高中数学新学案同步 必修2 人教A版 全国通用版 第三章 直线与方程 3.2.3
- 格式:pptx
- 大小:4.64 MB
- 文档页数:33
第三章直线与方程3.1直线的倾斜角与斜率3.1.1倾斜角与斜率[目标] 1.理解直线的倾斜角和斜率的概念,掌握它们之间的关系;2.掌握过两点的直线的斜率计算公式,及其简单的应用.[重点] 倾斜角与斜率的定义;直线的斜率公式;利用斜率公式解答有关问题.[难点] 倾斜角与斜率的定义及它们关系的理解.知识点一直线的倾斜角[填一填]1.当直线l与x轴相交时,取x轴作为基准,x轴正向与直线l向上方向之间所成的角α叫做直线l的倾斜角.特别地,当直线l与x轴平行或重合时,规定α=0°.因此,直线的倾斜角α的取值范围为0°≤α<180°.2.倾斜角表示平面直角坐标系内一条直线的倾斜程度.3.确定平面直角坐标系中一条直线位置的几何要素是:直线上的一个定点以及它的倾斜角.[答一答]1.每一条直线都有唯一的倾斜角吗?提示:直线的倾斜角是分两种情况定义的:第一种是与x轴相交的直线;第二种是与x轴平行或重合的直线,此时构不成角,所以定义为0°,作了这样的定义之后,就可以使平面内任何一条直线都有唯一的倾斜角了.2.若0°≤α<180°,任给定一个角α,有多少条直线与之对应?提示:有无数条,这无数条直线互相平行.知识点二直线的斜率[填一填]1.定义:倾斜角不是90°的直线,它的倾斜角α的正切值叫做这条直线的斜率,记为k,即k=tanα.2.斜率与倾斜角的对应关系3.经过两点的斜率公式直线经过两点P 1(x 1,y 1),P 2(x 2,y 2)(x 1≠x 2),其斜率k =y 2-y 1x 2-x 1.[答一答]3.是否所有直线都有斜率,斜率的几何意义是什么?提示:当直线与x 轴垂直时,直线不存在斜率,斜率决定直线相对于x 轴的倾斜程度. 4.直线的倾斜角越大,直线的斜率也越大,这句话对吗?提示:这句话不对,当倾斜角α=0°时,k =0,当0°<α<90°时,k >0,并且随α的增大,k 也增大,当α=90°时,k 不存在;当90°<α<180°时,k <0,并且随α的增大,k 也增大.5.斜率公式与所选取的两点的顺序是否有关?为什么?提示:斜率公式与所选取的两点的顺序都无关,即两点的横坐标和纵坐标在公式中的次序可以同时调换,即k =y 1-y 2x 1-x 2(x 1≠x 2),但只颠倒其中一个的顺序是不行的.6.过两点A (x 1,y 1),B (x 2,y 2)的所有直线都有斜率吗?提示:不是,当x 1=x 2,y 1≠y 2时,直线的斜率不存在,此时直线的倾斜角为90°.类型一 直线的倾斜角 [例1] 给出下列结论:①任意一条直线有唯一的倾斜角; ②一条直线的倾斜角可以为-30°; ③倾斜角为0°的直线只有一条,即x 轴; ④若直线的倾斜角为α,则sin α∈(0,1); ⑤若α是直线l 的倾斜角,且sin α=22,则α=45°. 其中正确结论的个数是( ) A .1 B .2 C .3 D .4[解析] 任意一条直线有唯一的倾斜角,倾斜角不可能为负,倾斜角为0°的直线有无数条,它们都垂直于y 轴,因此①正确,②③错误.④中当α=0°时,sin α=0,故④错误.⑤中α有可能为135°,故⑤错误.[答案]A根据定义求直线的倾斜角的关键是根据题意画出草图,然后根据定义找直线向上的方向与x轴的正向的夹角即为直线的倾斜角.画图时一般要分情况讨论,讨论时要做到不重不漏,讨论的分类主要有0°角、锐角、直角和钝角四类.[变式训练1](1)直线l经过第二、四象限,则直线l的倾斜角α的范围是(C)A.0°≤α<90° B.90°≤α<180°C.90°<α<180° D.0°≤α<180°解析:如图所示,α为钝角,即90°<α<180°.(2)如图,已知直线l1的倾斜角为30°,直线l2⊥l1,则直线l2的倾斜角为120°.类型二直线的斜率命题视角1:直线斜率的定义[例2]已知直线l1与l2向上的方向所成的角为100°,若l1的倾斜角为20°,求直线l2的斜率.[分析]结合题作图分析,求l2的倾斜角后利用k=tanα可求.[解]如图,设直线l2的倾斜角为α,斜率为k,则α=100°+20°=120°,∴k=tanα=tan120°=- 3.∴直线l2的斜率为- 3.直线的斜率k随倾斜角α增大时的变化情况:①当0°≤α<90°时,随α的增大,k在[0,+∞)范围内增大;②当90°<α<180°时,随α的增大,k在(-∞,0)范围内增大.[变式训练2]如图,设直线l1,l2,l3的斜率分别为k1,k2,k3,则k1,k2,k3的大小关系为(D)A .k 1<k 2<k 3B .k 3<k 1<k 2C .k 3<k 2<k 1D .k 1<k 3<k 2解析:直线l 2,l 3的倾斜角为锐角,且直线l 2的倾斜角大于直线l 3的倾斜角,所以0<k 3<k 2.直线l 1的倾斜角为钝角,斜率k 1<0,所以k 1<k 3<k 2.命题视角2:直线的斜率公式[例3] 求经过下列两点的直线的斜率(如果存在)和倾斜角,其中a ,b ,c 是两两不相等的实数.(1)(a ,c ),(b ,c ); (2)(a ,b ),(a ,c ); (3)(a ,a +b ),(c ,b +c ).[分析] 先确定斜率,再由公式k =tan α确定倾斜角,当两点的横坐标相等时,斜率不存在.[解] (1)k =c -c b -a =0,倾斜角为0°.(2)∵直线所经过的两点的横坐标相同, ∴此直线的斜率不存在,倾斜角为90°. (3)k =(b +c )-(a +b )c -a=1,倾斜角为45°.只有倾斜角不是90°的直线才有斜率,因此运用斜率公式时,要注意两点的横坐标是否相等.[变式训练3] (1)已知M (1,3),N (3,3),若直线l 的倾斜角是直线MN 的倾斜角的一半,则直线l 的斜率为( A )A.33 B.3 C.32D .1 解析:设直线MN 的倾斜角为α,则tan α=3-33-1=3,∴α=60°,故直线l 的倾斜角为α2=30°.由tan30°=33,得直线l 的斜率为33.(2)直线l 过点P (1,0),且与以A (2,1),B (0,3)为端点的线段有公共点,则直线l 的斜率的取值范围为(-∞,-3]∪[1,+∞).解析:如图,∵k AP =1-02-1=1,k BP =3-00-1=-3, ∴直线l 的斜率k ∈(-∞,-3]∪[1,+∞). 命题视角3:斜率公式的应用[例4] 已知实数x ,y 满足y =-2x +8,且2≤x ≤3,求yx 的最大值和最小值.[解] 如图所示,由于点(x ,y )满足关系式2x +y =8,且2≤x ≤3,可知点P (x ,y )在线段AB 上移动,并且A ,B 两点的坐标可分别求得为A (2,4),B (3,2).由于yx 的几何意义是直线OP 的斜率,且k OA =2,k OB =23,所以可求得y x 的最大值为2,最小值为23.[变式训练4] 点M (x ,y )在函数y =-2x +8的图象上,当x ∈[2,5]时,则y +1x +1的取值范围是[-16,53].解析:如图,设P 坐标(-1,-1),A ,B 坐标分别为(2,4),(5,-2), k P A =4-(-1)2-(-1)=53,k PB =-2-(-1)5-(-1)=-16,所以y +1x +1的取值范围是[-16,53].1.已知直线l 的倾斜角α=30°,则其斜率k 的值为( B ) A .0 B.33C. 3D .1解析:k =tan30°=33. 2.若直线l 经过点M (2,3),N (2,-1),则直线l 的倾斜角为( D ) A .0° B .30° C .60°D .90° 解析:M ,N 的横坐标相同,所以l 的倾斜角为90°.3.已知直线l 的斜率k 满足-1≤k <1,则它的倾斜角α的取值范围是( D ) A .-45°<α<45° B .-45≤α<45°C .0°<α<45°或135°<α<180°D .0°≤α<45°或135°≤α<180°4.已知点P (3,2),点Q 在x 轴上,若直线PQ 的倾斜角为150°,则点Q 的坐标为(3+23,0).解析:设Q (x,0),则由tan150°=-2x -3=-33可求之.5.如下图,已知△ABC 三个顶点坐标A (-2,1),B (1,1),C (-2,4),求三边所在直线的斜率,并根据斜率求这三条直线的倾斜角.解:由斜率公式知直线AB 的斜率k AB =1-11-(-2)=0.直线BC 的斜率k BC =4-1-2-1=-1.由于点A ,C 的横坐标均为-2,所以直线AC 的倾斜角为90°,其斜率不存在. 又∵α∈[0°,180°)时,tan0°=0,∴AB 的倾斜角为0°, ∴tan135°=-tan45°=-1,∴BC 的倾斜角为135°.∴直线AB 的斜率为0,倾斜角为0°;直线BC 的斜率为-1,倾斜角为135°;直线AC 的斜率不存在,倾斜角为90°.——本课须掌握的两大问题1.倾斜角理解倾斜角的概念,需注意以下三个方面:①角的顶点是直线与x 轴的交点;②角的一条边的方向是指向x 轴正方向;③角的另一边的方向是由顶点指向直线向上的方向.2.斜率公式(1)直线的斜率与两点的顺序无关,即两点的纵坐标和横坐标在公式中的次序可以同时调换.这就是说,如果分子是y 2-y 1,分母必须是x 2-x 1;反过来,如果分子是y 1-y 2,分母必须是x 1-x 2,即k =y 1-y 2x 1-x 2=y 2-y 1x 2-x 1(x 1≠x 2).(2)用斜率公式时要一看,二用,三求值.一看,就是看所给两点的横坐标是否相等,若相等,则直线的斜率不存在,若不相等,则进行第二步;二用,就是将点的坐标代入斜率公式;三求值,就是计算斜率的值,尤其是点的坐标中含有参数时,应用斜率公式时要对参数进行讨论.3.1.2 两条直线平行与垂直的判定[目标] 1.记住两直线平行与垂直的条件;2.能根据斜率判定两条直线平行或垂直;3.能利用两直线平行或垂直的条件解决有关问题.[重点] 两直线平行与垂直的条件及应用.[难点] 在利用两直线平行与垂直的条件时,对字母取值的讨论.知识点一 两条直线平行与斜率的关系[填一填]设两条不重合的直线l 1,l 2,斜率存在且分别为k 1,k 2,倾斜角分别为α1,α2.则对应关系如下:[答一答]1.两条直线平行,它们的斜率一定相等吗?提示:不一定,也可能斜率都不存在.2.两直线的斜率相等,两直线一定平行吗?提示:不一定.两直线的斜率相等,两直线平行或重合.知识点二两条直线垂直与斜率的关系[填一填][答一答]3.两条直线l 1,l 2垂直,它们的斜率之积一定为-1,这句话正确吗?提示:不正确.由两直线的斜率之积为-1,可以得出两直线垂直,反过来,两直线垂直,它们的斜率之积不一定为-1.当l 1,l 2中有一条直线的斜率不存在,另一条直线的斜率为0时,l 1与l 2互相垂直,但两直线的斜率之积不存在.类型一 两条直线的平行关系[例1] 判断下列各小题中的直线l 1与l 2是否平行: (1)l 1经过点A (-1,-2),B (2,1),l 2经过点M (3,4), N (-1,-1);(2)l 1的斜率为1,l 2经过点A (1,1),B (2,2);(3)l 1经过点A (-3,2),B (-3,10),l 2经过点M (5,-2),N (5,5). [分析] 求出斜率,利用l 1∥l 2⇔k 1=k 2判断,注意公式成立的条件. [解] (1)k 1=1-(-2)2-(-1)=1,k 2=-1-4-1-3=54,k 1≠k 2,l 1与l 2不平行; (2)k 1=1,k 2=2-12-1=1,k 1=k 2,∴l 1∥l 2或l 1与l 2重合. (3)l 1与l 2都与x 轴垂直,∴l 1∥l 2.判断两直线是否平行,应首先看两直线的斜率是否存在,即先看两点的横坐标是否相等,横坐标相等是特殊情况,应特殊判断.在证明两直线平行时,要区分平行与重合,必须强调不共线才能确定平行.因为斜率相等也可以推出两条直线重合.[变式训练1] 试确定m 的值,使过点A (m +1,0),B (-5,m )的直线与过点C (-4,3),D (0,5)的直线平行.解:直线CD 的斜率为5-30-(-4)=12,所以m -5-(m +1)=12,m =-2.类型二 两条直线的垂直关系[例2] (1)l 1经过点A (3,4)和B (3,6),l 2经过点P (-5,20)和Q (5,20),判断l 1与l 2是否垂直;(2)直线l 1过点(2m,1),(-3,m ),直线l 2过点(m ,m ),(1,-2),若l 1与l 2垂直,求实数m 的值.[分析] (1)若斜率存在,求出斜率,利用垂直的条件判断;若斜率不存在,可结合图形判断.(2)当两直线的斜率都存在时,由斜率之积等于-1求解;若一条直线的斜率不存在,则由另一条直线的斜率为0求解.[解] (1)直线l 1的斜率不存在,直线l 2的斜率为0,∴l 1⊥l 2.(2)①当两直线斜率都存在,即m ≠-32且m ≠1时,有k 1=1-m 2m +3,k 2=m +2m -1.∵两直线互相垂直,∴1-m 2m +3·m +2m -1=-1.∴m =-1.②当m =1时,k 1=0,k 2不存在,此时亦有两直线垂直.当2m =-3,即m =-32时,k 1不存在,k 2=m +2m -1=-32+2-32-1=-15,l 1与l 2不垂直.综上m =±1.利用斜率公式来判定两直线垂直的步骤(1)一看:就是看所给两点的横坐标是否相等,若相等,则直线的斜率不存在,只需看另一条直线的两点的纵坐标是否相等,若相等,则垂直,若不相等,则进行第二步.(2)二代:就是将点的坐标代入斜率公式.(3)求值:计算斜率的值,进行判断.尤其是点的坐标中含有参数时,应用斜率公式要对参数进行讨论.[变式训练2] (1)已知直线l 1经过点A (-2,5),B (3,5),直线l 2经过点M (2,4),N (2,-4),则直线l 1与l 2的关系是( B )A .l 1∥l 2B .l 1⊥l 2C .重合D .以上都不对解析:直线l 1的斜率k 1=0,直线l 2的斜率不存在,所以l 1⊥l 2,选B.(2)若直线l 经过点(a -2,-1)和(-a -2,1),且与斜率为-23的直线垂直,则实数a 的值是( A )A .-23B .-32C.23D.32解析:由于直线l 与斜率为-23的直线垂直,可知a -2≠-a -2.∵k l =1-(-1)-a -2-(a -2)=-1a ,∴-1a ·⎝⎛⎭⎫-23=-1.∴a =-23. 类型三 直线平行与垂直关系的综合应用[例3] 已知A (-4,3),B (2,5),C (6,3),D (-3,0)四点,若顺次连接A 、B 、C 、D 四点,试判定图形ABCD 的形状.