最新材料力学常用公式讲课讲稿
- 格式:doc
- 大小:157.50 KB
- 文档页数:8
第一章 绪论和基本概念应力(全应力):2P 正应力:σ 切应力:τ 222τσ+=P线应变:l l dx du //x ∆==ε 切应变:角度的改变量α只受单向应力或纯剪的单元体:胡克:εσ⋅=E 剪切胡克:r G ⋅=τ ()E G =+ν12 第二章 杆件的内力分析 轴力N F :拉力为正扭矩T :右手螺旋,矢量方向与截面外法线方向一致为正 剪力S F :顺时针方向转动为正外力偶矩:()m N N P ·/9549m = ()m N N P ·/7024m = (K N /马力) 第三章 截面图形的几何性质 静矩:⎰=Ax ydA S 若C 为形心[质心]:A S XC/y =组合截面图形形心坐标计算:∑∑===ni i ni cii C A y A y 11/惯性矩:⎰=Ax dA y I 2惯性积:⎰=Axy xydA I 包括主轴在内的任意一对正角坐标0=xy I对O 点的极惯性矩:()y x AAP I I dA y x dA I +=+==⎰⎰222ρ 实心圆:32/224d I I I P y x π=== 圆环:()64/-12244απD I I I P y x === D d /=α平行四边/三角形:12/3bh I x =平行移轴公式:A b I I xc x ⋅+= A ab I I xcyc xy ⋅+= 转轴公式(逆转α):()()αα2s i n 2/2c o s2/1xy y x y x x I I I I I I --++=()()αα2sin 2/2cos 2/1xy y x y x y I I I I I I +--+= ()αα2cos 2sin 11xy y x y x I I I I +-= 求主轴:000=y x I ()y x xy I I I --=/22tan 0α()[]2//2a r c t a n 0y x xy I I I --=α主惯性矩:()22min max 00x 4212xy y xy x y I I II I I I I I +-±+==第四章 杆件的应力与强度计算斜面上的正应力:ασσα2cos = 切应力:2/2sin αστα=许用应力:脆性材料[]b b n /σσ= 塑性材料:[]s s n /σσ=或[]s n /5.0σσ= 拉压杆强度条件:[]σσ≤=A F N /max max 校核强度:[]()[]%5%100/max ≤⨯-σσσ 剪切强度条件:[]ττ≤=s A F /s 挤压强度条件:[]bs bs bs A F σσ≤=/bs圆轴扭转切应力:p I T /ρτρ⋅= []ττ≤=⋅=p p W T I R T //m a x 梁的弯曲:中性层曲率:()z EI M //1=ρ 等直梁在弯曲时的正应力:z I M /y =σz z W M I M //y m a x m a x ==σ矩形截面梁的弯曲切应力:()()z s z z s I y h F bI S F 2/4//22*-==τ在中性轴处:()A F bh F s s 2/32/3max ==τ 最大切应力均在中性轴上工字型截面梁:腹板:()d I S F z z s /*=τ 翼缘:()δτz z s I S F /*1=圆形截面:A F s 3/4max =τ 薄壁环形截面:A F s /2max =τ切应力强度条件:[][]ττ≤=d I S F z z s /*max max max 理想设计:[][]c t c t σσσσ//max max = 许用拉应力:[]t σ 