4-7能态密度和费米面
- 格式:ppt
- 大小:1.42 MB
- 文档页数:52
固体物理教学⼤纲课程名称固体物理课程性质专业必修课《固体物理》教学⼤纲⼀、课程名称:固体物理⼆、课程性质:专业必修课三、课程教学⽬的:(⼀)课程⽬标:通过固体物理学课程的学习,使学⽣树⽴起晶体内原⼦、电⼦等微观粒⼦运动的物理图像及其有关模型,掌握晶体内微观粒⼦的运动规律及其与晶体宏观性能的物理联系,深刻理解晶体宏观性能的微观物理本质,为进⼀步学习和研究固体物理学各种专门问题及相关领域的内容建⽴初步的理论基础。
(⼆)教学⽬标:第⼀章晶体结构【教学⽬标】通过本章的教学,使学⽣了解晶格结构的实例、⾮晶态和准晶态的特征;理解和掌握晶体结构的周期性特征及其描述⽅法;理解和掌握晶体结构的对称性特征及其描述⽅法;理解和掌握倒格⼦的定义及其与正格⼦的关系;熟悉有关晶体结构的基本分析与计算。
借助于多媒体展⽰,使学⽣建⽴起晶体结构特征的直观图像。
第⼆章晶体的结合【教学⽬标】通过本章的教学,使学⽣了解晶体结合⼒的⼀般性质;掌握晶体的结合类型与特征;理解元素和化合物晶体结合的规律性;掌握离⼦晶体的结合能、体积弹性模量的计算;掌握范德⽡⽿斯晶体的结合能、体积弹性模量的计算。
在教学中,能够使学⽣认识到吸引与排斥的⽭盾的差别和对⽴统⼀是认识与理解固体的结合规律与性质的关键,培养学⽣的辩证思维能⼒。
第三章晶格振动与晶体的热学性质【教学⽬标】通过本章的教学,能够使学⽣理解简谐近似、格波概念、声⼦概念;理解玻恩-卡曼边界条件;了解三维格波的⼀般规律、晶格振动的⾮简谐效应;了解确定晶格振动谱的实验⽅法;掌握⼀维单原⼦、双原⼦晶格振动的格波解与⾊散关系;掌握晶格振动模式密度的计算⽅法;理解晶格热容量的量⼦理论、掌握爱因斯坦模型与德拜模型;理解格林爱森近似、掌握晶格状态⽅程。
结合例题分析和习题训练,提⾼学⽣分析问题和解决问题的能⼒。
第四章能带理论【教学⽬标】通过本章的教学,使学⽣能够了解晶体能带理论的基本假设和处理问题的基本思路;理解布洛赫定理及其推论的证明,掌握晶体能带的基本特征;熟悉克龙尼克—潘纳模型的求解与结论;熟悉布⾥渊区、费⽶⾯等基本概念;了解平⾯波⽅法、赝势⽅法;掌握近⾃由电⼦近似⽅法及其结论;掌握紧束缚近似⽅法的运⽤;掌握能态密度的计算⽅法。
《固体物理学》教学大纲一、说明1、课程的性质、地位和任务固体物理学是研究固体的结构及其组成粒子(原子、离子、电子等)之间相互作用与运动规律以阐明其性能与用途的学科。
固体物理学融汇了力学、热力学与统计物理学、电动力学、量子力学和晶体学等多学科的知识,在现代科学技术中起着非常重要的作用,是物理学的重要组成部分,是物理专业的必修基础课。
本课程主要介绍固体物理学的基础知识和基本理论,为进一步学习和研究固体物理学各种专门问题及相关领域的内容建立初步的理论基础。
在课程教学过程中,进一步培养学生的现代科学意识,提高分析问题与解决问题的综合能力及创新思维的能力。
2、课程教学的基本要求 (1)了解固体物理学发展的主要历程及固体物理对现代物理学与现代科学技术发展的作用。
(2)了解固体物理学及凝聚态领域的当代前沿概况。
(3)掌握固体物理学的基本概念与基础理论。
(4)掌握固体物理学分析与处理问题的基本手段和思想方法。
3、本课程的重点与难点 (1)重点: 一是晶格理论, 二是固体电子理论。
晶格理论包括:晶体结构的基本特点和类型及对称性质;确定晶体结构的X 射线衍射方法;晶体的结合类型与特点;晶格振动与晶体的热学性质。
固体电子论包括:固体中电子的能带理论;金属中自由电子理论和电子的输运性质。
(2)难点:倒点阵的性质及其与正点阵的关系;晶体X 射线衍射的分析;晶格振动的色散关系与模式密度;布洛赫定理及推论;晶体中电子的准经典运动与有效质量。
课程性质: 专业必修课 先修课程: 热力学与统计物理学、电动力学、量子力学总学时:51 学分: 3理论学时:51 实验或讨论学时: (无课程实验)开课学院:物理与电子信息学院 适用专业:物理学大纲执笔人:陶松涛 大纲编写时间: 2007-2-9教研室主任审核:教学院长审定:二、课堂教学时数及课后作业题型分配(含数量)三、正文第一章晶体结构【教学目的】通过本章的教学,使学生了解晶格结构的实例、非晶态和准晶态的特征;理解和掌握晶体结构的周期性特征及其描述方法;理解和掌握晶体结构的对称性特征及其描述方法;理解和掌握倒格子的定义及其与正格子的关系;熟悉有关晶体结构的基本分析与计算。