[解] A 、B 、C 、D 四点在坐标平面内的位置如图,由斜率公式可得k AB=5-32-(-4)=13,k CD=0-3-3-6=13,k AD=0-3-3-(-4)=-3,k BC=3-56-2=-12.∴k AB=k CD,由图可知AB与CD不重合,∴AB∥CD.∵k AD≠k BC,∴AD与BC不平行.又k AB·k AD=13×(-3)=-1,∴AB⊥AD.故四边形ABCD为直角梯形.(1)在顶点确定的情况下,确定多边形形状时,要先画出图形,由图形猜测其形状,为下面证明确定目标;(2)证明两直线平行时,仅k1=k2是不够的,注意排除重合的情况;(3)判断四边形形状问题要进行到底,也就是要得到最具体的四边形.[变式训练3]已知△ABC的三个顶点分别是A(2,2+22)、B(0,2-22)、C(4,2),试判断△ABC是否是直角三角形.解:AB边所在直线的斜率k AB=(2-22)-(2+22)0-2=22,CB边所在直线的斜率k CB=(2-22)-20-4=22,AC边所在直线的斜率k AC=2-(2+22)4-2=- 2.∵k CB·k AC=-1,∴CB⊥AC.∴△ABC是直角三角形.1.下列说法正确的有(A)①若两直线斜率相等,则两直线平行;②若l1∥l2,则k1=k2;③若两直线中有一条直线的斜率不存在,另一条直线的斜率存在,则两直线相交;④若两直线斜率都不存在,则两直线平行.A.1个B.2个C.3个D.4个解析:当k1=k2时,l1与l2平行或重合,①不成立;②中斜率不存在时,不正确;④同①也不正确.只有③正确.2.已知A (2,0),B (3,3),直线l ∥AB ,则直线l 的斜率k 等于( B ) A .-3 B .3 C .-13D.13 解析:因为直线l ∥AB ,所以k =k AB =3-03-2=3. 3.已知直线l 1的斜率为0,且l 1⊥l 2,则l 2的倾斜角为( C ) A .0° B .135° C .90°D .180°解析:∵kl 1=0且l 1⊥l 2,∴kl 2不存在,直线l 2的倾斜角为90°.4.直线l 1的斜率为2,直线l 2上有三点M (3,5),N (x,7),P (-1,y ),若l 1⊥l 2,则x =-1,y =7.解析:∵l 1⊥l 2,且l 1的斜率为2,则l 2的斜率为-12,∴7-5x -3=y -5-1-3=-12,∴x =-1,y =7.5.已知▱ABCD 的三个顶点的坐标分别是A (0,1),B (1,0),C (4,3),求顶点D 的坐标. 解:设D (m ,n ),由题意,得AB ∥DC ,AD ∥BC ,则有k AB =k DC ,k AD =k BC , 所以⎩⎪⎨⎪⎧0-11-0=3-n4-m ,n -1m -0=3-04-1,解得⎩⎪⎨⎪⎧m =3,n =4.所以顶点D 的坐标为(3,4).——本课须掌握的两大问题1.代数方法判定两直线平行或垂直的结论:若直线l 1、l 2存在斜率k 1、k 2,则l 1∥l 2⇔k 1=k 2(其中l 1,l 2不重合);若l 1、l 2可能重合,则k 1=k 2⇔l 1∥l 2或l 1与l 2重合.l 1⊥l 2⇔k 1·k 2=-1.2.判定两条直线是平行还是垂直要“三看”:一看斜率是否存在,若两直线的斜率都不存在,则两直线平行,若一条直线的斜率为0,另一条直线的斜率不存在,则两直线垂直;斜率都存在时,二看斜率是否相等或斜率乘积是否为-1;三看两直线是否重合,若不重合,则两直线平行.3.2 直线的方程3.2.1 直线的点斜式方程[目标] 1.掌握直线方程的点斜式和斜截式及其适用条件;2.了解直线方程的斜截式与一次函数的关系;3.会求直线的点斜式方程与斜截式方程.[重点] 直线方程的两种形式及应用. [难点] 直线方程的推导及应用.知识点一 直线的点斜式方程[填一填]1.已知直线(斜率存在)过两点P (x ,y ),P 0(x 0,y 0),则直线的斜率k =y -y 0x -x 0.2.已知直线过点P 0(x 0,y 0),且斜率为k ,则直线方程是y -y 0=k (x -x 0).3.过定点P (x 0,y 0),与x 轴平行的直线的方程为y =y 0;与y 轴平行的直线的方程为x =x 0.[答一答]1.方程y -y 0=k (x -x 0)与方程k =y -y 0x -x 0等价吗?提示:两个方程不等价,前者是整条直线,后者表示去掉点P (x 0,y 0)的一条直线. 2.直线l 的点斜式方程是y -2=3(x +1),则直线l 的斜率是( C ) A.2 B.-1 C.3 D.-3 知识点二 直线的斜截式方程[填一填]1.已知直线l 的斜率为k ,且与y 轴的交点为(0,b ),则该直线的斜截式方程为y =kx +b .2.b 是直线l 在y 轴上的截距.[答一答]3.“截距”与“距离”是否是一回事?提示:不是一回事,如:直线在y 轴上的截距并不是距离,而是直线与y 轴交点的纵坐标,它是一个数值,可正可负,可为零.当截距为非负数时,它等于交点到坐标原点的距离,当截距为负数时,它等于交点到坐标原点距离的相反数.4.直线的斜截式方程能表示所有直线吗?提示:不能,当直线的斜率不存在时,则不能用斜截式方程表示.5.直线2x +3y +1=0的斜率是-23,在y 轴上的截距是-13,在x 轴上的截距是-12.解析:将直线方程化为y =-23x -13得直线的斜率是-23,在y 轴上的截距是-13,令y=0得x =-12,知直线在x 轴上的截距是-12.类型一 直线的点斜式方程[例1] (1)已知直线方程y -3=3(x -4),则这条直线经过的已知点、倾斜角分别为( )A.(4,3),60°B.(-3,-4),30°C.(4,3),30°D.(-4,-3),60°(2)经过点(-5,2)且平行于y轴的直线方程为______.(3)直线y=x+1绕着其上一点P(3,4)逆时针旋转90°后得直线l,则直线l的点斜式方程为________.[解析](1)由直线的点斜式方程易知直线过点(4,3),且斜率为3,所以倾斜角为60°.(2)∵直线平行于y轴,∴直线不存在斜率,∴方程为x=-5.(3)直线y=x+1的斜率k=1,所以倾斜角为45°.由题意知,直线l的倾斜角为135°,所以直线l的斜率k′=tan135°=-1,又点P(3,4)在直线l上,由点斜式方程知,直线l的方程为y-4=-(x-3).[答案](1)A(2)x=-5(3)y-4=-(x-3)已知直线上一点的坐标以及直线斜率或已知直线上两点的坐标,均可用直线方程的点斜式表示,直线方程的点斜式,应在直线斜率存在的条件下使用.当直线的斜率不存在时,直线方程为x=x0.[变式训练1]求满足下列条件的直线方程:(1)经过点(2,-3),倾斜角是直线y=13x倾斜角的2倍;(2)经过点P(5,-2)与y轴平行;(3)过P(-2,3),Q(5,-4)两点.解:(1)∵直线y=13x的斜率为13,∴倾斜角为30°.∴所求直线的倾斜角为60°,其斜率为 3.∴所求直线方程为y+3=3(x-2),即3x-y-23-3=0.(2)与y轴平行的直线,其斜率k不存在,不能用点斜式方程表示.但直线上点的横坐标均为5,故直线方程可记为x=5.(3)过点P(-2,3),Q(5,-4)两点的直线斜率k PQ=-4-35-(-2)=-77=-1.又∵直线过点P(-2,3),∴由直线方程的点斜式可得直线方程为y-3=-(x+2),即x +y-1=0.类型二直线的斜截式方程[例2]根据条件写出下列直线的斜截式方程:(1)斜率为2,在y轴上的截距是5;(2)倾斜角为30°,在y轴上的截距是-2;(3)倾斜角为60°,与y轴的交点到坐标原点的距离为3.[解](1)由直线方程的斜截式可知,所求直线方程为y=2x+5.(2)因为倾斜角α=30°,所以斜率k =tan30°=33,由斜截式可得方程为y =33x -2. (3)因为直线的倾斜角为60°,所以斜率k =tan60°= 3.因为直线与y 轴的交点到坐标原点的距离为3,所以直线在y 轴上的截距b =3或b =-3,故所求直线的方程为y =3x +3或y =3x -3.直线的斜截式方程的求解策略:(1)求直线的斜截式方程只要分别求出直线的斜率和在y 轴上的截距,代入方程即可. (2)当斜率和截距未知时,可结合已知条件,先求出斜率和截距,再写出直线的斜截式方程.[变式训练2] (1)已知直线l 的倾斜角为60°,在y 轴上的截距为-2,则直线l 的斜截式方程为y =3x -2.解析:由题意知直线l 的斜率k =3,故由直线方程的斜截式可得所求直线方程为y =3x -2.故填y =3x -2.(2)写出斜率为2,在y 轴上截距为m 的直线方程,当m 为何值时,直线过点(1,1)? 解:由直线方程的斜截式,得直线方程为y =2x +m .∵直线过点(1,1),将x =1,y =1代入方程y =2x +m 得1=2×1+m ,∴m =-1即为所求.类型三 直线方程的应用命题视角1:直线方程与平行、垂直 [例3] 当a 为何值时,(1)两直线y =ax -2与y =(a +2)x +1互相垂直? (2)两直线y =-x +4a 与y =(a 2-2)x +4互相平行? [解] (1)设两直线的斜率分别为k 1、k 2,则k 1=a ,k 2=a +2.因为两直线互相垂直,所以k 1·k 2=a (a +2)=-1.解得a =-1.所以当a =-1时,两条直线互相垂直.(2)设两直线的斜率分别为k 3,k 4,则k 3=-1,k 4=a 2-2. 因为两条直线互相平行,所以⎩⎪⎨⎪⎧a 2-2=-1,4a ≠4,解得a =-1.所以当a =-1时,两直线互相平行.(1)若l 1∥l 2(斜率存在),则k 1=k 2,此时两直线与y 轴的交点不同,即b 1≠b 2;反之当k 1=k 2且b 1≠b 2时,l 1∥l 2,所以有l 1∥l 2⇔k 1=k 2且b 1≠b 2.(2)若l 1⊥l 2(斜率存在),则k 1·k 2=-1;反之当k 1·k 2=-1时,l 1⊥l 2.所以有l 1⊥l 2⇔k 1·k 2=-1.[变式训练3] 已知直线l 过点A (2,-3). (1)若l 与直线y =-2x +5平行,求其方程; (2)若l 与直线y =-2x +5垂直,求其方程.解:(1)法1:因为l 与y =-2x +5平行,所以k l =-2,由直线的点斜式方程,知y +3=-2(x -2).法2:已知直线方程为y =-2x +5, 而l 与其平行,所以y =-2x +b ,又过点(2,-3),所以b =1,所以l 的方程为y =-2x +1. (2)法1:因为l 与y =-2x +5垂直,所以k l =12,由直线的点斜式方程知y -(-3)=12(x -2).法2:因为直线y =-2x +5的斜率为-2,l 与其垂直, 所以可设l 的方程为y =12x +c ,又因为过点(2,-3),所以c =-4, 所以l 的方程为y =12x -4.命题视角2:“截距”的应用[例4] 已知直线l 与直线y =43x +53垂直,并且l 与两坐标轴围成三角形的面积为24,求直线l 的方程.[分析] 由题意可求出直线l 的斜率,设出直线的斜截式方程,求出直线l 在y 轴上的截距即可.[解] 因为直线l 与直线y =43x +53垂直,所以设直线l 的方程为y =-34x +b .令y =0,得x =43b ,即直线l 在x 轴上的截距为43b .由题意,得12|b |·⎪⎪⎪⎪43b =24,所以b 2=36,所以b =±6,故所求直线l 的方程为y =-34x +6或y =-34x -6.已知直线的斜率常用斜截式,再由其他条件确定在y 轴上的截距,同时注意截距与距离的区别.[变式训练4] 求斜率为34且与两坐标轴围成的三角形周长为12的直线方程.解:设直线方程为y =34x +b .令x =0,得y =b .令y =0,得x =-43b .所以|b |+⎪⎪⎪⎪-43b +b 2+⎝⎛⎭⎫-4b32=12, |b |+43|b |+53|b |=12,b =±3.故所求直线的方程为y =34x +3或y =34x -3.1.已知直线的方程是y +2=-x -1,则( C ) A.直线经过点(-1,2),斜率为-1 B.直线经过点(2,-1),斜率为-1 C.直线经过点(-1,-2),斜率为-1 D.直线经过点(-2,-1),斜率为1 解析:∵方程可变形为y +2=-(x +1), ∴直线过点(-1,-2),斜率为-1.2.直线y -2=-3(x +1)的倾斜角及在y 轴上的截距分别为( B ) A.60°,2 B.120°,2-3 C.60°,2- 3D.120°,2解析:∵该直线的斜率为-3,当x =0时,y =2-3, ∴其倾斜角为120°,在y 轴上的截距为2- 3. 3.直线y =kx +b 通过第一、三、四象限,则有( B ) A.k >0,b >0 B.k >0,b <0 C.k <0,b >0D.k <0,b <0解析:∵直线经过第一、三、四象限,∴图形如图所示,由图知,k >0,b <0. 4.若直线l 1:y =-2a x -1a 与直线l 2:y =3x -1互相平行,则a =-23.解析:由l 1∥l 2,∴-2a =3,∴a =-23.5.已知在第一象限的△ABC 中,A (1,1),B (5,1),且∠CAB =60°,∠CBA =45°,求边AB ,AC 和BC 所在直线的点斜式方程.解:由A (1,1),B (5,1)可知边AB 所在直线的斜率为0,故边AB 所在直线的方程为y -1=0.由AB ∥x 轴,且△ABC 在第一象限知边AC 所在直线的斜率k AC =tan60°=3,边BC 所在直线的斜率k BC =tan(180°-45°)=-1,所以,边AC 所在直线的方程为y -1=3(x -1),边BC 所在直线的方程为y -1=-(x -5).——本课须掌握的两大问题1.求直线的点斜式方程的方法步骤2.直线的斜截式方程的求解策略(1)用斜截式求直线方程,只要确定直线的斜率和截距即可,同时要特别注意截距和距离的区别.(2)直线的斜截式方程y =kx +b 不仅形式简单,而且特点明显,k 是直线的斜率,b 是直线在y 轴上的截距,只要确定了k 和b 的值,直线的图象就一目了然.因此,在解决直线的图象问题时,常通过把直线方程化为斜截式方程,利用k ,b 的几何意义进行判断.3.2.2 直线的两点式方程[目标] 1.记住直线的两点式方程与截距式方程,并会用它们求直线的方程;2.会用两点式方程与截距式方程解答有关问题.[重点] 直线的两点式方程与截距式方程及应用. [难点] 截距式方程及应用.