许用压应力:[]c σ 两垂直平面内弯曲组合截面梁:z N M N I y M A F //max max +=+=σσσ偏心压缩(拉伸):截面上任意点:22max /-/-/-z F y F M N i y Fy i z Fz A F =+=σσσ2y y Ai I = 0=σ时中性轴截距:F y y y i a /2-=第五章 杆件的变形与刚度计算轴向拉(压)杆的变形:l l /∆=ε b b /'∆=ε νεε-=' ∑===∆ni ii i Ni N A E lF EA l F l 1圆轴扭转变形:()P GI Tl /=ϕ [在弹性范围之内]刚度条件:()[]rad GI l T P '/max 'max ϕϕ≤= ()[]m GI l T P /'/180max 'max ︒≤⋅⋅=ϕπϕ梁的弯曲变形:挠度:w ()x M ''=E I w θEI EIw =' ()⎰⎰++=D Cx dxdy x M EIw支承处:0=w 悬梁臂:0=w ,0=θ 连接处:21w w =,21θθ= 梁的刚度条件:[]l w l w //max ≤ []w w ≤max []θθ≤m a x第六章 应力状态分析 任意斜截面上的应力:()()ατασσσσσα2sin 2/2cos 2/xy y x y x--++=()ατασστα2cos 2/2sin xy y x +-=αασσσσ-+=︒+y x 90 ααττ-=︒+90应力圆:22min max 22xy yx y x τσσσσσσ+⎪⎪⎭⎫ ⎝⎛-±+= y x xy σστα--=22tan 0三向应力状态:()2/31max σστ-=应力应变关系:()E /90︒+-=ααανσσε ()E /9090ααανσσε-=︒+︒+ G /αβαβτγ=第七章 强度理论及其应用 强度理论:断裂失效:11r σσ=()3212r σσνσσ+-=屈服失效:313r σσσ-= ()()()[]2/2132322214r σσσσσσσ-+-+-=轴向拉压弯扭组合变形:[]στσσ≤+=223r 4[]στσσ≤+=224r 3仅圆轴弯扭:[]σσ≤+=Z W T M /223r []σσ≤+=Z W T M /5.70224r ,Z P W W 2=薄壁圆筒强度:横截面上的正应力:()24/'σσ==t PD 纵截面上的正应力:()12/''σσ==t PD 03=σ第八章 压杆稳定临界应力:欧拉公式:()()222222cr /λπμπμπσEi l E A l EI A F cr ==== A I i /= 利用欧拉公式前提条件:P P E σπλλ/2=≥不满足时用经验公式:λσb a -=cr211cr λσb a -=压杆的稳定性计算:安全因素法:st cr cr n F F n ≥==σσ//折剪因素法:[][]st cr st n A F //σσσϕσ==≤= 第九章 能量方法杆件应变能:轴向拉伸或压缩:()⎰==∆==l N N dx EAx F EA lF l F w V 22222ε扭转:()⎰====l P P dx GI x T GI l T T w V 22222ϕε弯曲:()⎰====l dx EIx M EI l m m w V 22222θε 组合变形: 2/2/2/θϕεεm T l F dV V l++∆==⎰。
《材料力学》公式材料力学是研究材料在外力作用下的力学性能和行为的一门学科。
它是工程力学的一个重要分支,广泛应用于工程结构、材料开发和制造等领域。
以下是《材料力学》中常用的一些公式,供参考。
