其测序,并且将其无功的部分暴露出来进行测序分析。
依靠ChIP-seq,可以以一种高效的方式查看某种特定蛋白质在基因组上结合的位置,并且可以分析复杂结构DNA区域位点间结合关系,也可以确定转录因子调控基因表达的路径。
染色质免疫共沉淀技术在进行基因组组学研究、基因组区域结构分析、功能元件检测、基因调控研究及转录组分析中发挥着重要作用。
传统的ChIP技术是所有细胞中的结合位点的相对分析,它们的数据可以用于描述和验证转录调控的路径,但是不能给出定性的结论,而ChIP-Seq则能够获得定性的位置并进行深入的分析。
染色质免疫共沉淀测序技术在研究复杂基因调控网络中发挥了重要作用,它可以更有效地捕捉基因表达状态,帮助研究者对研究对象
的基因表达调控进行深入的研究,使科研数据更为准确可靠,揭示出机体细胞调控的生物学机制。
免疫共沉淀和免疫沉淀
“免疫沉淀”一般是指采用固定在固相支持物上的结合蛋白,进行小规模的蛋白质亲和纯化的实验。
将蛋白通过微珠(纯化介质)进行富集。
免疫沉淀根据检测的目的可以分为免疫沉淀、免疫共沉淀(Co-IP)、染色质免疫沉淀(ChIP)和RNA免疫沉淀(RIP)。
免疫共沉淀分析(Co-IP)是免疫沉淀的延伸,基本的技术都是采用目标抗原特异性的固相化抗体;但IP的目标是纯化单一抗原,而Co-IP旨在分离抗原及与抗原结合的蛋白质或配体,主要用于蛋白-蛋白相互作用检测。
如果样品溶液中存在与靶蛋白相互作用的目的蛋白,也会被一同捕获及纯化得到,通过SDS-PAGE、Western 和质谱等方法鉴定与靶蛋白结合的蛋白。
染色质免疫沉淀(ChIP)用于鉴定基因组中与靶蛋白(如转录
因子和组蛋白)结合的区域。
将蛋白质与DNA暂时交联固定并剪切DNA,目标蛋白与核酸序列一起被沉淀后通过高通量测序、Southern和PCR等方法进行DNA鉴定。
确定与靶蛋白结合的DNA 片段。
RNA免疫沉淀(RIP)原理与ChIP相似,与靶蛋白结合的RNA被沉淀后,用高通量测序、RT-PCR或Northern等方法对沉淀进行RNA 鉴定。
随着技术的发展,目前磁性微粒已经取代琼脂糖成为免疫沉
淀的首选方法,由于磁性微粒明显小于琼脂糖,因此可以与更多的抗体结合,纯化是可以使用磁力架进行,避免了离心分离可能导致的抗原-抗体结合的破坏,避免了检测目的的损失。
上述各种免疫沉淀的异同总结如下:。
染色质免疫共沉淀技术
染色质免疫共沉淀技术(ChIP)是一种常用的分子生物学技术,也是
研究细胞基因组结构和功能的重要方法。
该技术可以用来鉴定某个转录因
子或其他核蛋白与某个特定DNA序列的结合关系,从而确定这个DNA序列
在基因表达调控中的重要性。
该技术包括以下步骤:(1)交联;(2)裂解;(3)免疫沉淀;(4)洗涤;(5)离解交联;(6)DNA提取。
在这个过程中,首先将细胞进行交联,使得染色质固定在原位。
之后,将染色质进行裂解并进行免疫沉淀,这里是将特定的抗体与目标蛋白质结合,从而使得目标蛋白质与某些DNA序列结合,并保持在染色质中。
然后
对免疫沉淀后的复合物进行洗涤,去除杂质物质,以提高免疫沉淀的特异
性和纯度。
之后,对免疫沉淀后的复合物进行离解交联,使免疫沉淀的蛋
白质与DNA分别被分解为单独的分子。
最后,从免疫沉淀复合物中提取DNA,用于进一步的分析,例如PCR扩增、Southern blotting、测序等。
该技术的优点是可以在整个基因组范围内寻找目标DNA序列的结合蛋白,相对快速、成本低、灵敏度高,并且可以直接从原位染色质富集DNA
序列。
缺点是免疫沉淀的特异性和纯度可能受到影响,需要对实验进行严
谨控制。
染色质免疫共沉淀(ChIP)是一种常用的分子生物学技术,用于研究某个特定蛋白质与染色质上的特定区域之间的相互作用。
该技术在生物医学研究中得到广泛应用,可以帮助我们了解基因表达调控、信号转导、疾病发生机制等方面的问题。
一、ChIP的原理ChIP技术的基本原理是利用抗体特异性地结合目标蛋白质,然后通过共沉淀的方式将与该蛋白质结合的DNA序列一起提取出来。
