浙教版一元二次方程知识点及习题讲课稿
- 格式:doc
- 大小:168.05 KB
- 文档页数:6
浙教版一元二次方程知识点及习题一元二次方程知识点及习题(一)1、认识一元二次方程:概念:只含有一个未知数,并且可以化为ax2 bx c 0 (a,b,c为常数,a 0)的整式方程叫一元二次方程。
构成一元二次方程的三个重要条件:①、方程必须是整式方程(分母不含未知数的方程)。
女口:x2 2 3 0是分式方程,所以x2 - 3 0不是一元二次方x x程。
②、只含有一个未知数。
③、未知数的最高次数是2次。
2 、一元二次方程的一般形式:一般形式:ax2 bx c 0 ( a 0),系数a,b,c中,a一定不能为0,b、c则可以为0,其中,ax2叫做二次项,a叫做二次项系数;bx叫做一次项,b叫做一次项系数;c叫做常数项。
任何一个一元二次方程经过整理(去括号、移项、合并同类项…)都可以化为一般形式。
例题:将方程(x 3)(3x 1) x2化成一元二次方程的一般形式.解:(x 3)(3x 1) x去括号,得:3x2 8x 3 x2移项、合并同类项,得:2x2 8x 3 0 (一般形式的等号右边一定等于0)3、一元二次方程的解法:(1)、直接开方法:(利用平方根的定义直接开平方求一元二次方程的解)形式:(x a)2 b(2)、配方法:(理论依据:根据完全平方公式:a2 2ab b2(a b)2,将原方程配成(x a)2 b的形式,再用直接开方法求解.)⑶、公式法:(求根公式:x —- 4aC)2a⑷、分解因式法:(理论依据:a?b 0,则a 0或b 0;利用提公因式、运用公式、十字相乘等分解因式方法将原方程化成两个因式相乘等于0的形:一元二次方程的定义例1、下列方程中是关于x的「元二次方程的是()A 3 x122x 1 1 1B2 2x xC ax2bx c0D x22x x212若方程(m2)x|m|3mx 10是关于x的一元二次方程,则()、A. m 2B.m=2 C . m 2 D.m 23、关于x的一元二次方程(a- 1)x2+ x+a2—1=0的一个根是0。
浙教版数学八年级下册2.1《一元二次方程》说课稿1一. 教材分析《一元二次方程》是浙教版数学八年级下册第2章第1节的内容。
本节课的主要内容是一元二次方程的定义、解法以及应用。
一元二次方程是初中数学的重要内容,也是高中数学的基础。
它不仅在数学领域有广泛的应用,而且在物理、化学等自然科学领域也有重要作用。
二. 学情分析八年级的学生已经掌握了代数的基础知识,具备了一定的逻辑思维能力和解决问题的能力。
但是,对于一元二次方程的理解和应用还需要进一步的引导和培养。
因此,在教学过程中,我将以学生已有的知识为基础,通过实例引入一元二次方程,引导学生掌握一元二次方程的解法,并能够应用一元二次方程解决实际问题。
三. 说教学目标1.知识与技能目标:使学生理解一元二次方程的定义,掌握一元二次方程的解法,能够应用一元二次方程解决实际问题。
2.过程与方法目标:通过探究一元二次方程的解法,培养学生的逻辑思维能力和解决问题的能力。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的团队合作意识和自主学习能力。
四. 说教学重难点1.教学重点:一元二次方程的定义,一元二次方程的解法。
2.教学难点:一元二次方程的解法,应用一元二次方程解决实际问题。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法、小组合作学习法。
2.教学手段:多媒体课件、黑板、粉笔。
六. 说教学过程1.导入新课:通过一个实际问题引入一元二次方程,激发学生的兴趣。
2.自主学习:学生自主探究一元二次方程的定义和解法,教师给予引导和帮助。
3.课堂讲解:教师讲解一元二次方程的定义和解法,通过实例解释一元二次方程的应用。
4.课堂练习:学生进行课堂练习,巩固一元二次方程的解法。
5.小组讨论:学生分组讨论一元二次方程的应用问题,分享解题思路和方法。