1.应力(σ)和应变(ε)的关系:材料的应力与应变之间存在一定的线性关系,可表示为σ=Eε,其中E为弹性模量。
2.应力的计算:材料在外力作用下受到的内力为应力,可计算为σ=F/A,其中F为作用力,A为受力面积。
3.应变的计算:材料受到外力作用后的形变称为应变,可计算为ε=(ΔL/L),其中ΔL为变形长度,L为初始长度。
4.弹性模量(E):材料在弹性阶段的应力和应变之间的比值称为弹性模量,可表示为E=σ/ε。
5.屈服强度(σy):材料在受到一定应力作用后开始发生塑性变形的最大应力值,常用于评估材料的强度。
6.抗拉强度(σu):材料在拉伸过程中的最大抗拉应力值。
7.韧性(τ):材料在破坏前能吸收的能量,可表示为τ=∫σdε,即韧性为应力-应变曲线下的面积。
8.断后伸长率(Ag):材料在断裂后的伸长量与原始长度的比值,常用于评估材料的延展性。
9.拉伸应力(σ):材料在拉伸过程中受到的应力。
10.断裂韧性(Kc):材料对裂纹扩展的抵抗能力,用来评估材料的断裂性能。
11.断裂韧性(Gc):材料对裂纹扩展的抵抗能力,通常作为评估材料断裂韧性的指标。
12.蠕变:材料在长期受持续应力作用下发生的形变,其速率与应力、温度等因素有关。
13.疲劳:材料在循环应力作用下产生的破坏,通常以疲劳寿命来评估材料的耐久性。
14.断裂力学:研究材料在受到外力作用下产生裂纹并扩展的过程,分析裂纹的尖端应力场、断裂断面等。
15.刚度(k):材料在受到外力作用下的抵抗形变的能力,可表示为k=F/δ,其中F为作用力,δ为形变量。
以上是《材料力学》中的一些常用公式,通过对材料的力学性能和行为的研究,可以更好地理解和应用材料,为工程结构的设计和材料的选择提供科学的依据。
材料力学基本公式材料力学是研究材料在外力作用下的力学性能和变形规律的学科,是材料科学的重要组成部分。
在材料力学中,有一些基本公式是我们必须要掌握的,它们是我们研究材料力学问题的基础。
接下来,我们将介绍一些材料力学中的基本公式。
一、胡克定律。
胡克定律是材料力学中最基本的定律之一,它描述了弹性体在小应变下的应力和应变之间的线性关系。
胡克定律的数学表达式为:\[ \sigma = E \varepsilon \]其中,\( \sigma \) 表示应力,单位为帕斯卡(Pa);\( E \) 表示杨氏模量,单位为帕斯卡(Pa);\( \varepsilon \) 表示应变,无量纲。
二、泊松比。
泊松比是描述材料在拉伸或压缩过程中横向变形与纵向变形之间的比值。
泊松比的数学表达式为:\[ \mu = -\frac{\varepsilon_{y}}{\varepsilon_{x}} \]其中,\( \mu \) 表示泊松比,无量纲;\( \varepsilon_{y} \) 表示横向应变;\( \varepsilon_{x} \) 表示纵向应变。
三、胡克定律的广义表达式。
在实际工程中,材料的应力和应变往往不只是单向的,而是多维的。
这时,我们可以使用胡克定律的广义表达式来描述材料的应力和应变之间的关系:\[ \sigma_{ij} = C_{ijkl} \varepsilon_{kl} \]其中,\( \sigma_{ij} \) 表示应力张量;\( C_{ijkl} \) 表示弹性常数张量;\( \varepsilon_{kl} \) 表示应变张量。
四、杨氏模量和泊松比的关系。
材料的杨氏模量和泊松比之间存在着一定的关系,它们之间的关系可以用下面的公式表示:\[ E = 2G(1+\mu) \]其中,\( E \) 表示杨氏模量;\( G \) 表示剪切模量;\( \mu \) 表示泊松比。