知识点一 直线的两点式方程[填一填]经过两点P 1(x 1,y 1),P 2(x 2,y 2)(x 1≠x 2,y 1≠y 2)的直线方程是y -y 1y 2-y 1=x -x 1x 2-x 1,叫做直线的两点式方程,简称两点式.[答一答]1.过点A (5,6)和点B (-1,2)的直线的两点式方程是( B ) A.y -5x -6=y +1x -2 B.y -62-6=x -5-1-5 C.2-6y -6=-1-5x -5D.x -62-6=y -5-1-52.过两点P 1(x 1,y 1),P 2(x 2,y 2)的直线是否一定可用两点式方程表示?提示:不一定.(1)若x 1=x 2且y 1≠y 2,则直线垂直于x 轴,方程为x -x 1=0或x =x 1. (2)若x 1≠x 2且y 1=y 2,则直线垂直于y 轴,方程为y -y 1=0或y =y 1. (3)若x 1≠x 2且y 1≠y 2,则直线方程可用两点式y -y 1y 2-y 1=x -x 1x 2-x 1表示.知识点二 直线的截距式方程[填一填]直线l 与x 轴的交点为(a,0),与y 轴的交点为(0,b ),其中a ≠0,b ≠0,则直线l 的两点式方程是y -0b -0=x -a 0-a ,可以整理为x a +yb =1.它是由直线在x 轴上的截距a 和y 轴上的截距b 确定的,所以叫做直线的截距式方程.[答一答]3.在x ,y 轴上的截距分别是-3,4的直线方程是( A ) A.x -3+y4=1 B.x 3+y-4=1 C.x -3-y4=1 D.x 4+y-3=1 4.截距式方程不能表示哪些直线?提示:截距式方程的条件是a ≠0,b ≠0,即直线在x 轴、y 轴上的截距都不能为0,所以截距式方程不能表示与坐标轴垂直的直线及经过原点的直线.知识点三 中点坐标公式[填一填]若点P 1,P 2的坐标分别为(x 1,y 1),(x 2,y 2),且线段P 1P 2的中点M 的坐标为(x ,y ),则⎩⎨⎧x =x 1+x 22,y =y 1+y22.此公式为线段P 1P 2的中点坐标公式.[答一答]5.若已知A (x 1,y 1)及AB 中点(x 0,y 0),如何求B 点的坐标? 提示:设B (x ,y ),则由⎩⎨⎧x 1+x2=x 0,y 1+y2=y 0,得⎩⎪⎨⎪⎧x =2x 0-x 1,y =2y 0-y 1, 故点B 的坐标为(2x 0-x 1,2y 0-y 1).类型一 直线的两点式方程[例1] 已知A (-3,2),B (5,-4),C (0,-2),在△ABC 中, (1)求BC 边的方程;(2)求BC 边上的中线所在直线的方程.[分析] 首先判定是否满足直线方程两点式的条件,若满足,则应用公式求解;若不满足,则根据具体条件写出方程.[解] (1)∵BC 边过两点B (5,-4),C (0,-2), ∴由两点式得y -(-4)(-2)-(-4)=x -50-5,即2x +5y +10=0.故BC 边的方程为2x +5y +10=0(0≤x ≤5). (2)设BC 的中点为M (x 0,y 0),则x 0=5+02=52,y 0=(-4)+(-2)2=-3.∴M (52,-3).又BC 边上的中线经过点A (-3,2). ∴由两点式得y -2-3-2=x -(-3)52-(-3),即10x +11y +8=0.故BC 边上的中线所在直线的方程为10x +11y +8=0.(1)当已知两点坐标,求过这两点的直线方程时,首先要判断是否满足两点式方程的适用条件:两点的连线不垂直于坐标轴,若满足,则考虑用两点式求方程.(2)由于减法的顺序性,一般用两点式求直线方程时常会将字母或数字的顺序错位而导致错误.在记忆和使用两点式方程时,必须注意坐标的对应关系.[变式训练1] 梯形ABCD 四个顶点坐标分别为A (-5,1),B (1,-3),C (4,1),D (1,3).求该梯形中位线所在直线的方程.解:∵k AB =-23,k CD =-23,∴AB ∥CD .又AD 中点M (-2,2),BC 中点N ⎝⎛⎭⎫52,-1,由直线的两点式方程得梯形的中位线MN 所在直线方程为y -2-1-2=x +252+2,化简得2x +3y -2=0.类型二 直线的截距式方程[例2] 一条直线经过点A (-2,2),并且与两坐标轴围成的三角形的面积为1,求此直线方程.[分析] 可设直线方程为截距式.[解] 设所求直线方程为x a +y b =1,∵点A (-2,2)在直线上,∴-2a +2b =1.①又∵直线与坐标轴围成的三角形面积为1, ∴12|a |·|b |=1.②由①②可得⎩⎪⎨⎪⎧ a -b =1,ab =2,或⎩⎪⎨⎪⎧a -b =-1,ab =-2. 解得⎩⎪⎨⎪⎧ a =2,b =1,或⎩⎪⎨⎪⎧a =-1,b =-2.第二个方程组无解.故所求直线方程为x 2+y 1=1或x -1+y-2=1,即x +2y -2=0或2x +y +2=0.解题时,一定要注意根据不同的条件,用适当的直线表达式来求直线方程.本题三角形的两直角边长恰好是直线在两坐标轴上的截距的绝对值,故设为截距式是比较适当的.[变式训练2] (1)过点A (4,1)且在两坐标轴上截距相等的直线方程为( C ) A.x +y =5 B.x -y =5C.x +y =5或x -4y =0D.x -y =5或x -4y =0解析:当直线过点(0,0)时,直线方程为y =14x ,即x -4y =0;当直线不过点(0,0)时,可设直线方程为x a +ya =1,把(4,1)代入,解得a =5,∴直线方程为x +y =5.综上可知,直线方程为x +y =5或x -4y =0.(2)若直线y =-b a x -cb 经过第一、二、三象限,则( D )A.ab >0,bc <0B.ab >0,bc >0C.ab <0,bc >0D.ab <0,bc <0解析:因为直线经过第一、二、三象限,所以-ba >0,即ab <0,且直线与坐标轴的交点在原点的上方,所以-cb>0,即bc <0,故选D.类型三 直线方程形式的灵活选用[例3] 已知直角三角形ABC 的顶点A 的坐标为(-2,0),直角顶点B 的坐标为(1,3),顶点C 在x 轴上.(1)求边BC 所在直线的方程;(2)求△ABC 的斜边上的中线所在直线的方程.[解] (1)因为直角三角形ABC 的直角顶点为B (1,3),所以AB ⊥BC ,故k AB ·k BC =-1.又A (-2,0),所以k AB =3-01+2=33,从而k BC =-1k AB =-3,所以边BC 所在直线的方程为y -3=-3(x -1),即3x +y -23=0.。
3.2.3直线的一般式方程[学习目标]1.掌握直线的一般式方程.2.了解关于x 、y 的二元一次方程Ax +By +C =0(A 、B不同时为0)都表示直线,且直线方程都可以化为Ax +By +C =0的形式.3.会进行直线方程不同形式的转化.[知识链接]1.过点A (x 0,y 0)分别垂直于x 轴、y 轴的直线方程为:x =x 0,y =y 0.2.直线的点斜式方程:y -y 0=k (x -x 0).直线的两点式方程:y -y 1y 2-y 1=x -x 1x 2-x 1(x 1≠x 2,y 1≠y 2).[预习导引]1.在平面直角坐标系中,对于任何一条直线,都有一个表示这条直线的关于x ,y 的二元一次方程;任何关于x ,y 的二元一次方程都表示一条直线.方程Ax +By +C =0(其中A 、B 不同时为0)叫做直线方程的一般式.2.对于直线Ax +By +C =0,当B ≠0时,其斜率为-A B ,在y 轴上的截距为-CB;当B =0时,在x 轴上的截距为-C A ;当AB ≠0时,在两轴上的截距分别为-C A ,-CB .3.直线一般式方程的结构特征(1)方程是关于x ,y 的二元一次方程.(2)方程中等号的左侧自左向右一般按x ,y ,常数的先后顺序排列.(3)x 的系数一般不为分数和负数.(4)虽然直线方程的一般式有三个参数,但只需两个独立的条件即可求得直线的方程.要点一直线的一般式与其他形式的转化例1(1)下列直线中,斜率为-43,且不经过第一象限的是()A .3x +4y +7=0B .4x +3y +7=0C .4x +3y -42=0D .3x +4y -42=0(2)直线3x -5y +9=0在x 轴上的截距等于()A.3B .-5 C.95D .-33答案(1)B(2)D解析(1)将一般式化为斜截式,斜率为-43的有:B 、C 两项.又y =-43+14过点(0,14)即直线过第一象限,所以只有B 项正确.(2)令y =0则x =-33.规律方法(1)一般式化为斜截式的步骤:①移项得By =-Ax -C ;②当B ≠0时,得斜截式:y =-A B x -CB .(2)一般式化为截距式的步骤:方法一:①把常数项移到方程右边,得Ax +By =-C ;②当C ≠0时,方程两边同除以-C ,得Ax -C +By-C=1;③化为截距式:x -C A +y-C B =1.方法二:①令x =0求直线在y 轴上的截距b ;②令y =0求直线在x 轴上的截距a ;③代入截距式方程x a +yb=1.由于直线方程的斜截式和截距式是唯一的,而两点式和点斜式不唯一,因此,通常情况下,一般式不化为两点式和点斜式.跟踪演练1已知直线l 经过点A (-5,6)和点B (-4,8),求直线l 的一般式方程和截距式方程,并画出图形.解因为直线l 经过点A (-5,6),B (-4,8),所以由两点式,得y -68-6=x +5-4+5,整理得2x -y +16=0,化为截距式得x -8+y16=1,所以直线l 的一般式方程为2x -y +16=0,截距式方程为x -8+y16=1.图形如图所示:要点二直线方程的应用例2已知直线l 的方程为3x +4y -12=0,求满足下列条件的直线l ′的方程:(1)过点(-1,3),且与l 平行;(2)过点(-1,3),且与l 垂直.解方法一l 的方程可化为y =-34x +3,∴l 的斜率为-34.(1)∵l ′与l 平行,∴l ′的斜率为-34.又∵l ′过点(-1,3),由点斜式知方程为y -3=-34(x +1),即3x +4y -9=0.(2)∵l ′与l 垂直,∴l ′的斜率为43,又l ′过点(-1,3),由点斜式可得方程为y -3=43(x +1),即4x -3y +13=0.方法二(1)由l ′与l 平行,可设l ′的方程为3x +4y +m =0.将点(-1,3)代入上式得m =-9.∴所求直线的方程为3x +4y -9=0.(2)由l ′与l 垂直,可设l ′的方程为4x -3y +n =0.将(-1,3)代入上式得n =13.∴所求直线的方程为4x -3y +13=0.规律方法一般地,直线Ax +By +C =0中系数A 、B 确定直线的斜率,因此,与直线Ax +By +C =0平行的直线方程可设为Ax +By +m =0,与直线Ax +By +C =0垂直的直线方程可设为Bx -Ay +n =0.这是经常采用的解题技巧.跟踪演练2已知A (2,2)和直线l :3x +4y -20=0.求:(1)过点A 和直线l 平行的直线方程;(2)过点A 和直线l 垂直的直线方程.解(1)将与直线l 平行的方程设为3x +4y +C 1=0,又过点A(2,2),所以3×2+4×2+C1=0,所以C1=-14.所求直线方程为3x+4y-14=0.(2)将与l垂直的直线方程设为4x-3y+C2=0,又过点A(2,2),所以4×2-3×2+C2=0,所以C2=-2,所以直线方程为4x-3y-2=0.要点三由含参一般式方程求参数的值或取值范围例3(1)若方程(m2+5m+6)x+(m2+3m)y+1=0表示一条直线,则实数m满足________.(2)当实数m为何值时,直线(2m2+m-3)x+(m2-m)y=4m-1.①倾斜角为45°;②在x轴上的截距为1.(1)答案m≠-3解析若方程不能表示直线,则m2+5m+6=0且m2+3m=0.2+5m+6=0,2+3m=0,得m=-3,所以m≠-3时,方程表示一条直线.(2)解①因为已知直线的倾斜角为45°,所以此直线的斜率是1,所以-2m2+m-3m2-m=1,2-m≠0,m2+m-3=-(m2-m),≠0且m≠1,=-1或m=1.所以m=-1.②因为已知直线在x轴上的截距为1,令y=0得x=4m-12m2+m-3,所以4m-12+m-3=1,m2+m-3≠0,m-1=2m2+m-3,≠1且m≠-32,=-12或m=2.所以m=-12或m=2.规律方法已知含参的直线的一般式方程求参数的值或范围的步骤跟踪演练3已知直线l :kx -y +1+2k =0(k ∈R ).(1)证明:直线l 过定点;(2)若直线不经过第四象限,求k 的取值范围.直线l k (x +2)+(1-y )=0,+2=0,-y =0,=-2,=1,∴无论k 取何值,直线总经过定点(-2,1).(2)解由方程知,当k ≠0时直线在x 轴上的截距为-1+2kk,在y 轴上的截距为1+2k ,要-1+2k k ≤-2,+2k ≥1,解之得k >0;当k =0时,直线为y =1,符合题意,故k ≥0.故k 的取值范围为{k |k ≥0}.1.若方程Ax +By +C =0表示直线,则A 、B 应满足的条件为()A .A ≠0B .B ≠0C .A ·B ≠0D .A 2+B 2≠0答案D解析方程Ax +By +C =0表示直线的条件为A 、B 不能同时为0,即A 2+B 2≠0.2.已知ab <0,bc <0,则直线ax +by =c 通过()A .第一、二、三象限B .第一、二、四象限C .第一、三、四象限D .第二、三、四象限答案C解析由ax+by=c,得y=-abx+cb,∵ab<0,∴直线的斜率k=-ab>0,直线在y轴上的截距cb<0.由此可知直线通过第一、三、四象限.3.在直角坐标系中,直线x+3y-3=0的倾斜角是() A.30°B.60°C.150°D.120°答案C解析直线斜率k=-33,所以倾斜角为150°,故选C.4.已知直线(a-2)x+ay-1=0与直线2x+3y+5=0平行,则a的值为()A.-6B.6C.-45D.4 5答案B解析由(a-2)×3-a×2=0得a=6,且当a=6时两直线平行,故选B.1.根据两直线的一般式方程判定两直线平行的方法(1)判定斜率是否存在,若存在,化成斜截式后,则k1=k2且b1≠b2;若都不存在,则还要判定不重合.(2)可直接采用如下方法:一般地,设直线l1:A1x+B1y+C1=0,l2:A2x+B2y+C2=0.l1∥l2⇔A1B2-A2B1=0,且B1C2-B2C1≠0,或A1C2-A2C1≠0.这种判定方法避开了斜率存在和不存在两种情况的讨论,可以减小因考虑不周而造成失误的可能性.2.