6.总结提升:教师引导学生总结一元二次方程的解法和应用,强调重点和难点。
7.课后作业:学生完成课后作业,巩固所学内容。
一.一元二次方程的的概念 一元二次方程定义:只含有一个未知数,且未知数的最高次数为2的整式方程叫做一元二次方程.要判断一个方程是否是一元二次方程,必须符合以下三个标准:①整式方程.②方程中只含有一个未知数.③方程中未知数的最高次数是2.一元二次方程的一般式:20ax bx c ++=()0a ≠.其中,2ax 为二次项,其系数为a ;bx 为一次项,其系数为b ;c 为常数项.一元二次方程的根:如果0x 满足2000(0)ax bx c a ++=≠,则0x 就是方程20(0)ax bx c a ++=≠的一个根.1.判断下列方程是不是一元二次方程.⑴ 2210x kx --=(k 为常数) ⑵ 2413x =+ ⑶ 210x -=;⑷ 250x = ⑸ 20x y += ⑹ ()()2233x x +=-;⑺ 2320mx x -+=(m 为常数)2.将下列一元二次方程化成一般形式,并写出其中的二次项系数、一次项系数和常数项.⑴2216x x -=;⑵ ()()3213x x x -+=- ⑶()()()3253115x x x x ++--=;类型:方程根的应用1.如果一元二次方程()200ax bx c a ++=≠有两个根1和1-,那么a b c ++= ________,a b c -+=___________.2.已知关于x 的一元二次方程()221210m x x m -++-=有一个根是0,则m 的值为_______.3.已知m 是方程210x x --=的一个根,求代数式2552006m m -+的值.二.一元二次方程的解法方法一 直接开平方法对于形如2x m =或()()200ax b m a m +=≠≥,的一元二次方程,即一元二次方程的一边是含有未知数的一次式的平方,而另一边是一个非负数,可用直接开平方法求解.用直接开平方法解关于x 的方程:八下第二章一元二次方程复习(1)()211x += (2) 3x 2-12=0 (3)(2x -1)2-7=0方法二 配方法配方法:通过配方的方法把一元二次方程转化成形如()2ax b m +=的方程,再运用直接开平方的方法求解,即用配方法解方程用配方法解方程:1.220x x += 2. 2x 2-x -1=0 3. x 2=4√3x −11例1. 关于x 的二次三项式x 2+4x +9进行配方得x 2+4x +9=(x +m )2+n(1)则m= ,n= ;(2)求x 为何值时,此二次三项式的值为7?方法三 因式分解法因式分解法:因式分解法解一元二次方程的依据:如果两个因式的积等于0,那么这两个因式至少有一个为0,即:若0ab =,则0a =或0b =;因式分解法的一般步骤:将方程化为一元二次方程的一般形式;把方程的左边分解为两个一次因式的积,右边等于0;令每一个因式都为零,得到两个一元一次方程;解出这两个一元一次方程的解可得到原方程的两个解.用因式分解法解方程:⑴x 2-4x=0 ⑵ 2y 2=7y ⑶ 4x 2-12x +9=0方法四 公式法公式法的一般步骤:①把一元二次方程化为一般式;②确定a b c ,,的值;③代入24b ac -中计算其值,判断方程是否有实数根;④若240b ac -≥代入求根公式求值;否则,原方程无实数根.用公式法解方程:1.2220x x --=; 2.231x =; 3.2312x x -=-;三.一元二次方程根的判别式设一元二次方程为20(0)ax bx c a ++=≠,其根的判别式为:24b ac ∆=-则①0∆>⇔方程20(0)ax bx c a ++=≠有两个不相等的实数根1,2x =. ②0∆=⇔方程20(0)ax bx c a ++=≠有两个相等的实数根122b x x a==-. ③0∆<⇔方程20(0)ax bx c a ++=≠没有实数根.1.不解方程,直接判断下列方程的解的情况: ⑴ 2710x x --= ⑵ ()29431x x =-2.