五、拉伸应力和应变的关系。
1、应力 全应力正应力切应力线应变 外力偶矩当功率P 单位为千瓦(kW ),转速为n (r/min )时,外力偶矩为m).(N 9549e nPM =当功率P 单位为马力(PS ),转速为n (r/min )时,外力偶矩为m).(N 7024e nPM =拉(压)杆横截面上的正应力拉压杆件横截面上只有正应力σ,且为平均分布,其计算公式为 N FAσ= (3-1)式中N F 为该横截面的轴力,A 为横截面面积。
正负号规定 拉应力为正,压应力为负。
公式(3-1)的适用条件:(1)杆端外力的合力作用线与杆轴线重合,即只适于轴向拉(压)杆件; (2)适用于离杆件受力区域稍远处的横截面;(3)杆件上有孔洞或凹槽时,该处将产生局部应力集中现象,横截面上应力分布很不均匀; (4)截面连续变化的直杆,杆件两侧棱边的夹角020α≤时 拉压杆件任意斜截面(a 图)上的应力为平均分布,其计算公式为全应力cos p ασα= (3-2)正应力 2cos ασσα=(3-3) 切应力1sin 22ατα=(3-4) 式中σ为横截面上的应力。
正负号规定:α 由横截面外法线转至斜截面的外法线,逆时针转向为正,反之为负。
ασ 拉应力为正,压应力为负。
ατ 对脱离体内一点产生顺时针力矩的ατ为正,反之为负。
两点结论:(1)当00α=时,即横截面上,ασ达到最大值,即()max ασσ=。
当α=090时,即纵截面上,ασ=090=0。
(2)当045α=时,即与杆轴成045的斜截面上,ατ达到最大值,即max ()2αατ=1.2 拉(压)杆的应变和胡克定律 (1)变形及应变杆件受到轴向拉力时,轴向伸长,横向缩短;受到轴向压力时,轴向缩短,横向伸长。
如图3-2。
图3-2轴向变形 1l l l ∆=- 轴向线应变 llε∆= 横向变形 1b b b ∆=- 横向线应变 bbε∆'=正负号规定 伸长为正,缩短为负。
(2)胡克定律当应力不超过材料的比例极限时,应力与应变成正比。
材料力学基础公式一、轴向拉压。
1. 内力 - 轴力(N)- 截面法:N = ∑ F_外(轴力等于截面一侧外力的代数和,拉力为正,压力为负)2. 应力 - 正应力(σ)- σ=(N)/(A)(A为横截面面积)3. 变形 - 轴向变形(Δ L)- 胡克定律:Δ L=(NL)/(EA)(L为杆件原长,E为弹性模量)- 线应变:varepsilon=(Δ L)/(L),且σ = Evarepsilon二、扭转。
1. 内力 - 扭矩(T)- 截面法:T=∑ M_外(扭矩等于截面一侧外力偶矩的代数和,右手螺旋法则确定正负,拇指指向截面外法线为正)2. 应力 - 切应力(τ)- 对于圆轴扭转:τ=(Tρ)/(I_p)(ρ为所求点到圆心的距离,I_p为极惯性矩)- 在圆轴表面:τ_max=(T)/(W_t)(W_t为抗扭截面系数)3. 变形 - 扭转角(φ)- φ=(TL)/(GI_p)(G为剪切弹性模量)三、弯曲内力。
1. 剪力(V)和弯矩(M)- 截面法:- 剪力V=∑ F_y(截面一侧y方向外力的代数和)- 弯矩M=∑ M_z(截面一侧对z轴外力矩的代数和)- 剪力图和弯矩图:- 集中力作用处,剪力图有突变(突变值等于集中力大小),弯矩图有折角。
- 集中力偶作用处,弯矩图有突变(突变值等于集中力偶大小),剪力图无变化。
2. 弯曲正应力(σ)- σ=(My)/(I_z)(y为所求点到中性轴的距离,I_z为截面对z轴的惯性矩)- 最大正应力:σ_max=(M)/(W_z)(W_z为抗弯截面系数)3. 弯曲切应力(τ)- 对于矩形截面:τ=(VQ)/(Ib)(Q为所求点以上(或以下)部分面积对中性轴的静矩,b为截面宽度)- 对于圆形截面:τ=(4V)/(3A)(A为圆形截面面积)四、梁的变形。