固体物理概念总结——期末考试、考研必备!!第一章1、晶体-----内部组成粒子(原子、离子或原子团)在微观上作有规则的周期性重复排列构成的固体。
晶体结构——晶体结构即晶体的微观结构,是指晶体中实际质点(原子、离子或分子)的具体排列情况。
金属及合金在大多数情况下都以结晶状态使用。
晶体结构是决定固态金属的物理、化学和力学性能的基本因素之一。
2、晶体的通性------所有晶体具有的共通性质,如自限性、最小内能性、锐熔性、均匀性和各向异性、对称性、解理性等。
3、单晶体和多晶体-----单晶体的内部粒子的周期性排列贯彻始终;多晶体由许多小单晶无规堆砌而成。
4、基元、格点和空间点阵------基元是晶体结构的基本单元,格点是基元的代表点,空间点阵是晶体结构中等同点(格点)的集合,其类型代表等同点的排列方式。
倒易点阵——是由被称为倒易点或倒易点的点所构成的一种点阵,它也是描述晶体结构的一种几何方法,它和空间点阵具有倒易关系。
倒易点阵中的一倒易点对应着空间点阵中一组晶面间距相等的点格平面。
5、原胞、WS原胞-----在晶体结构中只考虑周期性时所选取的最小重复单元称为原胞;WS原胞即Wigner-Seitz原胞,是一种对称性原胞。
6、晶胞-----在晶体结构中不仅考虑周期性,同时能反映晶体对称性时所选取的最小重复单元称为晶胞。
7、原胞基矢和轴矢----原胞基矢是原胞中相交于一点的三个独立方向的最小重复矢量;晶胞基矢是晶胞中相交于一点的三个独立方向的最小重复矢量,通常以晶胞基矢构成晶体坐标系。
8、布喇菲格子(单式格子)和复式格子------晶体结构中全同原子构成的晶格称为布喇菲格子或单式格子,由两种或两种以上的原子构成的晶格称为复式格子。
9、简单格子和复杂格子(有心化格子)------一个晶胞只含一个格点则称为简单格子,此时格点位于晶胞的八个顶角处;晶胞中含不只一个格点时称为复杂格子,其格点除了位于晶胞的八个顶角处外,还可以位于晶胞的体心(体心格子)、一对面的中心(底心格子)和所有面的中心(面心格子)。
固体物理名词解释本文介绍了固体物理中的晶体结构和相关名词解释。
晶体是由内部组成粒子(原子、离子或原子团)在微观上有规则的周期性重复排列构成的固体。
晶体结构是指晶体中实际质点(原子、离子或分子)的具体排列情况,是决定固态金属的物理、化学和力学性能的基本因素之一。
所有晶体具有的共通性质包括自限性、最小内能性、锐熔性、均匀性和各向异性、对称性、解理性等。
单晶体的内部粒子的周期性排列贯彻始终,而多晶体由许多小单晶无规堆砌而成。
晶体结构中的基元是晶体结构的基本单元,格点是基元的代表点,空间点阵是晶体结构中等同点(格点)的集合,其类型代表等同点的排列方式。
倒易点阵是由被称为倒易点或倒易点的点所构成的一种点阵,它也是描述晶体结构的一种几何方法,它和空间点阵具有倒易关系。
原胞是在晶体结构中只考虑周期性时所选取的最小重复单元,WS原胞即Wigner-Seitz原胞,是一种对称性原胞。
晶胞是在晶体结构中不仅考虑周期性,同时能反映晶体对称性时所选取的最小重复单元。
原胞基矢是原胞中相交于一点的三个独立方向的最小重复矢量,晶胞基矢是晶胞中相交于一点的三个独立方向的最小重复矢量,通常以晶胞基矢构成晶体坐标系。
晶体结构中全同原子构成的晶格称为布喇菲格子或单式格子,由两种或两种以上的原子构成的晶格称为复式格子。
一个晶胞只含一个格点则称为简单格子,此时格点位于晶胞的八个顶角处;晶胞中含不只一个格点时称为复杂格子,其格点除了位于晶胞的八个顶角处外,还可以位于晶胞的体心(体心格子)、一对面的中心(底心格子)和所有面的中心(面心格子)。
倒格子是晶格经过傅里叶变换所得到的几何格子,其中倒格子基矢可以用公式(1)和(2)表示,其中2πρ是一个常数,a和b是正格子基矢,且b= a×a。
倒格子空间是正格子的倒易空间。
布里渊区是倒空间中由倒格矢的中垂面所围成的区域,其中第一布里渊区是倒格矢的中垂面所围成的最小区域,是倒空间中的对称性原胞。