关于x 的方程()25860a x x --+=有实数根,则整数a 的最大值是( )A .6B .7C .8D .93.若关于y 的一元二次方程24334ky y y --=+有实数根,则k 的取值范围是( )A .74k -≥且0k ≠B .74k >-且0k ≠C .74k -≥D .74k >- 4.设a b ,是方程220100x x +-=的两个实数根(a b ≠),求22a a b ++的值.5. 已知关于x 的一元二次方程x 2﹣(k +3)x +3k=0.(1)求证:不论k 取何实数,该方程总有实数根.(2)若等腰△ABC 的一边长为2,另两边长恰好是方程的两个根,求△ABC 的周长.四.一元二次方程的应用增长率问题的模式为:原来数量为A ,后来数量为B ,经过某两个时间单位,设增长率(降低率)为x . 则有关系式: 或. 。
第1讲 一元二次方程及解法命题点一:利用一元二次方程的概念求值例1已知关于x 的方程(m +2)x |m |+3x =mx +1是一元二次方程,则m 的值为 2 . 例2方程(m +1)xm 2+1+(m -3)x -1=0,(1)当m 取何值时,是一元二次方程?并求出此方程的解. (2)当m 取何值时,是一元一次方程?解:(1)若方程是一元二次方程,则m 2+1=2,∴m =±1. 显然m =-1时,m +1=0,不符合题意.故m =1符合题意. 当m =1时,原方程可化简为2x 2-2x -1=0, ∴x 1=1+32,x 2=1-32.因此m =1,方程的两根为x 1=1+32,x 2=1-32. (2)当m +1=0时,解得m =-1,此时方程为-4x -1=0; 当m 2+1=1时,解得m =0,此时方程为-2x -1=0. ∴当m =-1或m =0时,方程为一元一次方程. 命题点二:用适当的方法解下列方程 例3解下列方程:(1)3(1-x )2=27. (2)4(3x +1)2=25(x -2)2. (3)x 2-12x =9 964. (4)x 2-33x +6=0.解:(1)由原方程,得(1-x )2=3,∴1-x =3或1-x =-3, 解得x 1=1-3,x 2=1+ 3.(2)移项,得4(3x +1)2-25(x -2)2=0,将方程的左边因式分解,得[2(3x +1)-5(x -2)][2(3x +1)+5(x -2)]=0, 即(x +12)(11x -8)=0.∴x +12=0或11x -8=0,解得x 1=-12,x 2=811. (3)方程两边都加上36,得x 2-12x +36=9 964+36,即(x -6)2=10 000.∴x -6=100或x -6=-100,解得x 1=106,x 2=-94. (4)对于方程x 2-33x +6=0,a =1,b =-33,c =6,b 2-4ac =(-33)2-4×1×6=3, ∴x =-(-33)±32×1.∴x 1=23,x 2= 3.【思路点拨】方程ax 2+bx +c =0(a ≠0)的常见变形: ①ax 2+bx =-c ; ②ax 2=-bx -c ; ③ax +c x=-b (x ≠0). 例4解下列方程:(1)x 2-3x =3x +1. (2)x 2+3=32x . (3)2x 2+(3m -n )x -2m 2+3mn -n 2=0. 解:(1)由原方程移项,得x 2-6x -1=0,a =1,b =-6,c =-1,b 2-4ac =(-6)2-4×1×(-1)=40. ∴x =6±2102×1.∴x 1=3+10,x 2=3-10.(2)由原方程移项,得x 2-32x +3=0,a =1,b =-32,c =3,b 2-4ac =(-32)2-4×1×3=6.∴x =32±62×1.x 1=32+62,x 2=32-62.(3)由原方程移项,得2x 2+(3m -n )x -(2m -n )(m -n )=0. 因式分解,得(x +2m -n )(2x +n -m )=0, ∴x 1=n -2m ,x 2=m -n 2.