1. 挠曲线近似微分方程。
- EIfrac{d^2y}{dx^2} = M(x)(y为挠度,x为梁轴线坐标)2. 用叠加法求梁的变形。
材料力学基本概念和公式材料力学是研究材料在受到外力作用下的变形和破坏行为的一门学科。
下面将简要介绍材料力学的基本概念和公式。
1.伸长量(ε):伸长量是材料在受到拉伸力作用下的长度变化与原始长度之比,可以表示为ε=ΔL/L0,其中ΔL是材料受力后的长度变化,L0是材料的原始长度。
2.弹性模量(E):弹性模量是材料表征其抵抗拉伸或压缩变形能力的物理量,定义为材料受应力作用下的应力与应变之比,可以表示为E=σ/ε,其中σ是材料受到的应力。
3.屈服强度(σy):屈服强度是材料在受力过程中产生塑性变形的应力阈值,物理上可以看作是材料从弹性到塑性变形的过程。
屈服强度可以表示为σy=Fy/A,其中Fy是材料引起塑性变形的应力,A是材料的横截面积。
4.断裂强度(σf):断裂强度是材料在受到应力作用下发生破坏的最大阈值,表示材料的抗拉抗压能力。
断裂强度可以表示为σf=Ff/A,其中Ff是材料破坏时受到的应力。
5. 牛顿第二定律(F = ma):材料力学中的牛顿第二定律与经典物理学中的类似,描述了材料在受到外力作用下的加速度与作用力之间的关系。
6.雪松方程(σ=Eε):雪松方程是描述线性弹性材料受力变形关系的基本公式,其中σ为材料受到的应力,E为弹性模量,ε为材料的应变。
7.线性弹性材料的胡克定律(σ=Eε):对于线弹性材料来说,应力和应变之间的关系可以遵循胡克定律。
即材料的应力是弹性模量和应变的乘积。
8.悬臂梁挠度公式(δ=(Fl^3)/(3EI)):悬臂梁的挠度可以通过公式计算,其中F为外力作用在梁上的力,l为悬臂梁的长度,E为横截面的弹性模量,I为横截面关于挠曲轴的转动惯量。
9.铰接梁挠度公式(δ=(Fl^3)/(48EI)):铰接梁的挠度可以通过公式计算,其中F为外力作用在梁上的力,l为铰接梁的长度,E为横截面的弹性模量,I为横截面关于挠曲轴的转动惯量。
10.压缩应力(σc):压缩应力是材料在受到压缩力作用下的应力,可以表示为σc=F/A,其中F为材料受到的压缩力。
材料力学公式完全版材料力学是研究材料内部力学性能的一门学科。
它是工程学中的一个重要分支,广泛应用于机械、土木、航空航天等领域。
在材料力学中,有一些重要的公式和方程式,下面是材料力学公式的完全版,共包含了应力、应变、变形、强度和刚度等方面的内容。
1.应力方面应力(σ):表示单位面积上的内力。
常用的单位是Pa(帕斯卡)。
σ=F/A其中,F为受力,A为受力面积。
2.应变方面线性弹性应变(ε):表示材料由于受力而发生的形变。
ε=ΔL/L其中,ΔL为长度变化,L为初始长度。
3.变形方面胀缩变形(ΔL):表示材料由于受热导致的体积变化。
ΔL=α×L×ΔT其中,α为热膨胀系数,ΔT为温度变化。
4.应力-应变关系钢材的Hooke定律:描述材料的线性弹性行为。
σ=E×ε其中,E为弹性模量。
5.弯曲方面梁的弯曲应变(ε):表示材料在弯曲时发生的形变。
ε=M/(E×I)其中,M为弯矩,E为弹性模量,I为截面转动惯量。
6.胀缩方面热膨胀(ΔL):表示材料在受热时的线膨胀。
ΔL=α×L×ΔT其中,α为热膨胀系数,L为初始长度,ΔT为温度变化。
7.强度方面拉伸强度(σt):表示材料在拉伸过程中能承受的最大应力。
σt=F/A其中,F为拉伸力,A为受力面积。
