材料力学07应力与应变分析 强度理论
- 格式:ppt
- 大小:2.57 MB
- 文档页数:65
第七章应力和应变分析强度理论1.单元体最大剪应力作用面上必无正应力答案此说法错误(在最大、最小正应力作用面上剪应力一定为零;在最大剪应力作用面上正应力不一定为零。
拉伸变形时,最大正应力发生在横截面上,在横截面上剪应力为零;最大剪应力发生在45度角的斜截面上,在此斜截面上正应力为σ/2。
)2. 单向应力状态有一个主平面,二向应力状态有两个主平面答案此说法错误(无论几向应力状态均有三个主平面,单向应力状态中有一个主平面上的正应力不为零;二向应力状态中有两个主平面上的正应力不为零)3. 弯曲变形时梁中最大正应力所在的点处于单向应力状态答案此说法正确(最大正应力位于横截面的最上端和最下端,在此处剪应力为零。
)4. 在受力物体中一点的应力状态,最大正应力作用面上切应力一定是零答案此说法正确(最大正应力就是主应力,主应力所在的面剪应力一定是零)5.应力超过材料的比例极限后,广义虎克定律不再成立答案此说法正确(广义虎克定律的适用范围是各向同性的线弹性材料。
)6. 材料的破坏形式由材料的种类而定答案此说法错误(材料的破坏形式由危险点所处的应力状态和材料的种类综合决定的)7. 不同强度理论的破坏原因不同答案此说法正确(不同的强度理论的破坏原因分别为:最大拉应力、最大线应变、最大剪应力、形状比能。
)二、选择1.滚珠轴承中,滚珠与外圆接触点为应力状态。
A:二向; B:单向C:三向D:纯剪切答案正确选择C(接触点在铅垂方向受压,使单元体向周围膨胀,于是引起周围材料对接触点在前后、左右方向的约束应力。
)2.厚玻璃杯因沸水倒入而发生破裂,裂纹起始于。
A:内壁 B:外壁 C:内外壁同时 D:壁厚的中间答案正确选择:B (厚玻璃杯倒入沸水,使得内壁受热膨胀,外壁对内壁产生压应力的作用;内壁膨胀使得外壁受拉,固裂纹起始于外壁。
)3. 受内压作用的封闭薄壁圆筒,在通过其壁上任意一点的纵、横两个截面中。
A:纵、横两截面均不是主平面; B:横截面是主平面、纵截面不是主平面;C:纵、横二截面均是主平面; D:纵截面是主平面,横截面不是主平面;答案正确选择:C (在受内压作用的封闭薄壁圆筒的壁上任意取一点的应力状态为二向不等值拉伸,其σx =pD/4t、σy=pD/2t。
本章应力和应变分析与强度理论的知识结构框图本章应力和应变分析与强度理论重点、难点、考点本章重点是应力状态分析,要掌握二向应力状态下斜截面上的应力、主应力、主平面方位及最大切应力的计算。
能够用广义胡克定律求解应力和应变关系。
理解强度理论的概念,能够按材料可能发生的破坏形式,选择适当的强度理论。
难点主要有 ① 主平面方位的判断。
当由解析法求主平面方位时,结果有两个相差 90 ”的方位角,一般不容易直接判断出它们分别对应哪一个主应力,除去直接将两个方位角代人式中验算确定的方法外,最简明直观的方法是利用应力圆判定,即使用应力圆草图。
还可约定y x σσ≥,则两个方位中绝对值较小的角度对应max σ所在平面。
② 最大切应力。
无论何种应力状态,最大切应力均为2/)(31max σστ-=,而由式( 7 一 l )中第二式取导数0d d =ατα得到的切应力只是单元体的极值切应力,也称为面内最大切应力,它仅对垂直于Oxy 坐标平面的方向而言。
面内最大切应力不一定是一点的所有方位面中切应力的最大值,在解题时要特别注意,不要掉人“陷阱”中。
本章主要考点: ① 建立一点应力状态的概念,能够准确地从构件中截取单元体。
② 二向应力状态下求解主应力、主平面方位,并会用主单元体表示。
会计算任意斜截面上的应力分量。
③ 计算单元体的最大切应力。
④ 广义胡克定律的应用。
⑤ 能够选择适当的强度理论进行复杂应力状态下的强度计算,会分析简单强度破坏问题的原因。
本章应力和应变分析与强度理论的习题分类及解题要点:本章习题大致可分为四类:( l )从构件中截取单元体这类题一般沿构件截面截取一正六面体,根据轴力、弯矩判断横截面上的正应力方向,由扭矩、剪力判断切应力方向,单元体其他侧面上的应力分量由力平衡和切应力互等定理画完整。
特别是当单元体包括构件表面(自由面)时,其上应力分量为零。
( 2 )复杂应力状态分析一般考题都不限制采用哪一种方法解题,故最好采用应力圆分析,它常常能快速而有效地解决一些复杂的问题。