命题点三:利用一元二次方程求代数式的值 例5若a 2-3a +1=0,则a 2+1a2的值为 7 .例6若y 2+4y +2=0,则y 2y 4-2y 2+4= 110.命题点四:利用公共根求值例7一元二次方程x2-2x-54=0的某个根,也是一元二次方程x2-(k+2)x+94=0的根,求k的值.解:x2-2x-54=0,移项,得x2-2x=54.配方,得x2-2x+1=94,即(x-1)2=94.开方,得x-1=±32,解得x1=52,x2=-12.Δ=(k+2)2-9≥0,即k≥1或k≤-5.①根据题意,把x=52代入x2-(k+2)x+94=0,得⎝⎛⎭⎪⎫522-52(k+2)+9 4=0,解得k=75;②把x=-12代入x2-(k+2)x+94=0,得⎝⎛⎭⎪⎫-122+12(k+2)+94=0,解得k=-7.∵75>1,-7<-5,∴两个k均符合题意.综上所述,k的值为-7或7 5 .例8已知a是关于x的方程x2-(2k+1)x+4=0及3x2-(6k-1)x+8=0的公共解,则a= 1 ,k= 2 .命题点五:利用判别式解决问题例9已知关于x的一元二次方程mx2-(m+2)x+2=0.(1)证明:不论m为何值时,方程总有实数根.(2)当m为何整数时,方程有两个不相等的正整数根?解:(1)∵该方程是关于x的一元二次方程,∴m≠0,Δ=(m+2)2-8m=m2-4m+4=(m-2)2.∵不论m为何值时,(m-2)2≥0,∴Δ≥0.∴方程总有实数根.(2)解方程,得x=m+2±(m-2)2m,x1=2m,x2=1.∵方程有两个不相等的正整数根,∴m=1或2. 当m=2时,x1=x2=1不合题意,∴m =1.例10已知关于x 的方程x 2-(2m +1)x +m (m +1)=0.(1)求证:方程总有两个不相等的实数根.(2)已知方程的一个根为x =0,求代数式(2m -1)2+(3+m )(3-m )+7m -5的值(先化简,再求值).解:(1)∵该方程是关于x 的一元二次方程x 2-(2m +1)x +m (m +1)=0, ∴Δ=(2m +1)2-4m (m +1)=1>0. ∴方程总有两个不相等的实数根. (2)∵x =0是此方程的一个根,∴把x =0代入方程中,得到m (m +1)=0. ∴(2m -1)2+(3+m )(3-m )+7m -5 =4m 2-4m +1+9-m 2+7m -5 =3m 2+3m +5 =3m (m +1)+5 =5.命题点六:解特殊方程例11(1)方程x 2-||x -3-3=0,则此方程的根是 x =-3或2 .(2)解方程:(x 2-2x )2+(x 2-2x )-2=0. 解:因式分解,得(x 2-2x -1)(x 2-2x +2)=0. ∵x 2-2x +2始终大于0, ∴x 2-2x -1=0.∴x 1=1+2,x 2=1- 2.(3)解方程:x 2-2x +2xx 2-2=3.解:设a =x 2-2x ,则原式为a +2a =3.解a +2a=3,得a 1=1,a 2=2.当a =1时,x 1=2,x 2=-1; 当a =2时,x 1=1+3,x 2=1- 3.(4)如果x 2-x -1=(x +1)0,那么x 的值为( C ) A .2或-1 B .0或1 C .2 D.-1 (5)解方程:2x 2-15x -2x 2-15x +1 998=-18. 解:令t =2x 2-15x +1 998,则t 2-t -1 980=0.因式分解,得(t -45)(t +44)=0,解得t 1=45,t 2=-44(舍去). ∴2x 2-15x -27=0.因式分解,得(2x +3)(x -9)=0, 解得x 1=-32,x 2=9.例12(1)解方程:(x 2-1)2-5(x 2-1)+4=0.解:原式=(x 2-2)(x 2-5)=0,x 2=2或x 2=5,∴x 1=2,x 2=-2,x 3=5,x 4=- 5. (2)解方程:⎝ ⎛⎭⎪⎫2x -1x 2-4x -2x =3.解:设a =2x -1x,则原式=a 2-2a =3,解得a 1=3,a 2=-1. 