根据两直线的一般式方程判定两直线垂直的方法(1)若一个斜率为零,另一个不存在,则垂直;若两个都存在斜率,化成斜截式后,则k1k2=-1.(2)一般地,设l1:A1x+B1y+C1=0,l2:A2x+B2y+C2=0,l1⊥l2⇔A1A2+B1B2=0.第二种方法可避免讨论,减小失误.一、基础达标1.直线(2m2-5m+2)x-(m2-4)y+5m=0的倾斜角为45°,则m的值为() A.-2B.2C.-3D.3答案D解析由已知得m2-4≠0,且2m2-5m+2m2-4=1,解得:m=3或m=2(舍去).2.直线l的方程为Ax+By+C=0,若直线l过原点和二、四象限,则()A.C=0,B>0B.A>0,B>0,C=0C.AB<0,C=0D.AB>0,C=0答案D解析通过直线的斜率和截距进行判断.3.已知直线ax+by-1=0在y轴上的截距为-1,且它的倾斜角是直线3x-y-3=0的倾斜角的2倍,则a,b的值分别为()A.3,1B.3,-1C.-3,1D.-3,-1答案D解析原方程化为x1a+y1b=1,∴1b=-1,∴b=-1.又∵ax+by-1=0的斜率k=-ab=a,且3x-y-3=0的倾斜角为60°,∴k=tan120°,∴a=-3,故选D. 4.直线ax+3my+2a=0(m≠0)过点(1,-1),则直线的斜率k等于() A.-3B.3C.1 3D.-13答案D解析由点(1,-1)在直线上可得a-3m+2a=0(m≠0),解得m=a,故直线方程为ax+3ay+2a=0(a≠0),即x+3y+2=0,其斜率k=-1 3 .5.已知直线(a+2)x+(a2-2a-3)y-2a=0在x轴上的截距为3,则该直线在y轴上的截距为________.答案-4 15解析把(3,0)代入已知方程得:(a +2)×3-2a =0,∴a =-6.∴直线方程为-4x +45y +12=0,令x =0,得y =-415.6.直线l :ax +(a +1)y +2=0的倾斜角大于45°,则a 的取值范围是________________.答案(-∞,-12)∪(0,+∞)解析当a =-1时,直线l 的倾斜角为90°,符合要求;当a ≠-1时,直线l 的斜率为-a a +1,只要-a a +1>1或者-aa +1<0即可,解得-1<a <-12或者a <-1或者a >0.综上可知,实数a 的取值范围是(-∞,-12)∪(0,+∞).7.已知直线l 1:ax +(1-a )y =3与l 2:(a -1)x +(2a +3)y =2互相垂直,求a 的值.解方法一当a =1时,l 1为x =3,l 2为y =25,故l 1⊥l 2.当a =-32时,l 1的方程为-32x +52y =3,l 2的方程为-52=2,显然l 1,l 2不垂直.当a ≠1且a ≠-32时,由k 1·k 2=-1,得a a -1·1-a 2a +3=-1,解得a =-3.综上所述,当a =1或a =-3时,l 1⊥l 2.方法二因为l 1⊥l 2,所以a (a -1)+(1-a )(2a +3)=0,即a 2+2a -3=0.解得a =1或a =-3.故当a =1或a =-3时,l 1⊥l 2.二、能力提升8.直线l 1:ax -y +b =0,l 2:bx -y +a =0(a ≠0,b ≠0,a ≠b )在同一坐标系中的图形大致是()答案C解析将l 1与l 2的方程化为斜截式得:y =ax +b ,y =bx +a ,根据斜率和截距的符号可得选C.9.若直线l 1:x +ay -2=0与直线l 2:2ax +(a -1)y +3=0互相垂直,则a 的值为________.答案0或-1解析a =0时,l 1:x =2,l 2:y =3,显然l 1⊥l 2;a =1时,l 1:x +y -2=0,l 2:x =-32,显然l 1和l 2不垂直;a ≠0,且a ≠1时,则k 1=-1a ,k 2=2a 1-a.由l 1⊥l 2得-1a ·2a1-a =-1,解得a =-1.故a 的值为0或-1.10.已知两条直线a 1x +b 1y +4=0和a 2x +b 2y +4=0都过点A (2,3),则过两点P 1(a 1,b 1),P 2(a 2,b 2)的直线方程为________________.答案2x +3y +4=0解析a 1+3b 1+4=0,a 2+3b 2+4=0,易知两点P 1(a 1,b 1),P 2(a 2,b 2)都在直线2x +3y +4=0上,即2x +3y +4=0为所求.11.根据下列条件分别写出直线的方程,并化为一般式方程:(1)斜率为3,且经过点A (5,3);(2)过点B (-3,0),且垂直于x 轴;(3)斜率为4,在y 轴上的截距为-2;(4)在y 轴上的截距为3,且平行于x 轴;(5)经过C (-1,5),D (2,-1)两点;(6)在x 轴,y 轴上截距分别是-3,-1.解(1)由点斜式方程得y -3=3(x -5),即3x -y +3-53=0.(2)x =-3,即x +3=0.(3)y =4x -2,即4x -y -2=0.(4)y =3,即y -3=0.(5)由两点式方程得y -5-1-5=x -(-1)2-(-1),即2x +y -3=0.(6)由截距式方程得x -3+y-1=1,即x +3y +3=0.三、探究与创新12.求满足下列条件的直线方程:(1)过点A (1,-4),与直线2x +3y +5=0平行;(2)过点A (1,-4),与直线2x -3y +5=0垂直.解(1)设所求直线方程为2x +3y +C 1=0,则由题意得2×1+3×(-4)+C 1=0,解得C 1=10,所以所求直线方程为2x +3y +10=0.(2)设所求直线方程为3x +2y +C 2=0,则由题意得3×1+2×(-4)+C 2=0,解得C 2=5,所以所求直线方程为3x +2y +5=0.13.(1)已知直线l 1:2x +(m +1)y +4=0与直线l 2:mx +3y -2=0平行,求m 的值.(2)当a 为何值时,直线l 1:(a +2)x +(1-a )y -1=0与直线l 2:(a -1)x +(2a +3)y +2=0互相垂直?解方法一(1)由l 1:2x +(m +1)y +4=0,l 2:mx +3y -2=0知:①当m =0时,显然l 1与l 2不平行.②当m ≠0时,l 1∥l 2,需2m =m +13≠4-2.解得m =2或m =-3,∴m 的值为2或-3.(2)由题意知,直线l 1⊥l 2.①若1-a =0,即a =1时,直线l 1:3x -1=0与直线l 2:5y +2=0显然垂直.②若2a +3=0,即a =-32时,直线l 1:x +5y -2=0与直线l 2:5x -4=0不垂直.③若1-a ≠0,且2a +3≠0,则直线l 1,l 2的斜率k 1,k 2都存在,k 1=-a +21-a ,k 2=-a -12a +3.当l 1⊥l 2时,k 1·k 2=-1,即(-a +21-a )·(-a -12a +3)=-1,∴a =-1.综上可知,当a =1或a =-1时,直线l 1⊥l 2.方法二(1)令2×3=m (m +1),解得m =-3或m =2.当m =-3时,l 1:x -y +2=0,l 2:3x -3y +2=0,显然l1与l2不重合,∴l1∥l2.同理当m=2时,l1:2x+3y+4=0,l2:2x+3y-2=0,显然l1与l2不重合,∴l1∥l2.∴m的值为2或-3.(2)由题意知直线l1⊥l2,∴(a+2)(a-1)+(1-a)(2a+3)=0,解得a=±1,将a=±1代入方程,均满足题意.故当a=1或a=-1时,直线l1⊥l2.3.3直线的交点坐标与距离公式。
山东省沂水县高中数学第三章直线与方程3.2.1 直线的点斜式方程学案(含解析)新人教A版必修2编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(山东省沂水县高中数学第三章直线与方程3.2.1 直线的点斜式方程学案(含解析)新人教A版必修2)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为山东省沂水县高中数学第三章直线与方程3.2.1 直线的点斜式方程学案(含解析)新人教A版必修2的全部内容。
3.2.1 直线的点斜式方程学习目标1。
了解由斜率公式推导直线方程的点斜式的过程;2。
掌握直线的点斜式方程与斜截式方程;3.会利用直线的点斜式与斜截式方程解决有关的实际问题.知识点一直线的点斜式方程思考1 如图,直线l经过点P0(x0,y0),且斜率为k,设点P(x,y)是直线l上不同于点P0的任意一点,那么x,y应满足什么关系?答案由斜率公式得k=错误!,则x,y应满足y-y0=k(x-x0).思考2 经过点P0(x0,y0)的所有直线是否都能用点斜式方程来表示?答案斜率不存在的直线不能用点斜式表示,过点P0斜率不存在的直线为x=x0.点斜式已知条件点P(x0,y0)和斜率k图示方程形式y-y0=k(x-x0)适用条件斜率存在知识点二思考1 已知直线l的斜率为k,且与y轴的交点为(0,b),得到的直线l的方程是什么?答案将k及点(0,b)代入直线方程的点斜式得:y=kx+b.思考2 方程y=kx+b,表示的直线在y轴上的截距b是距离吗?b可不可以为负数和零?答案y轴上的截距b不是距离,可以是负数和零.思考3 对于直线l1:y=k1x+b1,l2:y=k2x+b2。
课题:直线与直线方程考纲要求:① 在平面直角坐标系中,结合具体图形,确定直线位置的几何要素;②理解直线的倾斜角和斜率概念,掌握过两点的直线斜率的计算公式;③掌握确定直线位置的几何要素,掌握直线方程的几种形式(点斜式、两点式和一般式),了解斜截式与一次函数的关系•教材复习1. 倾斜角:一条直线I向上的方向与x轴的正方向所成的最小正角,叫做直线的倾斜角,范围为0,.斜率:当直线的倾斜角不是90时,则称其正切值为该直线的斜率,即k tan ;当直线的倾斜角等于90时,直线的斜率不存在。
2. 过两点R X i,y i , F2 x2, y2x x2的直线的斜率公式:k tan 吐—也x2X-|若X i x,则直线RP2的斜率不存在,此时直线的倾斜角为90 .uur3. (课本R36)直线的方向向量:设A, B为直线上的两点,则向量AB及与它平行的向量都称为直线的方向向量.若A X|,y1,B x2, y2,则直线的方向向量为AB x2x-!, y2 y1直线Ax By C 0的方向向量为B,A .当x1x2时,1,k也为直线的一个方向向量.4. 直线方程的种形式:基本知识方法1. 直线的倾斜角与斜率的关系:斜率k是一个实数,当倾斜角90时,k tan ,直线都有倾斜角,但并不是每条直线都存在斜率,倾斜角为90的直线无斜率.2. 求直线方程的方法:1直接法:根据已知条件,选择恰当形式的直线方程,直接求出方程中系数, 写出直线方程;2待定系数法:先根据已知条件设出直线方程•再根据已知条件构造关于待定系数的方程(组)求系数,最后代入求出直线方程.3. 1求直线方程时,若不能断定直线是否具有斜率时,应对斜率存在与不存在加以讨论.2在用截距式时,应先判断截距是否为0,若不确定,则需分类讨论.4. 直线方程一般要给出一般式.典例分析:考点一直线的倾斜角和斜率问题1.已知两点A 1,2,B m,3 . 1求直线AB的斜率k和倾斜角;2求直线AB的方程;3若实数m,求AB的倾斜角的范围.问题2. 1 (01河南)已知直线l过点P 0,0且与以点A 2, 2,B 1, 1为端点的线段相交,求直线I的斜率及倾斜角的范围.2求函数y 舸一1的值域.3 cos考点二求直线的方程I、可题3.求满足下列条件的直线I的方程:r1 过两点A 2,3,B 6,5 ;2 过A 1,2,且以a 2,33过P 3,2,倾斜角是直线x 4y 3 0的倾斜角的2倍;为方向向量; 4过A 5,2,且在x轴,y轴上截距相等;5在y轴上的截距为3,且它与两坐标轴围成的三角形面积为6 ;考点三与直线方程有关的最值问题问题4. 1 (06上海春)直线I过点P 2,1,且分别与x, y轴的正半轴于A,B两点,O 为原点•求厶AOB面积最小值时I的方程,2 PA PB取最小值时I的方程•考点四直线方程的应用内部有一文物保护区不能占用,经测量,AB 100m,BC 80m,AE 30m,问题5. 为了绿化城市,拟在矩形区域ABCD内建一个矩形草坪(如图),另外△ EFA课后作业:1. (01上海春)若直线xA.等于0B.等于一42. (95全国)如右图,直线3.(04合肥模拟)直线I的方向向量为1,2,直线l的倾斜角为,则tan26.( 95上海)下面命题中正确的是:A. 经过定点P 0 X ), y 0的直线都可以用方程 y y 0 k x x 0表示.B. 经过任意两个不同的点 R 为,如,F 2 x 2, y 2的直线都可以用方程yx y一 x x 1 y 2 %表示;C.不经过原点的直线都可以用方程 1表示a bD.经过点A 0,b 的直线都可以用方程 y kx b 表示A. 434 33B.-C.-D.-3444. ( 2012西安五校联考)直线 2I 经过 A 2,1 , B 1,m( m R )两点, 倾斜角范围是A. 0,B. 0, U ,42C. 0,4D. 4,i U那么直线I 的J25.直线xcos ,3y 2 0R 的倾斜角范围是B. 0‘6C. 0,5D.-6y 1 X 2 为7.已知三点A 3,1、B 2,k、C 8,11共线,则k的取值是A. 6 B. 7C. 8 D. 98. ( 2013常州模拟)过点P 2,3且在两条坐标轴上的截距相等的直线I的方程是9.直线xtan5 y 0的倾斜角为-----------------------------10. 一直线过点A 3,4,且在两轴上的截距之和为12,则此直线方程是______________ 12.若两点A( 1, 5),B(3, 2),直线I的倾斜角是直线AB的一半,求直线I的斜率13.已知A a,3,B 5, a两点,直线AB的斜率为1,若一直线I过线段AB的中点走向高考:15. ( 06北京)若三点 A(2,2), B(a,0), C(O,b) (ab 0)共线,则 1a 16. ( 05湖南文)设直线的方程是 Ax By 0,从1,2,3,4,5这五个数中每次取两个不同 的数作为A,B 的值,则所得不同直线的条数是 A. 20 B.19 C.18 D.16且倾斜角的正弦值为3 10求直线I 的方程.14. ( 04湖南文)设直线ax by c 0的倾斜角为,且 sin cos 0,贝U a,b满足: Aab1 B. a b 1 C.abOD. a b 01的值等于 _______b。
