固体物理第12课能态密度.ppt
- 格式:ppt
- 大小:1.83 MB
- 文档页数:21
能带和态密度引言能带和态密度是固体物理学中的重要概念,它们对于理解物质的电子结构和导电性质具有重要意义。
能带理论是固体物理学中最基本的理论之一,它描述了电子在晶体中的运动方式和能量分布。
态密度则是描述在一定能量范围内,单位体积内存在的电子态数目。
本文将深入探讨能带和态密度的概念、性质以及在固体物理学研究中的应用。
一、能带1.1 能带结构在晶体中,原子之间存在相互作用力,导致了电子在晶格中运动时受到周期性势场的束缚。
根据量子力学原理,电子具有波粒二象性,在晶格势场下形成了波动性质。
根据布洛赫定理,在周期势场下,波函数可以表示为平面波与周期函数之积。
通过对波函数解析形式进行数学推导,可以得到离散化的能量分布。
根据离散化得到的能量分布图谱,在一维情况下可以将其表示为离散化点之间相连的线段,称为能带。
能带的形状和特征取决于晶体的结构和原子之间的相互作用。
晶体中存在多个能带,其中价带和导带是最为重要的两个能带。
价带是电子在晶体中受束缚状态下的能量分布,而导带则是电子在晶体中具有较高能量状态下的分布。
两者之间存在禁闭区域,称为禁闭区。
1.2 能带理论为了更好地理解电子在固体中运动和分布规律,科学家提出了多种模型和理论。
其中最著名且广泛应用于固体物理学研究中的是紧束缚模型和自由电子模型。
紧束缚模型假设原子之间存在较强相互作用力,电子主要局域在原子附近运动。
该模型通过考虑原子轨道之间的重叠以及相互作用力来描述电子在晶格中运动。
该模型更适用于描述局域化电子行为以及强关联效应。
自由电子模型则假设固体中的电子可以自由地运动,并且不受到其他粒子或者势场限制。
该模型通过简化数学形式,将电子视为自由粒子,从而得到了一维、二维和三维情况下的能带结构。
自由电子模型适用于描述弱关联电子行为以及导体、半导体等材料的电子结构。
二、态密度2.1 态密度的概念态密度是描述在一定能量范围内,单位体积内存在的电子态数目。
在固体物理学中,态密度是研究材料中电子行为和导电性质的重要物理量。
能带结构和态密度图的绘制及初步分析前几天在QQ的群中和大家聊天的时候,发现大家对能带结构和态密度比较感兴趣,我做计算已经有一年半了,有一些经验,这里写出来供大家参考参考,希望能够对初学者有所帮助,另外写的这些内容也不可能全都正确,只希望通过表达出来和大家进行交流,共同提高。
MS这个软件的功能确实是比较强,但是也有一些地方不尽如人意的地方。
(也可能是我对一些结果不会分析所致,有些暂时不能解决的问题在最后一部分提出,希望大家来研究研究,看看有没有实现的可能性)。
能带结构、态密度和布居分析是很重要的内容,在分析能带结构和态密度的时候,往往是先作图,然后分析。
软件本身提供的作图功能并不是很强,比如说能带结构(只能带只能做point图和line图),不美观不说,对于每一个能带的走势也不好观察,感觉无从下手。
所以我一般用origin作图(右图是用origin做的能带图)。
能带结构和态密度的作图过程请参考我给大家提供的动画。
接下来我们先开看看能带结构的分析和制作!第一部分:能带结构这个部分打算先简单的介绍一下能带的基础知识,希望能对大家有所帮助,如果对能带了解比较深入的朋友,可以跳过这个部分内容,之中不当之处请勿见笑。
^_^第一个问题是:1、能带是怎样形成——轨道和一维体系的能带。
这是最基本的一个问题,我们要对能带结构进行分析,首先要知道它是如何来的。
其实能带是一种近似的结果(可以看成一种近似),是周期边界条件(bloch函数)下的一种近似。
先来看看一个最简单的问题,非周期体系有没有能带结构?答案是没有的,大家可以试试:①建一个周期的晶胞②选择build菜单下的symmetry子菜单下的none periodic superstructure去掉周期边界条件性③看看还能够运行吗?运行(run)按钮变灰了,不能提交作业了。
这说明什么问题?这说明这个CASTEP这个模块不能计算非周期的体系,另外可以参考MS中的DMOL模块,它可以计算非周期系统,虽然可以计算周期系统,但是仍不能计算能带,大家可以试试,看看property中的band structure能不能选上,一定不能!!^_^从这里,我们可以得到一个结论,对于单个原子(分子、单胞)如果不加上周期边界条件,是无法获得能带结构的。