当a =3时,x =-1; 当a =-1时,x =13.∴x 1=-1,x 2=13.(3)方程x 2-2 012||x +2 013=0的所有实数解的和为( B ) A .-2 012 B .0 C .2 012 D .2 013 (4)方程(x 2+x -1)x +3=1的所有整数解的个数是( C ) A .2 B .3 C .4 D .51 (5)解方程:3x -5+36-3x =1. 解:令t =3x -5,得1-t =31-t 2. 由原式,得t (t -1)(t -3)=0,解得t 1=0,t 2=1,t 3=3. ∴x 1=53,x 2=2,x 3=143.课后练习1.我们知道方程x 2+2x -3=0的解是x 1=1,x 2=-3,现给出另一个方程(2x +3)2+2(2x +3)-3=0,它的解是( D )A .x 1=1,x 2=3B .x 1=1,x 2=-3C .x 1=-1,x 2=3D .x 1=-1,x 2=-3 2.(2018·包头)已知关于x 的一元二次方程x 2+2x +m -2=0有两个实数根,m 为正整数,且该方程的根都是整数,则符合条件的所有正整数m 的和为( B )A .6B .5C .4 D.33.设方程(x -a )(x -b )-x =0的两个根为c ,d ,则方程(x -c )(x -d )+x =0的根为( A )A .a ,bB .-a ,-bC .c ,dD .-c ,-d4.已知三个关于x 的一元二次方程ax 2+bx +c =0,bx 2+cx +a =0,cx 2+ax +b =0恰有一个公共实数根,则a 2bc +b 2ca +c 2ab的值为( D )A .0B .1C .2D .35.若x =0是一元二次方程(m -2)x 2+3x +m 2+2m -8=0的解,则m 的值为 -4 . 6.若方程x 2-8x +12=0的两个根是等腰三角形两条边的长,则该三角形的底边长为 2 . 7.若一元二次方程ax 2=b (ab >0)的两个根分别为m +1与2m -4,则ba= 4 .8.已知a ,b 是方程x 2-x -3=0的两个根,则代数式2a 3+b 2+3a 2-11a -b +5的值为 23 . 9.设a ,b 是整数,方程x 2+ax +b =0的根是4-23,则a +b = 0 . 10.已知关于x 的方程x 2-(m +2)x +2m -1=0.(1)求证:方程恒有两个不相等的实数根.(2)若此方程的一个根是1,请求出方程的另一个根,并求以这两个根为边长的直角三角形的周长.解:(1)∵Δ=(m +2)2-4(2m -1)=(m -2)2+4,∴在实数范围内,m 无论取何值,(m -2)2+4≥4,即Δ≥4. ∴关于x 的方程x 2-(m +2)x +2m -1=0恒有两个不相等的实数根. (2)根据题意,得12-1×(m +2)+2m -1=0,解得m=2,则方程的另一个根为3.①当该直角三角形的两直角边是1,3时,由勾股定理得斜边的长度为10,则该直角三角形的周长为1+3+10=4+10;②当该直角三角形的直角边和斜边分别是1和3时,由勾股定理得该直角三角形的另一直角边为22,则该直角三角形的周长为1+3+22=4+2 2.11.已知实数m满足m2-3m+1=0,求代数式m2+19m2+2的值.解:∵m2-3m+1=0,∴m2=3m-1.∴m2+19m2+2=3m-1+193m-1+2=3m-1+193m+1=9m2-1+193m+1=9m2+183m+1=9(3m-1)+183m+1=9(3m+1) 3m+1=9.12.已知关于x的方程x2-x+3m=0,x2+x+m=0(m≠0),若前一个方程中有一个根是后一个方程的某个根的3倍,求实数m的值.解:设α是方程x2+x+m=0的一个根,则3α是方程x2-x+3m=0的一个根.∴α2+α+m=0,①9α2-3α+3m=0,即3α2-α+m=0.②②-①,得2α2-2α=0,解得α=0或1.当α=0时,02+0+m=0,m=0(舍去);当α=1时,12+1+m=0,m=-2.