第三章 3.3.3、3.3.4A 级 基础巩固一、选择题1.两直线3x +4y -2=0与6x +8y -5=0的距离等于( C ) A .3 B .7 C .110D .12[解析] 在3x +4y -2=0上取一点(0,12),其到6x +8y -5=0的距离即为两平行线间的距离,d =|0+8×12-5|62+82=110.2.已知△ABC 的三个顶点坐标分别为A (2,6)、B (-4,3)、C (2,-3),则点A 到BC 边的距离为( B )A .92B .922C .255D .4 3[解析] BC 边所在直线的方程为y -3-3-3=x +42+4,即x +y +1=0;则d =|2×1+6×1+1|2=922.3.若点A (-3,-4)、B (6,3)到直线l :ax +y +1=0的距离相等,则实数a 的值为( C ) A .79B .-13C .-79或-13D .79或13[解析] 由题意及点到直线的距离公式得|-3a -4+1|a 2+1=|6a +3+1|a 2+1,解得a =-13或-79.4.若点P 在直线3x +y -5=0上,且点P 到直线x -y -1=0的距离为2,则点P 的坐标为( C )A .(1,2)B .(2,1)C .(1,2)或(2,-1)D .(2,1)或(-1,2)[解析] 设点P 的坐标为(x 0,y 0),则有⎩⎨⎧3x 0+y 0-5=0|x 0-y 0-1|2=2,解得⎩⎪⎨⎪⎧ x 0=1y 0=2或⎩⎪⎨⎪⎧x 0=2y 0=-1.5.已知点A (1,3)、B (3,1)、C (-1,0),则△ABC 的面积等于( C ) A .3 B .4 C .5D .6[解析] 设AB 边上的高为h ,则S △ABC =12|AB |·h .|AB |=(3-1)2+(1-3)2=22,AB 边上的高h 就是点C 到直线AB 的距离.AB 边所在的直线方程为y -31-3=x -13-1,即x +y -4=0.点C 到直线x +y -4=0的距离为|-1+0-4|2=52,因此,S △ABC =12×22×52=5.6.直线l 垂直于直线y =x +1,且l 在y 轴上的截距为2,则直线l 的方程是( A ) A .x +y -2=0 B .x +y +1=0 C .x +y -1=0D .x +y +2=0[解析] 方法1:因为直线l 与直线y =x +1垂直,所以设直线l 的方程为y =-x +b ,又l 在y 轴上截距为2,所以所求直线l 的方程为y =-x +2,即x +y -2=0.方法2:将直线y =x +1化为一般式x -y +1=0,因为直线l 垂直于直线y =x +1,可以设直线l 的方程为x +y +c =0,令x =0,得y =-c ,又直线l 在y 轴上截距为2,所以-c =2,即c =-2,所以直线l 的方程为x +y -2=0.二、填空题7.已知直线l 1:(k -3)x +(4-k )y +1=0与直线l 2:2(k -3)x -2y +3=0平行,则l 1与l 2间的距离为52或10[解析] ∵l 1∥l 2,∴⎩⎪⎨⎪⎧(k -3)×(-2)-2(k -3)(4-k )=0(-2)×1-(4-k )×3≠0, 解得k =3或k =5.当k =3时,l 1:y =-1,l 2:y =32,此时l 1与l 2间的距离为52;当k =5时,l 1:2x -y +1=0,l 2:4x -2y +3=0,此时l 1与l 2间的距离为|3-2|42+(-2)2=510. 8.过点A (-3,1)的所有直线中,与原点距离最远的直线方程是3x -y +10=0. [解析] 当原点与点A 的连线与过点A 的直线垂直时,距离最大.∵k OA =-13,∴所求直线的方程为y -1=3(x +3),即3x -y +10=0.三、解答题9.已知三条直线l 1:4x +y -4=0,l 2:mx +y =0,l 3:2x -3my -4=0.求m 的值,使它分别满足以下条件:(1)l 1,l 2,l 3交于同一点;(2)l 1,l 2,l 3不能围成三角形.[解析] (1)由4x +y -4=0得y =-4x +4代入l 2,l 3的方程中分别得x 1=-4m -4,x 2=6m +31+6m, 由-4m -4=6m +36m +1,解得m =-1或23,经检验都符合题意.(2)首先由(1)知,当m =-1或23时,不能围成三角形;又kl 1=-4,kl 2=-m ,kl 3=23m, 若l 1∥l 2,则m =4;若l 1∥l 3,则m =-16;由于kl 2与kl 3异号,显然l 2与l 3不平行. 综上知,m =-1,-16,23或4.B 级 素养提升一、选择题1.P 、Q 分别为3x +4y -12=0与6x +8y +6=0上任一点,则|PQ |的最小值为( C ) A .95B .185C .3D .6[解析] |PQ |的最小值是这两条平行线间的距离.在直线3x +4y -12=0上取点(4,0),然后利用点到直线的距离公式得|PQ |的最小值为3.2.(2019·潍坊高一检测)与直线l :3x -4y -1=0平行且到直线l 的距离为2的直线方程是( A )A .3x -4y -11=0或3x -4y +9=0B .3x -4y -11=0C .3x -4y +11=0或3x -4y -9=0D .3x -4y +9=0[解析] 设所求直线方程为3x -4y +m =0,由题意得|m -(-1)|32+(-4)2=2,解得m =9或-11.3.到两条直线l 1:3x -4y +5=0与l 2:5x -12y +13=0的距离相等的点P (x ,y )必定满足方程( D )A .x -4y +4=0B .7x +4y =0C .x -4y +4=0或4x -8y +9=0D .7x +4y =0或32x -56y +65=0[解析] 结合图形可知,这样的直线应该有两条,恰好是两条相交直线所成角的平分线.由公式可得|3x -4y +5|32+(-4)2=|5x -12y +13|52+(-12)2,即3x -4y +55=±5x -12y +1313,化简得7x +4y=0或32x -56y +65=0.4.(2018·定州中学高一期末)两直线3x +y -3=0与6x +my +1=0平行,则它们之间的距离为( D )A .4B .21313C .52613D .72010 [解析] ∵直线3x +y -3=0与6x +my +1=0平行, ∴63=m 1≠1-3,解得m =2. 因此,两条直线分别为3x +y -3=0与6x +2y +1=0, 即6x +2y -6=0与6x +2y +1=0.∴两条直线之间的距离为d =|-6-1|62+22=740=72010. 二、填空题5.点P (x ,y )在直线x +y -4=0上,则x 2+y 2的最小值是8. [解析] x 2+y 2表示直线上的点P (x ,y )到原点距离的平方, ∵原点到直线x +y -4=0的距离为|-4|2=22,∴x 2+y 2最小值为8.6.(2018·江西省赣州市高一期末)过点A (1,2)且与点P (3,2)距离最大的直线方程是x =1. [解析]如右图,当过点A 的直线恰好与直线AP 垂直时,所求直线与点P 的距离最大,故所求直线方程为x =1.7.(2018·湖南省长沙市岳麓区高三模拟)已知a +b =3,则a 2+b 2+10a -4b +29的最小值为[解析] 由题意易得点P (a ,b )在直线x +y -3=0上, 而a 2+b 2+10a -4b +29=(a +5)2+(b -2)2,因此原问题可以转化为求点P (a ,b )与点A (-5,2)的距离的最小值,又点A (-5,2)到直线x +y -3=0的距离d =|-5+2-3|2=32,故a 2+b 2+10a -4b +29的最小值为3 2.三、解答题8.(2018·定州中学高一期末)已知△ABC 三边所在直线方程:l AB :3x -2y +6=0,l AC :2x +3y -22=0,l BC :3x +4y -m =0(m ∈R ,m ≠30).(1)判断△ABC 的形状;(2)当BC 边上的高为1时,求m 的值.[解析] (1)直线AB 的斜率为k AB =32,直线AC 的斜率为k AC =-23,所以k AB ·k AC =-1,所以直线AB 与AC 互相垂直, 因此,△ABC 为直角三角形.(2)解方程组⎩⎪⎨⎪⎧ 3x -2y +6=02x +3y -22=0,得⎩⎪⎨⎪⎧x =2y =6,即A (2,6).由点到直线的距离公式得d =|3×2+4×6-m |32+42=|30-m |5,当d =1时,|30-m |5=1,即|30-m |=5,解得m =25或m =35.9.已知直线l 经过点A (2,4),且被平行直线l 1:x -y +1=0与l 2:x -y -1=0所截得的线段的中点M 在直线x +y -3=0上.求直线l 的方程.[解析] 解法一:∵点M 在直线x +y -3=0上, ∴设点M 坐标为(t,3-t ),则点M 到l 1、l 2的距离相等, 即|t -(3-t )+1|2=|t -(3-t )-1|2,解得t =32,∴M ⎝⎛⎭⎫32,32. 又l 过点A (2,4), 由两点式得y -324-32=x -322-32,即5x -y -6=0,故直线l 的方程为5x -y -6=0.解法二:设与l 1、l 2平行且距离相等的直线l 3:x -y +c =0,由两平行直线间的距离公式得|c -1|2=|c +1|2,解得c =0,即l 3:x -y =0.由题意得中点M 在l 3上,又点M 在x +y -3=0上.解方程组⎩⎪⎨⎪⎧x -y =0x +y -3=0,得⎩⎨⎧x =32y =32.∴M ⎝⎛⎭⎫32,32.又l 过点A (2,4),故由两点式得直线l 的方程为5x -y -6=0. 解法三:由题意知直线l 的斜率必存在, 设l :y -4=k (x -2),由⎩⎪⎨⎪⎧ y -4=k (x -2)x -y +1=0,得⎩⎪⎨⎪⎧ x =2k -3k -1y =3k -4k -1,由⎩⎪⎨⎪⎧y -4=k (x -2)x -y -1=0,得⎩⎪⎨⎪⎧x =2k -5k -1y =k -4k -1.∴直线l 与l 1、l 2的交点分别为⎝ ⎛⎭⎪⎫2k -3k -1,3k -4k -1, ⎝ ⎛⎭⎪⎫2k -5k -1,k -4k -1. ∵M 为中点,∴M ⎝ ⎛⎭⎪⎫2k -4k -1,2k -4k -1. 又点M 在直线x +y -3=0上, ∴2k -4k -1+2k -4k -1-3=0,解得k =5. 故所求直线l 的方程为y -4=5(x -2), 即5x -y -6=0.。
【三维设计】高中数学第三章直线与方程学案新人教A版必修2_3.1直线的倾斜角与斜率3.1.1 倾斜角与斜率直线的倾斜角[提出问题]在平面直角坐标系中,直线l经过点P.问题1:直线l的位置能够确定吗?提示:不能.问题2:过点P可以作与l相交的直线多少条?提示:无数条.问题3:上述问题中的所有直线有什么区别?提示:倾斜程度不同.[导入新知]1.倾斜角的定义:当直线l与x轴相交时,取x轴作为基准,x轴正方向与直线l向上方向之间所成的角叫做直线l的倾斜角.如图所示,直线l的倾斜角是∠APx,直线l′的倾斜角是∠BPx.2.倾斜角的范围:直线的倾斜角α的取值范围是0°≤α<180°,并规定与x轴平行或重合的直线的倾斜角为0°.3.倾斜角与直线形状的关系倾斜角α=0°0°<α<90°α=90°90°<α<180°直线[化解疑难]对直线的倾斜角的理解(1)倾斜角定义中含有三个条件:①x轴正向;②直线向上的方向;③小于180°的非负角.(2)从运动变化的观点来看,直线的倾斜角是由x轴按逆时针方向旋转到与直线重合时所成的角.(3)倾斜角是一个几何概念,它直观地描述且表现了直线对x 轴的倾斜程度. (4)平面直角坐标系中的每一条直线都有一个确定的倾斜角,且倾斜程度相同的直线,其倾斜角相等;倾斜程度不同的直线,其倾斜角不相等.直线的斜率[提出问题]日常生活中,常用坡度(坡度=升高量前进量)表示倾斜程度,例如,“进2升3”与“进2升2”比较,前者更陡一些,因为坡度32>22.问题1:对于直线可利用倾斜角描述倾斜程度,可否借助于坡度来描述直线的倾斜程度?提示:可以.问题2:由上图中坡度为升高量与水平前进量的比值,那么对于平面直角坐标系中直线的倾斜程度能否如此度量?提示:可以.问题3:通过坐标比,你会发现它与倾斜角有何关系? 提示:与倾斜角的正切值相等. [导入新知]1.斜率的定义:一条直线的倾斜角α的正切值叫做这条直线的斜率.常用小写字母k 表示,即k =tan_α.2.斜率公式:经过两点P 1(x 1,y 1),P 2(x 2,y 2)(x 1≠x 2)的直线的斜率公式为k =y 2-y 1x 2-x 1.当x 1=x 2时,直线P 1P 2没有斜率.3.斜率作用:用实数反映了平面直角坐标系内的直线的倾斜程度.[化解疑难]1.倾斜角α与斜率k 的关系(1)直线都有倾斜角,但并不是所有的直线都有斜率.当倾斜角是90°时,直线的斜率不存在,此时,直线垂直于x 轴(平行于y 轴或与y 轴重合).(2)直线的斜率也反映了直线相对于x 轴的正方向的倾斜程度.当0°≤α<90°时,斜率越大,直线的倾斜程度越大;当90°<α<180°时,斜率越大,直线的倾斜程度也越大.2.斜率公式(1)直线的斜率与两点的顺序无关,即两点的纵坐标和横坐标在公式中的次序可以同时调换,就是说, 如果分子是y 2-y 1,分母必须是x 2-x 1;反过来,如果分子是y 1-y 2,分母必须是x 1-x 2,即k =y 1-y 2x 1-x 2=y 2-y 1x 2-x 1. (2)用斜率公式时要一看,二用,三求值.一看,就是看所给两点的横坐标是否相等,若相等,则直线的斜率不存在,若不相等,则进行第二步;二用,就是将点的坐标代入斜率公式;三求值,就是计算斜率的值,尤其是点的坐标中含有参数时,应用斜率公式时要对参数进行讨论.直线的倾斜角[例1] (1)若直线l 的向上方向与y 轴的正方向成30°角,则直线l 的倾斜角为( ) A .30° B .60° C .30°或150°D .60°或120°(2)下列说法中,正确的是( )A .直线的倾斜角为α,则此直线的斜率为tan αB .直线的斜率为tan α,则此直线的倾斜角为αC .若直线的倾斜角为α,则sin α>0D .任意直线都有倾斜角α,且α≠90°时,斜率为tan α[解析] (1)如图,直线l 有两种情况,故l 的倾斜角为60°或120°. (2)对于A ,当α=90°时,直线的斜率不存在,故不正确;对于B ,虽然直线的斜率为tan α,但只有0°≤α<180°时,α才是此直线的倾斜角,故不正确;对于C ,当直线平行于x 轴时,α=0°,sin α=0,故C 不正确,故选D.