这些DNA序列可以通过PCR扩增、测序等方法进行进一步的分析。
ChIP的具体操作流程如下:1. 交联:将细胞或组织中的染色质与蛋白质进行交联,使蛋白质与DNA序列紧密结合。
2. 超声破碎:将交联后的细胞或组织进行机械破碎,使染色质断裂并释放出蛋白质与DNA 序列。
3. 免疫共沉淀:将待测蛋白质与抗体结合,然后将混合物与蛋白质与DNA序列结合的破碎染色质混合并共沉淀。
4. 去交联:将共沉淀的混合物进行去交联处理,使DNA序列与蛋白质分离。
5. DNA提取:将去交联后的DNA序列进行提取和纯化,以便进行进一步的分析。
二、应用举例ChIP技术可以用于研究许多生物学问题。
以下是一些具体的应用举例:1. 研究基因表达调控ChIP技术可以用于研究转录因子与DNA序列之间的相互作用,从而了解基因的表达调控机制。
例如,研究转录因子与启动子区域之间的相互作用,可以了解转录因子如何调控基因的转录。
2. 研究表观遗传修饰ChIP技术可以用于研究表观遗传修饰与DNA序列之间的相互作用,从而了解表观遗传修饰对基因表达的影响。
例如,研究组蛋白修饰与某个基因的启动子区域之间的相互作用,可以了解组蛋白修饰如何影响该基因的转录。
3. 研究疾病发生机制ChIP技术可以用于研究某些疾病发生机制。
例如,研究某些转录因子与某些疾病相关基因的启动子区域之间的相互作用,可以了解这些转录因子如何调控疾病相关基因的表达。
三、总结ChIP技术是一种重要的分子生物学技术,可以用于研究许多生物学问题。
该技术的基本原理是利用抗体特异性地结合目标蛋白质,然后通过共沉淀的方式将与该蛋白质结合的DN A序列一起提取出来。
1. 概述chip-seq技术1.1 chip-seq是一种用于研究染色质蛋白与DNA相互作用的技术 1.2 蛋白与DNA的相互作用对于基因表达和细胞功能非常重要1.3 chip-seq技术的原理是利用染色质免疫共沉淀(ChIP)和高通量测序(sequencing)相结合2. ChIP-seq技术的步骤2.1 细胞或组织的交联2.2 细胞或组织的裂解和核的提取2.3 免疫共沉淀2.4 DNA纯化2.5 测序和数据分析3. 染色质免疫共沉淀原理3.1 免疫共沉淀是指利用特异性抗体将靶蛋白与DNA结合并进行共沉淀3.2 抗体的具体选择非常重要,需要保证抗体能够特异性结合到目标蛋白3.3 免疫共沉淀的原理是利用抗体与靶蛋白的特异性结合来将靶蛋白与DNA结合物沉淀下来3.4 靶蛋白和DNA结合物的提取可以通过酸碱或酶的方法进行4. ChIP-seq技术的应用4.1 在研究基因表达调控中的应用4.2 在研究细胞分化和组织发育中的应用4.3 在研究疾病发生和发展中的应用4.4 在药物研发中的应用5. ChIP-seq技术的优势和局限性5.1 优势包括高灵敏度、高特异性和全基因组覆盖5.2 局限性包括实验操作复杂、数据分析费时费力6. 结语6.1 chip-seq技术作为一种重要的分子生物学技术,在基因组学和表观遗传学研究中发挥着重要作用6.2 虽然其原理复杂,但结合高通量测序技术,能够为科研工作者提供丰富的信息资源6.3 随着技术的不断发展和完善,chip-seq技术在生命科学领域的应用前景将更加广阔。
7. ChIP-seq 技术在生物学研究中的应用ChIP-seq 技术在生物学研究中展现出了广泛的应用价值,特别是在基因表达调控的研究中发挥了重要作用。
通过 ChIP-seq 技术,研究人员可以对特定转录因子与 DNA 的结合位点进行高通量测序,从而获得全基因组范围内的转录因子结合位点的信息。
这种技术的应用可以帮助研究人员更深入地理解基因表达调控的机制,发现新的转录因子结合位点以及破解染色质的三维结构和动态变化。
染色质免疫共沉淀分组(Chromatin Immunoprecipitation,ChIP)是一种用于研究染色质结构和功能的技术,通常用于研究特定蛋白与DNA的结合以及与转录因子相关的基因调控元件。
在进行ChIP实验时,通常会根据实验目的和需要研究的具体基因或蛋白进行分组。