故实数m的值为-2.13.(自主招生模拟题)满足(2-m)m2-m-2=1的所有实数m的和为( A ) A.3 B.4 C.5 D.614.(自主招生真题)解方程:方程2x2+5x-2-2x2+5x-9=1的解为x1=2,x2=-92.15.(自主招生真题)设k ≥0,解方程x 3+2kx 2+k 2x +9k +27=0.解:原方程化为xk 2+(2x 2+9)k +x 3+27=0.解得k =-x -3或k =-x 2-3x +9x .∴x 1=-k -3,x 2=3-k +(k -9)(k +3)2,x 3=3-k -(k -9)(k +3)2.。
一元二次方程知识点及习题(一)
1、认识一元二次方程:
概念:只含有一个未知数,并且可以化为20ax bx c ++= (,,a b c 为常数,0a ≠)的整式方程叫一元二次方程。
构成一元二次方程的三个重要条件:
①、方程必须是整式方程(分母不含未知数的方程)。
如:2230x x --=是分式方程,所以2230x x
--=不是一元二次方程。
②、只含有一个未知数。
③、未知数的最高次数是2次。
2、一元二次方程的一般形式:
一般形式:20ax bx c ++= (0a ≠),系数,,a b c 中,a 一定不能为0,b 、c 则可以为0, 其中,2ax 叫做二次项,a 叫做二次项系数;bx 叫做一次项,b 叫做一次项系数;c 叫做常数项。
任何一个一元二次方程经过整理(去括号、移项、合并同类项…)都可以化为一般形式。
例题:将方程2(3)(31)x x x -+=化成一元二次方程的一般形式. 解: 2(3)(31)x x x -+=
去括号,得: 22383x x x --=
移项、合并同类项,得: 22830x x --= (一般形式的等号右边一定等于0)
3、一元二次方程的解法:
(1)、直接开方法:(利用平方根的定义直接开平方求一元二次方程的解) 形式:2()x a b +=
(2)、配方法:(理论依据:根据完全平方公式:2222()a ab b a b ±+=±,将原
方程配成2()x a b +=的形式,再用直接开方法求解.)
(3)、公式法:(求根公式:x =) (4)、分解因式法:(理论依据:0a b •=,则0a =或0b =;利用提公因式、
运用
公式、十字相乘等分解因式方法将原方程化成两个因式相乘等于0的形式。
)
一:一元二次方程的定义
例1、下列方程中是关于x 的一元二次方程的是( )
A ()()12132+=+x x
B 02112=-+x x
C 02=++c bx ax
D 1222+=+x x x
2、若方程013)2(||=+++mx x m m 是关于x 的一元二次方程,则( )
A .2±=m
B .m=2
C .2-≠m
D .2±≠m
3、关于x 的一元二次方程(a -1)x 2+x+a 2-l=0的一个根是0。
则a 的值为
( )
A 、 1
B 、-l
C 、 1 或-1
D 、 12
4、若方程()112=•+-x m x m 是关于x 的一元二次方程,则m 的取值范围是 。
5、关于的方程是一元二次方程的条件是( )
A 、≠1
B 、≠-2
C 、≠1且≠-2
D 、≠1或≠-2 二:一元二次方程的解
1、关于x 的一元二次方程()04222=-++-a x x a 的一个根为0,则a 的值为 。
2、已知方程0102=-+kx x 的一根是2,则k 为 ,另一根是 。
3、已知a 是0132=+-x x 的根,则=-a a 622 。
4、若方程ax 2+bx+c=0(a ≠0)中,a,b,c 满足a+b+c=0和a-b+c=0,则方程的根是_______。
5、方程()()02=-+-+-a c x c b x b a 的一个根为( )
A 1-
B 1
C c b -
D a - 课堂练习:
1、已知一元二次方程x 2+3x+m=0的一个根为-1,则另一个根为
2、已知x=1是一元二次方程x 2+bx+5=0的一个解,求b 的值及方程的另一个根.