04_07 能态密度和费密面 1 能态密度函数—— 原子中电子的能量是一系列分立的能级,在固体中电子的能量由一些准连续的能级形成的能带 能量在之间的能态数目~E E E +ΔZ Δ能态密度函数:0()limE ZN E EΔ→Δ=Δ在空间,根据构成的面为等能面,如图XCH004_036所示。
k K ()E k constant =K—— 由围成的体积为E and E E +ΔV Δ—— 空间电子的状态密度:k K 3(2)V π —— 动量标度下的能态密度~E E E +Δ之间的能态数目:3(2)VZ dSdk πΔ=∫ —— dSdk ∫是~E E E +Δ围成的体积 —— 是两个等能面间的垂直距离,有dk k dk E E ∇=Δ将k Edk E Δ=∇代入3(2)V Z dSdk πΔ=∫得到:3(2)k V dS Z E E π⎛⎞Δ=Δ⎜⎟∇⎝⎠∫ —— 能态密度3()(2)k V dSN E Eπ=∇∫—— 考虑到电子的自旋,能态密度:3()4k V dSN E Eπ=∇∫1) 自由电子的能态密度—— 电子的能量:22()2k E k m=K =在空间等能面是半径k K 2mE k ==的球面,如图XCH004_044_01在球面上k dE E dk∇=—— 2k kE m∇==在球面上为一常数 能态密度:3()4k V dSN E Eπ=∇∫ 3()4k VN E dS Eπ=∇∫ —— 232()44V mN E k kππ=⋅= 将2mEk ==代入得到:31222222()()(2)V m N E E π==—— 能量标度下的能态密度 2) 近自由电子的能态密度—— 晶体的周期性势场对能量的影响表现在布里渊区附近 等能面的变化—— 考虑第一布里渊区的等能面的情况对于二维正方格子,波矢在接近布里渊区的A 点时,能量受到周期性的微扰而下降,等能面将向边界凸现。
在A 点到C 点之间,等能面不再是完整的闭合面,而是分割在各个顶点附近的曲面 —— 如图XCH004_038所示z 能态密度的变化随着接近布里渊区,等能面不断向边界凸现,两个等能面之间的体积不断增大,能态密度较自由电子的将显著增大。
能带结构和态密度图的绘制及初步分析前几天在QQ的群中和大家聊天的时候,发现大家对能带结构和态密度比较感兴趣,我做计算已经有一年半了,有一些经验,这里写出来供大家参考参考,希望能够对初学者有所帮助,另外写的这些内容也不可能全都正确,只希望通过表达出来和大家进行交流,共同提高。
MS这个软件的功能确实是比较强,但是也有一些地方不尽如人意的地方。
(也可能是我对一些结果不会分析所致,有些暂时不能解决的问题在最后一部分提出,希望大家来研究研究,看看有没有实现的可能性)。
能带结构、态密度和布居分析是很重要的内容,在分析能带结构和态密度的时候,往往是先作图,然后分析。
软件本身提供的作图功能并不是很强,比如说能带结构(只能带只能做point图和line图),不美观不说,对于每一个能带的走势也不好观察,感觉无从下手。
所以我一般用origin作图(右图是用origin做的能带图)。
能带结构和态密度的作图过程请参考我给大家提供的动画。
接下来我们先开看看能带结构的分析和制作!第一部分:能带结构这个部分打算先简单的介绍一下能带的基础知识,希望能对大家有所帮助,如果对能带了解比较深入的朋友,可以跳过这个部分内容,之中不当之处请勿见笑。
^_^第一个问题是:1、能带是怎样形成——轨道和一维体系的能带。
这是最基本的一个问题,我们要对能带结构进行分析,首先要知道它是如何来的。
其实能带是一种近似的结果(可以看成一种近似),是周期边界条件(bloch函数)下的一种近似。
先来看看一个最简单的问题,非周期体系有没有能带结构?答案是没有的,大家可以试试:①建一个周期的晶胞②选择build菜单下的symmetry子菜单下的none periodic superstructure去掉周期边界条件性③看看还能够运行吗?运行(run)按钮变灰了,不能提交作业了。
这说明什么问题?这说明这个CASTEP这个模块不能计算非周期的体系,另外可以参考MS中的DMOL模块,它可以计算非周期系统,虽然可以计算周期系统,但是仍不能计算能带,大家可以试试,看看property中的band structure能不能选上,一定不能!!^_^从这里,我们可以得到一个结论,对于单个原子(分子、单胞)如果不加上周期边界条件,是无法获得能带结构的。