8.刚度方面弹性模量(E):表示材料在受力后发生弹性变形的能力。
E=σ/ε其中,σ为应力,ε为应变。
9.复合材料方面拉伸强度(σt):表示复合材料在拉伸过程中能承受的最大应力。
σt=F/A其中,F为拉伸力,A为受力面积。
10.断裂方面断裂强度(σf):表示材料在断裂前能承受的最大应力。
σf=F/A其中,F为断裂力,A为受力面积。
11.龙骨方面龙骨截面面积(A):表示材料的截面面积。
A=b×h其中,b为龙骨宽度,h为龙骨高度。
12.塑性方面屈服强度(σy):表示材料开始产生塑性变形的最大应力。
σy=F/A其中,F为受力,A为受力面积。
材料力学讲课稿材料力学现代远程教育《材料力学》课程学习指导书作者:樊友景第一章绪论(一)本章学习目标:1、理解材料力学的任务。
2、掌握变形固体的基本假定,杆件变形的基本形式。
(二)本章重点、要点:1、材料力学的任务。
2、变形固体的基本假定,基本形式的形式。
(三)本章练习题或思考题:1、单项选择题1-1、由于什么假设,构件内的内力、应力、变形可以用点的位置坐标的连续函数表示。
A、连续性假设B、均匀性假设C、各向同性假设D、小变形假设1-2、变形固体受力后A、既产生弹性变形又产生塑性变形B、不产生弹性变形也不产生塑性变形C、只产生弹性变形D、只产生塑性变形1-3、构件要能够安全正常的工作,它必须要满足A、强度条件B、刚度条件C、稳定性要求D、强度条件、刚度条件、稳定性要求1-4、下列哪些因素与材料的力学性质无关?A、构件的强度B、构件的刚度C、构件的稳定性D、静定构件的内力1-5、下列论述错误的是A、理论力学主要研究物体机械运动的一般规律B、材料力学研究杆件受力后的变形和破坏规律C、理论力学和材料力学研究的是刚体D、材料力学研究的问题与材料的力学性质密切相关第二章轴向拉伸与压缩(一)本章学习目标:1、熟练掌握截面法求轴力和轴力图绘制。
2、掌握横截面上的应力计算及拉压强度计算;拉压胡克定律、变形与位移的计算。
3、理解材料拉伸和压缩时的力学性能,安全系数,容许应力的概念。
(二)本章重点、要点:1、能熟练地绘制轴力图,求横截面上的正应力及拉压杆的变形。
2、能熟练地进行拉压杆的强度计算。
(三)本章练习题或思考题:1、单项选择题1-1、两根长度、容重相同的悬挂杆横截面面积分别为A2和A1,设N1、N2、σ1、σ2分别为两杆中的最大轴力和应力,则A、N1=N2、σ1=σ2B、N1≠N2、σ1=σ2C、N1=N2、σ1≠σ2D、N1≠N2、σ1≠σ21-2、虎克定理的适用范围是应力小于或等于A、比例极限B、弹性极限C、屈服极限D、强度极限1-3、轴向拉杆的变形特点是A、轴向伸长横向收缩B、轴向伸长横向伸长C、轴向收缩横向收缩D、轴向收缩横向伸长1-4、一圆截面直杆,两端受的拉力相同,若将长度增大一倍其他条件不变,则下列结论错误的是A、轴力不变B、应力不变C、应变不变D、伸长量不变1-5、一圆截面直杆,两端受的拉力相同,若将直径增大一倍其他条件不变,则A、轴力不变B、应力不变C、刚度不变D、伸长量不变2、作图示拉压杆的轴力图并求其总伸长量。
材料力学常用公式
1外力偶矩计算公式(P 功率,n转速)
2弯矩、剪力和荷载集度之间的关系式
3轴向拉压杆横截面上正应力的计算公式(杆件横截面轴力F N,横截面面积A,拉应力为正)
4轴向拉压杆斜截面上的正应力与切应力计算公式(夹角a从x轴正方向逆时针转至外法线的方位角为正)
5
6纵向变形和横向变形(拉伸前试样标距l,拉伸后试样标距l1;拉伸前试样直径d,拉伸后试样直径d1)
7
8纵向线应变和横向线应变
9
10泊松比
11胡克定律
12受多个力作用的杆件纵向变形计算公式?