3、已知322-+y y 的值为2,则1242++y y 的值为 。
x 0)2(2
2=++-+b ax x a a a a a a a a
4、已知关于x 的一元二次方程()002≠=++a c bx ax 的系数满足b c a =+,则此方程必有一根为 。
三:一元二次方程的求解方法
一、直接开平方法 ();0912
=--x 二、配方法
.
练习
1、如果二次三项式16)122++-x m x (
是一个完全平方式,那么m 的值是_______________
2、试用配方法说明322+-x x 的值恒大于0。
3、已知,x、y y x y x 0136422=+-++为实数,求y x 的值。
4、已知x 、y 为实数,求代数式74222+-++y x y x 的最小值。
三、公式法
1、0822=--x x
2、01522=+-x x
四、因式分解法
1、x x 22=
2、0)32()1(22=--+x x
3、0862=+-x x
五、整体法
例:()()
=+=-+-+2222222,06b 则a b a b a 。
变式1:若()()032=+--+y x y x ,则x+y 的值为 。
变式2:若142=++y xy x ,282=++x xy y ,则x+y 的值为 。
变式3:已知5)3)(1(2222=-+++y x y x ,则22y x +的值等于 。
四:一元二次方程中的代换思想(降次)
典例分析:
1、已知0232=+-x x
,求代数式()1
1123-+--x x x 的值。
2、如果012=-+x x ,那么代数式7223-+x x 的值。
3、已知βα,是方程012=--x x 的两个根,那么=+βα34 .
4、已知a 是一元二次方程0132=+-x x 的一根,求1152223++--a a a a 的值。
五:根的判别式
1、若关于x 的方程0122=-+x k x 有两个不相等的实数根,则k 的取值范围是 。
2、关于X 的方程有两个不相等的实数根,则的取值范围是( )
A 、>9
B 、<9且≠0
C 、<9
D 、≤9且≠0
3、关于x 的一元二次方程()0212=++-m mx x m 有实数根,则m 的取值范围是
( )
A.10≠≥且m m
B.0≥m
C.1≠m
D.1>m
4、对于任意实数m ,关于x 的方程一定( )
A. 有两个正的实数根
B. 有两个负的实数根
C. 有一个正实数根、一个负实数根
D. 没有实数根
0162=+-x kx k k k k k k k
课堂练习:
1、已知关于x 的方程02)12(22=++++m x m x 有两个不等实根,试判断直线
x m y )32(-=74+-m 能否通过A (-2,4)
,并说明理由。
2、若关于x 的方程0342=+-x kx 有实数根,则k 的非负整数值是 。
3、已知关于x 的方程06)2(2=-++-k x k x 有两个相等的正实数根,则k 的值是( )
A. B. C. 2或 D.
4、已知a 、b 、c 为ABC ∆的三边,且关于x 的一元二次方程()()()04
322=---++c a x c a x b c 有两个相等的实数根,那么这个三角形是 。
5、如果关于x 的方程()05222=+++-m x m mx 没有实数根,那么关于x 的方程()()02252=++--m x m x m 的实根个数是 。
6、已知关于x 的方程()0222=++-k x k x
(1)求证:无论k 取何值时,方程总有实数根;
(2)若等腰∆ABC 的一边长为1,另两边长恰好是方程的两个根,求∆ABC 的周长。
7.用简便方法计算.
(1)-645×(-448);
(2)(-64)×(-81);
(3)1452-242;
(4)3c
2ab 5c 2÷325b 2a
8.已知25x =115,求x 的值.
9.
已知A B ==求11
11A B +--的值。
10.
已知1
1a a +=-+221
a a +的值。
11.已知2310x x -+=
12.已知()11039
322++=+-+-y x x x y x ,求的值。
13.已知关于x 的方程222(1)740x a x a a +-+--=的两根为1x 、2x ,且满足12123320x x x x ---=.求242
(1)4a
a a ++⋅-的值。