[答案] (1)D (2)D [类题通法]求直线的倾斜角的方法及两点注意(1)方法:结合图形,利用特殊三角形(如直角三角形)求角.(2)两点注意:①当直线与x 轴平行或重合时,倾斜角为0°,当直线与x 轴垂直时,倾斜角为90°.②注意直线倾斜角的取值范围是0°≤α<180°. [活学活用]1.直线l 经过第二、四象限,则直线l 的倾斜角范围是( ) A .[0°,90°) B .[90°,180°) C .(90°,180°)D .(0°,180°)解析:选C 直线倾斜角的取值范围是[0°,180°),又直线l 经过第二、四象限,所以直线l 的倾斜角范围是(90°,180°).2.设直线l 过原点,其倾斜角为α,将直线l 绕坐标原点沿逆时针方向旋转45°,得到直线l 1,则直线l 1的倾斜角为( )A .α+45°B .α-135°C .135°-αD .当0°≤α<135°时为α+45°,当135°≤α<180°时为α-135°解析:选D 当0°≤α<135°时,l 1的倾斜角是α+45°.当135°≤α<180°时,结合图形和倾斜角的概念,即可得到l 1的倾斜角为α-135°,故应选D.直线的斜率[例2] (1)已知过两点A (4,y ),B (2,-3)的直线的倾斜角为135°,则y =________; (2)过点P (-2,m ),Q (m,4)的直线的斜率为1,则m 的值为________; (3)已知过A (3,1),B (m ,-2)的直线的斜率为1,则m 的值为________. [解析] (1)直线AB 的斜率k =tan 135°=-1, 又k =-3-y 2-4,由-3-y 2-4=-1,得y =-5.(2)由斜率公式k =4-mm +2=1,得m =1.(3)当m =3时,直线AB 平行于y 轴,斜率不存在. 当m ≠3时,k =-2-1m -3=-3m -3=1,解得m =0.[答案] (1)-5 (2)1 (3)0 [类题通法]利用斜率公式求直线的斜率应注意的事项(1)运用公式的前提条件是“x 1≠x 2”,即直线不与x 轴垂直,因为当直线与x 轴垂直时,斜率是不存在的;(2)斜率公式与两点P 1,P 2的先后顺序无关,也就是说公式中的x 1与x 2,y 1与y 2可以同时交换位置.[活学活用]3.(·河南平顶山高一调研)若直线过点 (1,2),(4,2+3),则此直线的倾斜角是( ) A .30° B.45° C .60° D.90°解析:选A 设直线的倾斜角为α, 直线斜率k =2+3-24-1=33,∴tan α=33. 又∵0°≤α<180°,∴α=30°.直线的斜率的应用[例3] 已知实数x ,y 满足y =-2x +8,且2≤x ≤3,求yx的最大值和最小值. [解] 如图所示,由于点(x ,y )满足关系式2x +y =8,且2≤x ≤3,可知点P (x ,y )在线段AB 上移动,并且A ,B 两点的坐标可分别求得为A (2,4),B (3,2).由于y x 的几何意义是直线OP 的斜率,且k OA =2,k OB =23,所以可求得yx的最大值为2,最小值为23.[类题通法]根据题目中代数式的特征,看是否可以写成y 2-y 1x 2-x 1的形式,若能,则联想其几何意义(即直线的斜率),再利用图形的直观性来分析解决问题.[活学活用]4.点M (x ,y )在函数y =-2x +8的图象上,当x ∈[2,5]时,求y +1x +1的取值范围. 解:y +1x +1=y --1x --1的几何意义是过M (x ,y ),N (-1,-1)两点的直线的斜率. ∵点M 在函数y =-2x +8的图象上,且x ∈[2,5],∴设该线段为AB 且A (2,4),B (5,-2). ∵k NA =53,k NB =-16,∴-16≤y +1x +1≤53.∴y +1x +1的取值范围为[-16,53].6.倾斜角与斜率的关系[典例] 已知两点A (-3,4),B (3,2),过点P (1,0)的直线l 与线段AB 有公共点,则l 的倾斜角的取值范围________;直线l 的斜率k 的取值范围________.[解析] 如图,由题意可知k PA =4-0-3-1=-1,k PB =2-03-1=1,则直线l的倾斜角介于直线PB 与PA 的倾斜角之间,又PB 的倾斜角是45°,PA 的倾斜角是135°,∴直线l 的倾斜角α的取值范围是45°≤α≤135°;要使l 与线段AB 有公共点,则直线l 的斜率k 的取值范围是k ≤-1或k ≥1.[答案] 45°≤α≤135° k ≤-1或k ≥1 [易错防范]1.本题易错误地认为-1≤k ≤1,结合图形考虑,l 的倾斜角应介于直线PB 与直线PA 的倾斜角之间,要特别注意,当l 的倾斜角小于90°时,有k ≥k PB ;当l 的倾斜角大于90°时,则有k ≤k PA .2.如图,过点P 的直线l 与直线段AB 相交时,因为过点P 且与x 轴垂直的直线PC 的斜率不存在,而PC 所在的直线与线段AB 不相交,所以满足题意的斜率夹在中间,即k PA ≤k ≤k PB .解决这类问题时,可利用数形结合思想直观地判断直线是夹在中间还是在两边.[成功破障]已知直线l 过点P (3,4),且与以A (-1,0),B (2,1)为端点的线段AB 有公共点,求直线l 的斜率k 的取值范围.解:∵直线PA 的斜率k PA =4-03--1=1,直线PB 的斜率k PB =4-13-2=3,∴要使直线l 与线段AB 有公共点,k 的取值范围为[1,3].[随堂即时演练]1.关于直线的倾斜角和斜率,下列说法正确的是( ) A .任一直线都有倾斜角,都存在斜率 B .倾斜角为135°的直线的斜率为1C .若一条直线的倾斜角为α,则它的斜率为k =tan αD .直线斜率的取值范围是(-∞,+∞)解析:选D 任一直线都有倾斜角,但当倾斜角为90°时,斜率不存在.所以A 、C 错误;倾斜角为135°的直线的斜率为-1,所以B 错误;只有D 正确.2.已知经过两点(5,m )和(m,8)的直线的斜率等于1,则m 的值是( ) A .5 B .8 C.132D .7解析:选C 由斜率公式可得8-m m -5=1,解之得m =132.3.直线l 经过原点和(-1,1),则它的倾斜角为________. 解析:k l =1-0-1-0=-1,因此倾斜角为135°. 答案:135°4.已知三点A (a,2),B (3,7),C (-2,-9a )在同一条直线上,实数a 的值为________. 解析:∵A 、B 、C 三点共线,∴k AB =k BC ,即53-a =9a +75,∴a =2或29.答案:2或295.已知A (m ,-m +3),B (2,m -1),C (-1,4),直线AC 的斜率等于直线BC 的斜率的3倍,求m 的值.解:由题意直线AC 的斜率存在,即m ≠-1. ∴k AC =-m +3-4m +1,k BC =m -1-42--1.∴-m +3-4m +1=3·m -1-42--1.整理得:-m -1=(m -5)(m +1), 即(m +1)(m -4)=0, ∴m =4或m =-1(舍去). ∴m =4.[课时达标检测]一、选择题1.给出下列说法,正确的个数是( )①若两直线的倾斜角相等,则它们的斜率也一定相等; ②一条直线的倾斜角为-30°; ③倾斜角为0°的直线只有一条;④直线的倾斜角α的集合{α|0°≤α<180°}与直线集合建立了一一对应关系. A .0 B .1 C .2D .3解析:选A 若两直线的倾斜角为90°,则它们的斜率不存在,①错;直线倾斜角的取值范围是[0°,180°),②错;所有垂直于y 轴的直线倾斜角均为0°,③错;不同的直线可以有相同的倾斜角,④错.2.过两点A (4,y ),B (2,-3)的直线的倾斜角为45°,则y =( ) A .-32B.32C .-1D .1解析:选C tan 45°=k AB =y +34-2,即y +34-2=1,所以y =-1.3.如图,设直线l 1,l 2,l 3的斜率分别为k 1,k 2,k 3,则k 1,k 2,k 3的大小关系为( )A .k 1<k 2<k 3B .k 1<k 3<k 2C .k 2<k 1<k 3D .k 3<k 2<k 1解析:选A 根据“斜率越大,直线的倾斜程度越大”可知选项A 正确.4.经过两点A (2,1),B (1,m 2)的直线l 的倾斜角为锐角,则m 的取值范围是( ) A .m <1 B .m >-1 C .-1<m <1D .m >1或m <-1解析:选C ∵直线l 的倾斜角为锐角, ∴斜率k =m 2-11-2>0,∴-1<m <1.5.(2019·广州高一检测)如果直线l 过点(1,2),且不通过第四象限,那么l 的斜率的取值范围是( )A .[0,1]B .[0,2] C.⎣⎢⎡⎦⎥⎤0,12 D .(0,3]解析:选B 过点(1,2)的斜率为非负且最大斜率为此点与原点的连线斜率时,图象不过第四象限.二、填空题6.已知a >0,若平面内三点A (1,-a ),B (2,a 2),C (3,a 3)共线,则a =________. 解析:若平面内三点共线,则k AB =k BC ,即a 2+a 2-1=a 3-a 23-2,整理得a 2-2a -1=0,解得a=1+2,或a =1-2(舍去).答案:1+ 27.如果直线l 1的倾斜角是150°,l 2⊥l 1,垂足为B .l 1,l 2与x 轴分别相交于点C ,A ,l 3平分∠BAC ,则l 3的倾斜角为________.解析:因为直线l 1的倾斜角为150°,所以∠BCA =30°,所以l 3的倾斜角为12×(90°-30°)=30°.答案:30°8.已知实数x ,y 满足方程x +2y =6,当1≤x ≤3时,y -1x -2的取值范围为________. 解析:y -1x -2的几何意义是过M (x ,y ),N (2,1)两点的直线的斜率,因为点M 在函数x +2y =6的图象上,且1≤x ≤3,所以可设该线段为AB ,且A ⎝ ⎛⎭⎪⎫1,52,B ⎝ ⎛⎭⎪⎫3,32,由于k NA =-32,k NB =12,所以y -1x -2的取值范围是⎝ ⎛⎦⎥⎤-∞,-32∪⎣⎢⎡⎭⎪⎫12,+∞. 答案:⎝ ⎛⎦⎥⎤-∞,-32∪⎣⎢⎡⎭⎪⎫12,+∞三、解答题9.已知直线l 过点A (1,2),B (m,3),求直线l 的斜率和倾斜角的取值范围. 解:设l 的斜率为k ,倾斜角为α, 当m =1时,斜率k 不存在,α=90°, 当m ≠1时,k =3-2m -1=1m -1,当m >1时,k =1m -1>0,此时α为锐角,0°<α<90°, 当m <1时,k =1m -1<0,此时α为钝角, 90°<α<180°.所以α∈(0°,180°),k ∈(-∞,0)∪(0,+∞). 10.已知A (3,3),B (-4,2),C (0,-2), (1)求直线AB 和AC 的斜率.(2)若点D 在线段BC (包括端点)上移动时,求直线AD 的斜率的变化范围.解:(1)由斜率公式可得直线AB 的斜率k AB =2-3-4-3=17.直线AC 的斜率k AC =-2-30-3=53.故直线AB 的斜率为17,直线AC 的斜率为53. (2)如图所示,当D 由B 运动到C 时,直线AD 的斜率由k AB 增大到k AC ,所以直线AD 的斜率的变化范围是⎣⎢⎡⎦⎥⎤17,53.3.1.2 两条直线平行与垂直的判定两条直线平行[提出问题]平面几何中,两条直线平行同位角相等.问题1:在平面直角坐标中,若l1∥l2,则它们的倾斜角α1与α2有什么关系?提示:相等.问题2:若l1∥l2,则l1,l2的斜率相等吗?提示:不一定,可能相等,也可能都不存在.问题3:若l1与l2的斜率相等,则l1与l2一定平行吗?提示:不一定.可能平行也可能重合.[导入新知]对于两条不重合的直线l1,l2,其斜率分别为k1,k2,有l1∥l2⇔k1=k2.[化解疑难]对两直线平行与斜率的关系要注意以下几点(1)l1∥l2⇔k1=k2成立的前提条件是:①两条直线的斜率都存在;②l1与l2不重合.(2)当两条直线不重合且斜率都不存在时,l1与l2的倾斜角都是90°,则l1∥l2.(3)两条不重合直线平行的判定的一般结论是:l1∥l2⇔k1=k2或l1,l2斜率都不存在.两条直线垂直[提出问题]已知两条直线l1,l2,若l1的倾斜角为30°,l1⊥l2.问题1:上述问题中,l1,l2的斜率是多少?提示:k1=33,k2=- 3.问题2:上述问题中两直线l1、l2的斜率有何关系?提示:k1k2=-1.问题3:若两条直线垂直且都有斜率,它们的斜率之积一定为-1吗?提示:一定.[导入新知]如果两条直线都有斜率,且它们互相垂直,那么它们的斜率之积等于-1;反之,如果它们的斜率之积等于-1,那么它们互相垂直,即l1⊥l2⇔k1·k2=-1.[化解疑难]对两直线垂直与斜率的关系要注意以下几点(1)l 1⊥l 2⇔k 1·k 2=-1成立的前提条件是:①两条直线的斜率都存在;②k 1≠0且k 2≠0. (2)两条直线中,一条直线的斜率不存在,同时另一条直线的斜率等于零,则两条直线垂直.(3)判定两条直线垂直的一般结论为:l 1⊥l 2⇔k 1·k 2=-1或一条直线的斜率不存在,同时另一条直线的斜率等于零.两条直线平行的判定[例1] 根据下列给定的条件,判断直线l 1与直线l 2是否平行. (1)l 1经过点A (2,1),B (-3,5),l 2经过点C (3,-3),D (8,-7); (2)l 1经过点E (0,1),F (-2,-1),l 2经过点G (3,4),H (2,3); (3)l 1的倾斜角为60°,l 2经过点M (1,3),N (-2,-23); (4)l 1平行于y 轴,l 2经过点P (0,-2),Q (0,5).[解] (1)由题意知,k 1=5-1-3-2=-45,k 2=-7+38-3=-45,所以直线l 1与直线l 2平行或重合,又k BC =5--3-3-3=-43≠-45,故l 1∥l 2.(2)由题意知,k 1=-1-1-2-0=1,k 2=3-42-3=1,所以直线l 1与直线l 2平行或重合,k FG =4--13--2=1,故直线l 1与直线l 2重合.(3)由题意知,k 1=tan 60°=3,k 2=-23-3-2-1=3,k 1=k 2,所以直线l 1与直线l 2平行或重合.(4)由题意知l 1的斜率不存在,且不是y 轴,l 2的斜率也不存在,恰好是y 轴,所以l 1∥l 2.[类题通法]判断两条不重合直线是否平行的步骤[活学活用]1.