第5章_方差分析(第2节)
- 格式:ppt
- 大小:654.00 KB
- 文档页数:62
第五节方差分析的SPSS操作一、完全随机设计的单因素方差分析1.数据采用本章第二节所用的例1中的数据,在数据中定义一个group变量来表示五个不同的组,变量math表示学生的数学成绩。
数据输入格式如图6-3(为了节省空间,只显示部分数据的输入):图 6-3 单因素方差分析数据输入将上述数据文件保存为“6-6-1.sav”。
2.理论分析要比较不同组学生成绩平均值之间是否存在显著性差异,从上面数据来看,总共分了5个组,也就是说要解决比较多个组(两组以上)的平均数是否有显著的问题。
从要分析的数据来看,不同组学生成绩之间可看作相互独立,学生的成绩可以假设从总体上服从正态分布,在各组方差满足齐性的条件下,可以用单因素的方差分析来解决这一问题。
单因素方差分析不仅可以检验多组均值之间是否存在差异,同时还可进一步采取多种方法进行多重比较,发现存在差异的究竟是哪些均值。
3.单因素方差分析过程(1)主效应的检验假如我们现在想检验五组被试的数学成绩(math)的均值差异是否显著性,可依下列操作进行。
①单击主菜单Analyze/Compare Means/One-Way Anova…,进入主对话框,请把math选入到因变量表列(Dependent list)中去,把group选入到因素(factor)中去,如图6-4所示:图6-4:One-Way Anova主对话框②对于方差分析,要求数据服从正态分布和不同组数据方差齐性,对于正态性的假设在后面非参数检验一章再具体介绍;One-Way Anova可以对数据进行方差齐性的检验,单击铵钮Options,进入它的主对话框,在Homogeneity-of-variance项上选中即可。
设置如下图6-5所示:图6-5:One-Way Anova的Options对话框点击Continue,返回主对话框。
③在主对话框中点击OK,得到单因素方差分析结果4.结果及解释(1)输出方差齐性检验结果Test of Homogeneity of VariancesMATHLevene Statistic df1 df2 Sig.1.238 4 35 .313上表结果显示,Levene方差齐性检验统计量的值为1.238,Sig=0.313>0.05,所以五个组的方差满足方差齐性的前提条件,如果不满足方差齐性的前提条件,后面方差分析计算F统计量的方法要稍微复杂,本章我们只考虑方差齐性条件满足的情况。
第二节单因素试验资料的方差分析在方差分析中,根据所研究试验因素的多少,可分为单因素、两因素和多因素试验资料的方差分析。
单因素试验资料的方差分析是其中最简单的一种,目的在于正确判断该试验因素各水平的优劣。
根据各处理内重复数是否相等,单因素方差分析又分为重复数相等和重复数不等两种情况。
上节讨论的是重复数相等的情况。
当重复数不等时,各项平方和与自由度的计算,多重比较中标准误的计算略有不同。
本节各举一例予以说明。
一、各处理重复数相等的方差分析【例6.3】抽测5个不同品种的若干头母猪的窝产仔数,结果见表6-12,试检验不同品种母猪平均窝产仔数的差异是否显著。
表6-12五个不同品种母猪的窝产仔数这是一个单因素试验,k=5,n=5。
现对此试验结果进行方差分析如下:1、计算各项平方和与自由度2、列出方差分析表,进行F检验表6-13不同品种母猪的窝产仔数的方差分析表根据df1=df t=4,df2=df e=20查临界F值得:F0.05(4,20)=2.87,F0.05(4,20)=4.43,因为F>F0.01(4,20),即P<0.01,表明品种间产仔数的差异达到1%显著水平。
3、多重比较采用新复极差法,各处理平均数多重比较表见表6-14。
表6-14不同品种母猪的平均窝产仔数多重比较表(SSR法)-8.2 -9.6因为MS e=3.14,n=5,所以为:根据df e=20,秩次距k=2,3,4,5由附表6查出α=0.05和α=0.01的各临界SSR 值,乘以=0.7925,即得各最小显著极差,所得结果列于表6-15。
表6-15SSR值及LSR值将表6-14中的差数与表6-15中相应的最小显著极差比较并标记检验结果。
检验结果表明:5号品种母猪的平均窝产仔数极显著高于2号品种母猪,显著高于4号和1号品种,但与3号品种差异不显著;3号品种母猪的平均窝产仔数极显著高于2号品种,与1号和4号品种差异不显著;1号、4号、2号品种母猪的平均窝产仔数间差异均不显著。
第九章方差分析第一节方差分析的一般问题一、方差分析的意义在工农业生产和科学研究中,经常要搞一些试验活动。
比如,为了解某个新品种的种植效果,需要在土壤条件、温度、湿度、施肥、灌溉等因素相同的情况下,将新品种与其他同类品种的种植结果作比较。
商品的包装方式和在商场里的摆放位置,对吸引顾客是有帮助的,那么为确定某商品合适的包装和销售位置,也可以进行观察试验。
在化工生产中,原料的成分、反应温度、压力、时间、催化剂、设备水平、操作规程等,对产品的得率和质量有很大的影响,通过实验研究,可以帮助我们找到一个最优的生产方案。
在试验基础上取得的数据,称为试验数据。
方差分析技术是对试验数据进行分析的一种比较有效的统计方法。
方差分析是费暄在马铃薯种植试验中首先提出来的,当初他采用的处理方法是,把观察数据看作是马铃薯品种与试验误差共同影响的总和,然后把条件(马铃薯品种)变异和随机试验误差进行比较,以此分析马铃薯品种之间是否存在显著的差异。
后来费暄给出的总结性意见是,方差分析是在若干个能够互相比较的资料组中,把产生变异的原因(主要是条件因素和随机因素)加以明确区分的方法和技术。
二十世纪二十年代,费暄又对方差分析作了系统的研究,并把他的研究成果写在《供研究人员用统计方法》等著作中。
关于单个总体均值和两总体均值差的检验内容,我们在前面已作了比较系统的介绍。
从形式上看,方差分析把这一类检验问题向前拓展了一步,它能够同时对若干个总体均值是否相等的假设进行检验,从而大大提高了统计分析的效率。
另外,方差分析对样本的大小没有更多的限制。
无论是大样本还是小样本,均可以使用方差分析方法。
方差分析方法的最大好处在于,在资料分析过程中所带来的种种便利性,其一,它能够使资料的层次结构清晰有序,其二,它能把一切需要进行的假设检验归结成一种共同格式。
有鉴于此,方差分析的思想逐渐渗透到统计学的许多方法之中。
比如,我们在相关与回归分析一章中所述的总离差平方和的分解,实际上就是方差分析思想的应用。