13承受轴向分布力或变截面的杆件,纵向变形计算公式
14轴向拉压杆的强度计算公式
15许用应力,脆性材料,塑性材料
16延伸率
17截面收缩率
18剪切胡克定律(切变模量G,切应变g)
19拉压弹性模量E、泊松比和切变模量G之间关系式
20圆截面对圆心的极惯性矩(a)实心圆
21(b)空心圆
22圆轴扭转时横截面上任一点切应力计算公式(扭矩T,所求点到圆心距离r)
23圆截面周边各点处最大切应力计算公式
24扭转截面系数,(a)实心圆
25(b)空心圆
26薄壁圆管(壁厚δ≤ R0 /10 ,R0为圆管的平均半径)扭转切应力计算公式
27圆轴扭转角与扭矩T、杆长l、扭转刚度GH p的关系式
28同一材料制成的圆轴各段内的扭矩不同或各段的直径不同(如阶梯轴)时或
29等直圆轴强度条件
30塑性材料;脆性材料
31扭转圆轴的刚度条件? 或
32受内压圆筒形薄壁容器横截面和纵截面上的应力计算公式,
33平面应力状态下斜截面应力的一般公式
,
34平面应力状态的三个主应力,
,
35主平面方位的计算公式
36面内最大切应力
37受扭圆轴表面某点的三个主应力,,
38三向应力状态最大与最小正应力,
39三向应力状态最大切应力
40广义胡克定律
41
42四种强度理论的相当应力
43一种常见的应力状态的强度条件,
44组合图形的形心坐标计算公式,
45任意截面图形对一点的极惯性矩与以该点为原点的任意两正交坐标轴的惯性矩之和的关系式
46截面图形对轴z和轴y的惯性半径? ,
47平行移轴公式(形心轴z c与平行轴z1的距离为a,图形面积为A)
48纯弯曲梁的正应力计算公式
49横力弯曲最大正应力计算公式
50矩形、圆形、空心圆形的弯曲截面系数? ,
,
51几种常见截面的最大弯曲切应力计算公式(为中性轴一侧的横截面对中性轴z的静矩,b为横截面在中性轴处的宽度)
52矩形截面梁最大弯曲切应力发生在中性轴处
53工字形截面梁腹板上的弯曲切应力近似公式
54轧制工字钢梁最大弯曲切应力计算公式
55圆形截面梁最大弯曲切应力发生在中性轴处
56圆环形薄壁截面梁最大弯曲切应力发生在中性轴处
57弯曲正应力强度条件
58几种常见截面梁的弯曲切应力强度条件
59弯曲梁危险点上既有正应力σ又有切应力τ作用时的强度条件
或,
60梁的挠曲线近似微分方程
61梁的转角方程
62梁的挠曲线方程?
63轴向荷载与横向均布荷载联合作用时杆件截面底部边缘和顶部
边缘处的正应力计算公式
64偏心拉伸(压缩)
65弯扭组合变形时圆截面杆按第三和第四强度理论建立的强度条件表达式,
66圆截面杆横截面上有两个弯矩和同时作用时,合成弯矩为
67圆截面杆横截面上有两个弯矩和同时作用时强度计算公式
68
69弯拉扭或弯压扭组合作用时强度计算公式
70剪切实用计算的强度条件
71挤压实用计算的强度条件
72等截面细长压杆在四种杆端约束情况下的临界力计算公式
73压杆的约束条件:(a)两端铰支μ=l
74(b)一端固定、一端自由μ=2
75(c)一端固定、一端铰支μ=0.7 76(d)两端固定μ=0.5
77压杆的长细比或柔度计算公式,
78细长压杆临界应力的欧拉公式
79欧拉公式的适用范围
80压杆稳定性计算的安全系数法
81压杆稳定性计算的折减系数法。