试确定m 的值,使过点A (m +1,0),B (-5,m )的直线与过点C (-4,3),D (0,5)的直线平行.解:由题意直线CD 的斜率存在,则与其平行的直线AB 的斜率也存在.k AB =m -0-5-m +1=m-6-m ,k CD =5-30--4=12,由于AB ∥CD ,即k AB =k CD ,所以m -6-m =12,得m =-2.经验证m =-2时直线AB 的斜率存在,所以m =-2.两条直线垂直的问题[例2] 已知直线l 1经过点A (3,a ),B (a -2,-3),直线l 2经过点C (2,3),D (-1,a -2),如果l 1⊥l 2,求a 的值.[解] 设直线l 1,l 2的斜率分别为k 1,k 2.∵直线l 2经过点C (2,3),D (-1,a -2),且2≠-1, ∴l 2的斜率存在.当k 2=0时,a -2=3,则a =5,此时k 1不存在,符合题意.当k 2≠0时,即a ≠5,此时k 1≠0,由k 1·k 2=-1,得-3-a a -2-3·a -2-3-1-2=-1,解得a =-6.综上可知,a 的值为5或-6. [类题通法]使用斜率公式判定两直线垂直的步骤(1)一看,就是看所给两点的横坐标是否相等,若相等,则直线的斜率不存在,若不相等,则进行第一步.(2)二用:就是将点的坐标代入斜率公式.(3)求值:计算斜率的值,进行判断.尤其是点的坐标中含有参数时,应用斜率公式要对参数进行讨论.总之,l 1与l 2一个斜率为0,另一个斜率不存在时,l 1⊥l 2;l 1与l 2斜率都存在时,满足k 1·k 2=-1.[活学活用]2.已知定点A (-1,3),B (4,2),以A 、B 为直径作圆,与x 轴有交点C ,则交点C 的坐标是________.解析:以线段AB 为直径的圆与x 轴的交点为C ,则AC ⊥BC .设C (x,0),则k AC =-3x +1,k BC =-2x -4,所以-3x +1·-2x -4=-1,得x =1或2,所以C (1,0)或(2,0).答案:(1,0)或(2,0)平行与垂直的综合应用[例3] 已知A (-4,3),B (2,5),C (6,3),D (-3,0)四点,若顺次连接A ,B ,C ,D 四点,试判定图形ABCD 的形状.[解] 由题意知A ,B ,C ,D 四点在坐标平面内的位置,如图所示,由斜率公式可得k AB =5-32--4=13,k CD =0-3-3-6=13,k AD =0-3-3--4=-3, k BC =3-56-2=-12. 所以k AB =k CD ,由图可知AB 与CD 不重合, 所以AB ∥CD .由k AD ≠k BC ,所以AD 与BC 不平行. 又因为k AB ·k AD =13×(-3)=-1,所以AB ⊥AD ,故四边形ABCD 为直角梯形. [类题通法]1.在顶点确定的情况下,确定多边形形状时,要先画出图形,由图形猜测其形状,为下面证明提供明确目标.2.证明两直线平行时,仅有k 1=k 2是不够的,注意排除两直线重合的情况. [活学活用]3.已知A (1,0),B (3,2),C (0,4),点D 满足AB ⊥CD ,且AD ∥BC ,试求点D 的坐标. 解:设D (x ,y ),则k AB =23-1=1,k BC =4-20-3=-23,k CD =y -4x ,k DA =yx -1.因为AB ⊥CD ,AD ∥BC ,所以,k AB·k CD=-1,k DA=k BC,所以⎩⎪⎨⎪⎧1×y -4x=-1,yx-1=-23.解得⎩⎪⎨⎪⎧x=10,y=-6.即D(10,-6).8.利用平行或垂直确定参数值[典例] 已知直线l1经过A(3,m),B(m-1,2),直线l2经过点C(1,2),D(-2,m+2).(1)若l1∥l2,求m的值;(2)若l1⊥l2,求m的值.[解题流程]欲求m的值,需根据l1∥l2或l1⊥l2列出关于m的关系式由直线l1过A、B两点,直线l2过C、D两点,求斜率先求l2的斜率―→由l1∥l2得k1=k2列关系式检验―→由l1⊥l2讨论k2=0或k2≠0,再由k1·k2=-1得出结论[规范解答]由题知直线l2的斜率存在且k2=2-m+21--2=-m3①.2分1若l1∥l2,则直线l1的斜率也存在,由k1=k2,得2-mm-4=-m3,解得m=1或m=6,4分经检验,当m=1或m=6时,l1∥l③2.6分2若l1⊥l2,当k2=0②时,此时m=0,l1斜率存在,不符合题意;8分当k 2≠0②时,直线l 2的斜率存在且不为0,则直线l 1的斜率也存在,且k 1·k 2=-1,即-m 3·2-m m -4=-1,解得m =3或m =-4,(10分)所以m =3或m =-4时,l 1⊥l ③2.(12分)[名师批注]①处易漏掉而直接利用两直线平行或垂直所具备的条件来求m 值,解答过程不严谨 ②处讨论k 2=0和k 2≠0两种情况③此处易漏掉检验做解答题要注意解题的规范 [活学活用]已知A (-m -3,2),B (-2m -4,4),C (-m ,m ),D (3,3m +2),若直线AB ⊥CD ,求m 的值.解:因为A ,B 两点纵坐标不等,所以AB 与x 轴不平行.因为AB ⊥CD ,所以CD 与x 轴不垂直,故m ≠-3.当AB 与x 轴垂直时,-m -3=-2m -4,解得m =-1,而m =-1时,C ,D 纵坐标均为-1,所以CD ∥x 轴,此时AB ⊥CD ,满足题意.当AB 与x 轴不垂直时,由斜率公式得k AB =4-2-2m -4--m -3=2-m +1,k CD =3m +2-m 3--m =2m +1m +3.因为AB ⊥CD ,所以k AB ·k CD =-1,解得m =1. 综上,m 的值为1或-1.[随堂即时演练]1.下列说法正确的有( )①若两条直线的斜率相等,则这两条直线平行; ②若l 1∥l 2,则k 1=k 2;③若两条直线中有一条直线的斜率不存在,另一条直线的斜率存在,则这两条直线垂直; ④若两条直线的斜率都不存在且两直线不重合,则这两条直线平行. A .1个 B .2个 C .3个D .4个解析:选A 若k 1=k 2,则这两条直线平行或重合,所以①错;当两条直线垂直于x 轴时,两条直线平行,但斜率不存在,所以②错;若两直线中有一条直线的斜率不存在,另一条直线的斜率为0时,才有这两条直线垂直,所以③错;④正确.2.直线l 1,l 2的斜率是方程x 2-3x -1=0的两根,则l 1与l 2的位置关系是( ) A .平行 B .重合 C .相交但不垂直D .垂直解析:选D 设l 1,l 2的斜率分别为k 1,k 2,则k 1·k 2=-1.3.已知△ABC 中,A (0,3)、B (2,-1),E 、F 分别为AC 、BC 的中点,则直线EF 的斜率为________.解析:∵E 、F 分别为AC 、BC 的中点, ∴EF ∥AB .∴k EF =k AB =-1-32-0=-2.答案:-24.经过点(m,3)和(2,m )的直线l 与斜率为-4的直线互相垂直,则m 的值是________. 解析:由题意可知k l =14,又因为k l =m -32-m ,所以m -32-m =14,解得m =145.答案:1455.判断下列各小题中的直线l 1与l 2的位置关系. (1)l 1的斜率为-10,l 2经过点A (10,2),B (20,3);(2)l 1过点A (3,4),B (3,100),l 2过点M (-10,40),N (10,40); (3)l 1过点A (0,1),B (1,0),l 2过点M (-1,3),N (2,0); (4)l 1过点A (-3,2),B (-3,10),l 2过点M (5,-2),N (5,5). 解:(1)k 1=-10,k 2=3-220-10=110.∵k 1k 2=-1,∴l 1⊥l 2.(2)l 1的倾斜角为90°,则l 1⊥x 轴.k 2=40-4010--10=0,则l 2∥x 轴,∴l 1⊥l 2.(3)k 1=0-11-0=-1,k 2=0-32--1=-1,∴k 1=k 2.又k AM =3-1-1-0=-2≠k 1,∴l 1∥l 2.(4)∵l 1与l 2都与x 轴垂直,∴l 1∥l 2.[课时达标检测]一、选择题1.已知过点P (3,2m )和点Q (m,2)的直线与过点M (2,-1)和点N (-3,4)的直线平行,则m 的值是( )A .1B .-1C .2D .-2解析:选B 因为MN ∥PQ ,所以k MN =k PQ ,即4--1-3-2=2-2mm -3 ,解得m =-1.2.以A (-1,1),B (2,-1),C (1,4)为顶点的三角形是( ) A .锐角三角形 B .钝角三角形C .以A 点为直角顶点的直角三角形D .以B 点为直角顶点的直角三角形解析:选C 如右图所示,易知k AB =-1-12--1=-23,k AC =4-11--1=32,由k AB ·k AC =-1知三角形是以A 点为直角顶点的直角三角形. 3.已知点A (-2,-5),B (6,6),点P 在y 轴上,且∠APB =90°,则点P 的坐标为( )A .(0,-6)B .(0,7)C .(0,-6)或(0,7)D .(-6,0)或(7,0)解析:选C 由题意可设点P 的坐标为(0,y ).因为∠APB =90°,所以AP ⊥BP ,且直线AP 与直线BP 的斜率都存在.又k AP =y +52,k BP =y -6-6,k AP ·k BP =-1,即y +52·(-y -66)=-1,解得y =-6或y =7.所以点P 的坐标为(0,-6)或(0,7).4.若A (-4,2),B (6,-4),C (12,6),D (2,12),则下面四个结论:①AB ∥CD ;②AB ⊥AD ;③AC ∥BD ;④AC ⊥BD 中正确的个数为( )A .1B .2C .3D .4解析:选C 由题意得k AB =-4-26--4=-35,k CD =12-62-12=-35,k AD =12-22--4=53,k AC =6-212--4=14,k BD =12--42-6=-4,所以AB ∥CD ,AB ⊥AD ,AC ⊥BD .5.已知点A (2,3),B (-2,6),C (6,6),D (10,3),则以A ,B ,C ,D 为顶点的四边形是( )A .梯形B .平行四边形C .菱形D .矩形解析:选B 如图所示,易知k AB =-34,k BC =0,k CD =-34,k AD =0,k BD =-14,k AC =34,所以k AB =k CD ,k BC =k AD ,k AB ·k AD =0,k AC ·k BD =-312,故AD ∥BC ,AB ∥CD ,AB 与AD 不垂直,BD 与AC 不垂直. 所以四边形ABCD 为平行四边形. 二、填空题6.l 1过点A (m,1),B (-3,4),l 2过点C (0,2),D (1,1),且l 1∥l 2,则m =________. 解析:∵l 1∥l 2,且k 2=1-21-0=-1,∴k 1=4-1-3-m =-1,∴m =0.答案:07.已知直线l 1的倾斜角为45°,直线l 2∥l 1,且l 2过点A (-2,-1)和B (3,a ),则a 的值为________.解析:∵l 2∥l 1,且l 1的倾斜角为45°,∴kl 2=kl 1=tan 45°=1,即a --13--2=1,所以a =4.答案:48.已知A (2,3),B (1,-1),C (-1,-2),点D 在x 轴上,则当点D 坐标为________时,AB ⊥CD .解析:设点D (x,0),因为k AB =-1-31-2=4≠0,所以直线CD 的斜率存在.则由AB ⊥CD 知,k AB ·k CD =-1,所以4·-2-0-1-x =-1,解得x =-9.答案:(-9,0) 三、解答题9.当m 为何值时,过两点A (1,1),B (2m 2+1,m -2)的直线: (1)倾斜角为135°;(2)与过两点(3,2),(0,-7)的直线垂直; (3)与过两点(2,-3),(-4,9)的直线平行? 解:(1)由k AB =m -32m 2=tan 135°=-1,解得m =-32,或m =1. (2)由k AB =m -32m 2,且-7-20-3=3. 则m -32m 2=-13,解得m =32,或m =-3.(3)令m -32m 2=9+3-4-2=-2, 解得m =34,或m =-1.10.直线l 1经过点A (m,1),B (-3,4),直线l 2经过点C (1,m ),D (-1,m +1),当l 1∥l 2或l 1⊥l 2时,分别求实数m 的值.解:当l 1∥l 2时,由于直线l 2的斜率存在,则直线l 1的斜率也存在,则k AB =k CD ,即4-1-3-m =m +1-m-1-1,解得m =3;当l 1⊥l 2时,由于直线l 2的斜率存在且不为0,则直线l 1的斜率也存在,则k AB k CD =-1, 即4-1-3-m ·m +1-m -1-1=-1,解得m =-92. 综上,当l 1∥l 2时,m 的值为3; 当l 1⊥l 2时,m 的值为-92.3.2直线的方程3.2.1 直线的点斜式方程[提出问题]斜拉桥又称斜张桥,桥身简约刚毅,力感十足.若以桥面所在直线为x 轴,桥塔所在直线为y 轴建立平面直角坐标系,那么斜拉索可看成过桥塔上同一点的直线.问题1:已知某一斜拉索过桥塔上一点B ,那么该斜拉索位置确定吗?提示:不确定.从一点可引出多条斜拉索.问题2:若某条斜拉索过点B (0,b ),斜率为k ,则该斜拉索所在直线上的点P (x ,y )满足什么条件?提示:满足y -bx -0=k . 问题3:可以写出问题2中的直线方程吗? 提示:可以.方程为y -b =kx . [导入新知]1.直线的点斜式方程(1)定义:如图所示,直线l 过定点P (x 0,y 0),斜率为k ,则把方程y -y 0=k (x -x 0)叫做直线l 的点斜式方程,简称点斜式.(2)说明:如图所示,过定点P (x 0,y 0),倾斜角是90°的直线没有点斜式,其方程为x -x 0=0,或x =x 0.2.直线的斜截式方程(1)定义:如图所示,直线l 的斜率为k ,且与y 轴的交点为(0,b ),则方程y =kx +b 叫做直线l 的斜截式方程,简称斜截式.(2)说明:一条直线与y 轴的交点(0,b )的纵坐标b 叫做直线在y 轴上的截距.倾斜角是直角的直线没有斜截式方程.[化解疑难]1.关于点斜式的几点说明:(1)直线的点斜式方程的前提条件是:①已知一点P (x 0,y 0)和斜率k ;②斜率必须存在.只有这两个条件都具备,才可以写出点斜式方程.(2)方程y -y 0=k (x -x 0)与方程k =y -y 0x -x 0不是等价的,前者是整条直线,后者表示去掉点P (x 0,y 0)的一条直线.