以下是一个可能的ChIP分组方案,共计800字:1. 组一:研究转录因子与DNA的结合实验目的:通过ChIP分析特定转录因子与DNA的结合位点,研究转录因子在细胞内的作用机制和基因调控网络。
实验分组:(1)抗体组:使用特异性抗体针对转录因子进行免疫沉淀。
(2)对照组:使用等量未被抗体结合的DNA进行免疫沉淀作为对照。
(3)质谱分析组:对免疫沉淀后的DNA进行质谱分析,鉴定出结合转录因子的特异性DNA 序列。
2. 组二:研究组蛋白修饰与染色质结构的关系实验目的:通过ChIP分析特定组蛋白修饰与染色质结构的关系,研究基因表达的调控机制。
实验分组:(1)抗体组:使用特异性抗体针对组蛋白修饰(如H3K36me2)进行免疫沉淀。
(2)对照组:使用等量未被抗体结合的DNA进行免疫沉淀作为对照。
(3)测序分析组:对染色质免疫沉淀后解旋的DNA片段进行测序,分析染色质结构的变化。
3. 组三:研究RNA聚合酶与基因转录的关系实验目的:通过ChIP分析RNA聚合酶与基因启动子的结合,研究基因转录的起始位点。
实验分组:(1)抗体组:使用特异性抗体针对RNA聚合酶进行免疫沉淀。
(2)基因组DNA组:分析免疫沉淀后提取的DNA是否含有预期的基因启动子区域。
(3)基因表达组:在相同条件下培养细胞,分析基因表达的变化,以验证RNA聚合酶与基因转录的关系。
以上是三种可能的ChIP分组方案,可以根据实验目的和具体需求进行调整和组合。
通过ChIP 技术,我们可以深入了解基因表达调控的机制,为疾病研究和药物开发提供重要基础数据。
一、超声剪切染色质1.用37℃预温的1%PFA固定10-20min,使DNA与蛋白质交联2.终止交联,加入终浓度为0.125M的甘氨酸3.用预冷的PBS洗2次4.用PBS将细胞刮下(5mlPBS+1mMPMSF+1mg/ml抑肽酶)5.4500rpm5min(此阶段细胞沉淀可储存于-80℃)6.弃上清,按200ul/106个细胞加入SDS lysis buffer(现加PMSF&coktail),冰上10min(4℃rotation 30min)7.27G针头注射器吹打3遍,若有气泡离心8.超声:不可有气泡,超两次后放到冰上9.离心:4℃,12000rpm,20min,上清转移到15ml离心管二、Ab沉淀目的染色质1.用dilution buffer稀释至1ml2.取50ul Input(也可取少量做lgG阴性对照,RNaseⅡ阴性对照)备注:取450ul做lgGcontrol,剩余500ul3.剩下的加一抗(5ul/ml),4℃rotate过夜4.向样品中加入50ul ProteinA+Gbeads,4℃rotate2h,之后可在冰上沉淀一会5.离心,1000rpm1min,留上清6.洗珠子,1ml/5min/次,在4℃rotate,再在冰上静置5min,1000rpm1min。
洗涤顺序为:低盐溶液→高盐溶液→LicL(之前在4℃)→TE→TE(室温)三、去除蛋白质1.Elution buffer(1%SDS、0.1MNaHCO3;0.5gSDS,0.42gNaHCO3 in 50ml ddH20)+250uL RT15min rotate →离心1000rpm1min→上清(收集)→+250ulRT 10min →金属65℃5min→上清(收集)2.上清+20ul5M NaClInput+450ul elution buffer+20ul 5M NaCl65℃6-7h或过夜3.10ul0.5MEDTA,20ul1MTris-HCl +2ul 10mg/ml 蛋白酶K(50℃1h)?四、提纯DNA1.加等体积(500ul)Tris-饱和酚,剧烈混匀,14500rpm10min,取上清,加入500ulCHCl3混匀后14500rpm10min,取上清后再加入tRNA60ug (200ug/ml,3ul),加异丙醇500ul,离心14500rpm20min 弃上清2.加70%酒精洗一遍,14500rpm5min,(要去掉上清,先倒掉,倒掉之后离心一下再扔掉液体)将管子倒扣空气晾干。