金属中的元激发:费米面与能态密度研究引言:金属是一类具有良好导电性质的物质,其中的电子在金属中存在自由运动的状态。
在金属中,电子的运动特性受费米面和能态密度的影响。
费米面是一种描述金属电子状态的概念,它决定了金属中电子的分布规律和运动行为。
能态密度则描述了在能量空间中单位能量范围内的电子态的数目。
这篇文章将介绍金属中费米面与能态密度的研究以及相关的实验准备和过程,并探讨这些研究的应用和其他专业性角度。
一、费米面与能态密度的基本概念费米面是描述金属中电子分布的一个关键概念,它由能量空间中能量等于费米能级的平面构成。
费米能级是电子能量的一个特殊值,与温度有关。
当温度接近绝对零度时,费米能级处于最低能量状态,称为费米能量。
费米面将能量空间分为两个区域,其中一个区域被称为价带(空带),另一个被称为导带(填充带)。
费米面的形状和位置对金属的导电性、热导性等性质有重要影响。
能态密度描述了在能量空间中单位能量范围内的电子态的数目。
对于金属而言,能态密度通常是指单位体积中单位能量范围内的电子态数目。
能态密度与费米面的形状和位置密切相关,它对金属的电子能级布局以及其他物性参数(如电导率、热导率等)提供了重要信息。
因此,研究费米面和能态密度对于理解金属的电子结构和性质具有重要意义。
二、实验准备进行费米面与能态密度的研究需要一些实验准备。
首先,需要使用合适的金属样品。
常用的金属样品有铜、银、铝等。
接下来,需要对样品进行制备和处理,以确保样品的纯净性和均匀性。
通常,可通过电子束蒸发、磁控溅射等方法制备金属样品。
在实验中还需要使用一系列仪器设备,例如电子能谱仪(如XPS、UPS等),扫描隧道显微镜(STM)、拉曼光谱仪等。
这些仪器设备能够通过测量样品的电子能谱、原子排列等物理量来获取关于费米面和能态密度的信息。
三、实验过程1. 电子能谱测量:使用电子能谱仪(如XPS)对金属样品进行测量。
该仪器能够通过测量样品表面电子能谱来分析费米面和能态密度。
04_07 能态密度和费密面 1 能态密度函数—— 原子中电子的能量是一系列分立的能级,在固体中电子的能量由一些准连续的能级形成的能带 能量在之间的能态数目~E E E +ΔZ Δ能态密度函数:0()limE ZN E EΔ→Δ=Δ在空间,根据构成的面为等能面,如图XCH004_036所示。
k K ()E k constant =K—— 由围成的体积为E and E E +ΔV Δ—— 空间电子的状态密度:k K 3(2)V π —— 动量标度下的能态密度~E E E +Δ之间的能态数目:3(2)VZ dSdk πΔ=∫ —— dSdk ∫是~E E E +Δ围成的体积 —— 是两个等能面间的垂直距离,有dk k dk E E ∇=Δ将k Edk E Δ=∇代入3(2)V Z dSdk πΔ=∫得到:3(2)k V dS Z E E π⎛⎞Δ=Δ⎜⎟∇⎝⎠∫ —— 能态密度3()(2)k V dSN E Eπ=∇∫—— 考虑到电子的自旋,能态密度:3()4k V dSN E Eπ=∇∫1) 自由电子的能态密度—— 电子的能量:22()2k E k m=K =在空间等能面是半径k K 2mE k ==的球面,如图XCH004_044_01在球面上k dE E dk∇=—— 2k kE m∇==在球面上为一常数 能态密度:3()4k V dSN E Eπ=∇∫ 3()4k VN E dS Eπ=∇∫ —— 232()44V mN E k kππ=⋅= 将2mEk ==代入得到:31222222()()(2)V m N E E π==—— 能量标度下的能态密度 2) 近自由电子的能态密度—— 晶体的周期性势场对能量的影响表现在布里渊区附近 等能面的变化—— 考虑第一布里渊区的等能面的情况对于二维正方格子,波矢在接近布里渊区的A 点时,能量受到周期性的微扰而下降,等能面将向边界凸现。
在A 点到C 点之间,等能面不再是完整的闭合面,而是分割在各个顶点附近的曲面 —— 如图XCH004_038所示z 能态密度的变化随着接近布里渊区,等能面不断向边界凸现,两个等能面之间的体积不断增大,能态密度较自由电子的将显著增大。