(3)当k 取任意实数时,方程y -y 0=k (x -x 0)表示恒过定点(x 0,y 0)的无数条直线. 2.斜截式与一次函数的解析式相同,都是y =kx +b 的形式,但有区别,当k ≠0时,y =kx +b 即为一次函数;当k =0时,y =b ,不是一次函数,一次函数y =kx +b (k ≠0)必是一条直线的斜截式方程.截距不是距离,可正、可负也可为零.直线的点斜式方程[例1] (1)经过点(-5,2)且平行于y轴的直线方程为________.(2)直线y=x+1绕着其上一点P(3,4)逆时针旋转90°后得直线l,则直线l的点斜式方程为________.(3)求过点P(1,2)且与直线y=2x+1平行的直线方程为________.[解析] (1)∵直线平行于y轴,∴直线不存在斜率,∴方程为x=-5.(2)直线y=x+1的斜率k=1,所以倾斜角为45°.由题意知,直线l的倾斜角为135°,所以直线l的斜率k′=tan 135°=-1,又点P(3,4)在直线l上,由点斜式方程知,直线l的方程为y-4=-(x-3).(3)由题意知,所求直线的斜率为2,且过点P(1,2),∴直线方程为y-2=2(x-1),即2x-y=0.[答案] (1)x=-5 (2)y-4=-(x-3) (3)2x-y=0[类题通法]已知直线上一点的坐标以及直线斜率或已知直线上两点的坐标,均可用直线方程的点斜式表示,直线方程的点斜式,应在直线斜率存在的条件下使用.当直线的斜率不存在时,直线方程为x=x0.[活学活用]1.写出下列直线的点斜式方程:(1)经过点A(2,5),斜率是4;(2)经过点B(2,3),倾斜角是45°;(3)经过点C(-1,-1),与x轴平行.解:(1)由点斜式方程可知,所求直线的点斜式方程为y-5=4(x-2).(2)∵直线的倾斜角为45°,∴此直线的斜率k=tan45°=1.∴直线的点斜式方程为y-3=x-2.(3)∵直线与x轴平行,∴倾斜角为0°,斜率k=0.∴直线的点斜式方程为y+1=0×(x+1),即y=-1.直线的斜截式方程[例2] (1)倾斜角为150°,在y 轴上的截距是-3的直线的斜截式方程为________. (2)已知直线l 1的方程为y =-2x +3,l 2的方程为y =4x -2,直线l 与l 1平行且与l 2在y 轴上的截距相同,求直线l 的方程.[解析] (1)∵倾斜角α=150°,∴斜率k =tan 150°=-33,由斜截式可得所求的直线方程为y =-33x -3. (2)由斜截式方程知直线l 1的斜率k 1=-2, 又∵l ∥l 1,∴l 的斜率k =k 1=-2.由题意知l 2在y 轴上的截距为-2,∴l 在y 轴上的截距b =-2,由斜截式可得直线l 的方程为y =-2x -2.[答案] (1)y =-33x -3 [类题通法]1.斜截式方程的应用前提是直线的斜率存在.当b =0时,y =kx 表示过原点的直线;当k =0时,y =b 表示与x 轴平行(或重合)的直线.2.截距不同于日常生活中的距离,截距是一个点的横(纵)坐标,是一个实数,可以是正数,也可以是负数或零,而距离是一个非负数.[活学活用]2.求倾斜角是直线y =-3x +1的倾斜角的14,且在y 轴上的截距是-5的直线方程.解:∵直线y =-3x +1的斜率k =-3,∴其倾斜角α=120°,由题意,得所求直线的倾斜角α1=14α=30°,故所求直线的斜率k 1=tan 30°=33.∵所求直线的斜率是33,在y 轴上的截距为-5, ∴所求直线的方程为y =33x -5.两直线平行与垂直的应用[例3] 当a 为何值时,(1)两直线y =ax -2与y =(a +2)x +1互相垂直? (2)两直线y =-x +4a 与y =(a 2-2)x +4互相平行? [解] (1)设两直线的斜率分别为k 1,k 2,则k 1=a ,k 2=a +2.∵两直线互相垂直, ∴k 1k 2=a (a +2)=-1, 解得a =-1.故当a =-1时,两条直线互相垂直. (2)设两直线的斜率分别为k 3,k 4, 则k 3=-1,k 4=a 2-2. ∵两条直线互相平行,∴⎩⎪⎨⎪⎧a 2-2=-1,4a ≠4,解得a =-1.故当a =-1时,两条直线互相平行. [类题通法]判断两条直线位置关系的方法直线l 1:y =k 1x +b 1,直线l 2:y =k 2x +b 2. (1)若k 1≠k 2,则两直线相交. (2)若k 1=k 2,则两直线平行或重合, 当b 1≠b 2时,两直线平行; 当b 1=b 2时,两直线重合.(3)特别地,当k 1·k 2=-1时,两直线垂直. (4)对于斜率不存在的情况,应单独考虑. [活学活用]3.(1)若直线l 1:y =(2a -1)x +3与直线l 2:y =4x -3垂直,则a =________. (2)若直线l 1:y =-x +2a 与直线l 2:y =(a 2-2)x +2平行,则a =________. 解析:(1)由题意可知kl 1=2a -1,kl 2=4. ∵l 1⊥l 2,∴4(2a -1)=-1,解得a =38.(2)因为l 1∥l 2,所以a 2-2=-1,且2a ≠2,解得a =-1,所以a =-1时两直线平行. 答案:(1)38(2)-17.斜截式判断两条直线平行的误区[典例] 已知直线l 1:x +my +6=0,l 2:(m -2)x +3y +2m =0,当l 1∥l 2时,求m 的值.[解] 由题设l 2的方程可化为y =-m -23x -23m ,则其斜率k 2=-m -23,在y 轴上的截距b 2=-23m . ∵l 1∥l 2,∴l 1的斜率一定存在,即m ≠0. ∴l 1的方程为y =-1m x -6m.由l 1∥l 2,得⎩⎪⎨⎪⎧-m -23=-1m,-23m ≠-6m ,解得m =-1.∴m 的值为-1. [易错防范]1.两条直线平行时,斜率存在且相等,截距不相等.当两条直线的斜率相等时,也可能平行,也可能重合.2.解决此类问题要明确两直线平行的条件,尤其是在求参数时要考虑两直线是否重合. [成功破障]当a 为何值时,直线l 1:y =-2ax +2a 与直线l 2:y =(a 2-3)x +2平行? 解:∵l 1∥l 2,∴a 2-3=-2a 且2a ≠2, 解得a =-3.[随堂即时演练]1.直线y =2x -3的斜率和在y 轴上的截距分别等于( ) A .2,3 B .-3,-3 C .-3,2 D .2,-3答案:D2.直线l 经过点P (2,-3),且倾斜角α=45°,则直线的点斜式方程是( ) A .y +3=x -2 B .y -3=x +2 C .y +2=x -3D .y -2=x +3 解析:选A ∵直线l 的斜率k =tan 45°=1, ∴直线l 的方程为y +3=x -2.。
高中数学新课标人教A版必修二第三章直线与方程同步经典习题==本文档为word格式,下载后可随意编辑修改!==3.1直线的倾斜角与斜率3.1.1倾斜角与斜率基础达标1.直线l过原点(0,0),且不过第三象限,那么l的倾斜角α的取值范围是().A.0°≤α≤90°B.90°≤α<180°C.90°≤α<180°或α=0°D.90°≤α≤135°2.(临沂一中期末)已知l1⊥l2,直线l1的倾斜角为60°,则直线l2的倾斜角为().A.60°B.120°C.30°D.150°3.斜率为2的直线经过点A(3,5)、B(a,7)、C(-1,b)三点,则a、b的值为().A.a=4,b=0 B.a=-4,b=-3C.a=4,b=-3 D.a=-4,b=34.如果过点(-2,m)和Q(m,4)的直线的斜率等于1,则m=________.5.(济南高一检测)若过P(1-a,1+a)和Q(3,2a)的直线的倾斜角为0°,则a=________.6.直线l过点A(1,2),且不过第四象限,则直线l的斜率的取值范围是________.7.(1)已知直线l1的倾斜角为α1=15°,直线l1与l2的交点为A,直线l1和l2向上的方向之间所成的角为120°,求直线l2的斜率k2.(2)已知某直线l的倾斜角α=45°,又P1(2,y1),P2(x2,5),P3(3,1)是此直线上的三点,求x2,y1的值.能力提升8.(温州高一检测)设直线l过原点,其倾斜角为α,将直线l绕坐标原点沿逆时针方向旋转45°,得到直线l1,则直线l1的倾斜角为().A.α+45°B.α-135°C.135°-αD.当0°≤α<135°时,为α+45°;当135°≤α<180°时,为α-135°9.已知三点A(1-a,-5),B(a,2a),C(0,-a)共线,则a=________.10.光线从点A(2,1)射到y轴上的点Q,经y轴反射后过点B(4,3),试求点Q的坐标及入射光线的斜率.7.已知直线l1经过A(3,m),B(m-1,2),直线l2经过点C(1,2),D(-2,m+2).(1)若l1∥l2,求m的值;(2)若l1⊥l2,求m的值.能力提升8.已知A(m,3),B(2m,m+4),C(m+1,2),D(1,0),且直线AB与直线CD平行,则m 的值为().A.1 B.0 C.0或2 D.0或19.已知直线l1经过点A(3,a),B(a-2,-3),直线l2经过点C(2,3)、D(-1,a-2),如果l1⊥l2,则a=________.10.如图所示,一个矩形花园里需要铺两条笔直的小路,已知矩形花园长AD=5 m,宽AB=3 m,其中一条小路定为AC,另一条小路过点D,问如何在BC上找到一点M,使得两条小路所在直线AC与DM相互垂直?a.在同一直角坐标系中,表示直线l1:y=k1x+b1与l2:y=k2x+b2(k1>k2,b1 ().).绕着其上一点P(3,4)逆时针旋转90°后得直线l,则直线l的点斜式方程为射到y轴上,反射后经过点B(4,-3),则反射光线所在直线的方程为且与x轴,y轴的正半轴分别交于A,B两点,O在这样的直线满足下列条件:;(2)△AOB的面积为6.3.2.3直线的一般式方程基础达标1.若ac<0,bc<0,则直线ax+by+c=0的图形只能是().2.过点(1,0)且与直线x-2y-2=0平行的直线方程是().A.x-2y-1=0 B.x-2y+1=0C.2x+y-2=0 D.x+2y-1=03.直线l1:ax-y+b=0,l2:bx+y-a=0(ab≠0)的图象只可能是().4.若直线x-2y+5=0与直线2x+my-6=0相互垂直,则实数m=________.5.已知A(0,1),点B在直线l1:x+y=0上运动,当线段AB最短时,直线AB的一般式方程为________.6.已知直线l与直线3x+4y-7=0平行,并且与两坐标轴围成的三角形的面积为24,则直线l的方程为________.7.设直线l 的方程为(m 2-2m -3)x +(2m 2+m -1)y =2m -6,根据下列条件分别求m 的值. (1)在x 轴上的截距为1; (2)斜率为1;(3)经过定点P (-1,-1).能力提升8.两直线mx +y -n =0与x +my +1=0互相平行的条件是 ( ). A .m =1 B .m =±1C.⎩⎨⎧m =1n ≠-1D.⎩⎨⎧m =1,n ≠-1或⎩⎨⎧m =-1,n ≠19.已知两条直线a 1x +b 1y +1=0和a 2x +b 2y +1=0都过点A (2,1),则过两点P 1(a 1,b 1),P 2(a 2,b 2)的直线方程是________.10.求证:不论m 取什么实数,直线(2m -1)x -(m +3)y -(m -11)=0恒过定点,并求此定点坐标.1)是此直线上的三点,5-y 1x 2-2=1-53-x 2=1,,无解. BC =2a -(-a ),,由题意得,A、Q、B′三点共线.AB′=-13.设Q(0,y),则k入=为坐标原点,BC、BA所在直线分别为D(5,3),A(0,3).设点M直线的方程直线的点斜式方程a根据点斜式方程,得其斜率与在y轴上的截距同号.答案 B.在同一直角坐标系中,表示直线l1:y=k1x+b1与l2:y=k2x+b2(k1>k2,b1 ().b1>b2,不合题意;在选项D中,k1<k2-1=23(x+5)平行的直线的点斜式方程是________代入直线y-1=23(x+5)成立,即点(-5,1)在直线,1)与直线y-1=23(x+5)平行的直线不存在.不过第三象限,则斜率k的取值范围是________y=2不过第三象限;当k>0时,直线过第三象限;时,直线不过第三象限.答案(-∞,0](1)当a>0时,直线y=ax的倾斜角为锐角,直线y=x+a在yC,D都不成立;时,直线y=ax的倾斜角为0°,所以A,B,C,D都不成立;两直线的方程分别化为斜截式:y=nm x-n,易知两直线的斜率的符号相同,四个选项中仅有B选项的两直线的斜率符号相射到y轴上,反射后经过点B(4,-3),则反射光线所在直线的方程为轴的对称点A′(-1,2),又A′在反射线上,由两点式方程得<0,bc<0,∴abc2>0,∴ab>0,∴斜率k=-ab<0,又纵截距-且与直线x-2y-2=0平行的直线方程是().,在y轴上截距b1=b,直线l2的斜率=-b<0,b>0,对C,k1=a<0,,均产生矛盾,故选B.答案 B2x+my-6=0相互垂直,则实数由题意知直线的斜率均存在,且12×⎝⎛⎭⎪⎫-2m=-1.∴m=1l1:x+y=0上运动,当线段AB最短时,直线又两直线垂直,得2a-4×5=0,③由①②③得,a=10,m=-2,b=-12.答案10-12-2,1)2=5,5.且平行于AB的直线。
人教版高中数学必修精品教学资料第三章直线与方程学案新人教A版必修2_3.1直线的倾斜角与斜率3.1.1 倾斜角与斜率[提出问题]在平面直角坐标系中,直线l经过点P.问题1:直线l的位置能够确定吗?提示:不能.问题2:过点P可以作与l相交的直线多少条?提示:无数条.问题3:上述问题中的所有直线有什么区别?提示:倾斜程度不同.[导入新知]1.倾斜角的定义:当直线l与x轴相交时,取x轴作为基准,x轴正方向与直线l向上方向之间所成的角叫做直线l的倾斜角.如图所示,直线l的倾斜角是∠APx,直线l′的倾斜角是∠BPx.2.倾斜角的范围:直线的倾斜角α的取值范围是0°≤α<180°,并规定与x轴平行或重合的直线的倾斜角为0°.3.倾斜角与直线形状的关系[化解疑难]对直线的倾斜角的理解(1)倾斜角定义中含有三个条件:①x 轴正向;②直线向上的方向;③小于180°的非负角.(2)从运动变化的观点来看,直线的倾斜角是由x 轴按逆时针方向旋转到与直线重合时所成的角.(3)倾斜角是一个几何概念,它直观地描述且表现了直线对x 轴的倾斜程度.(4)平面直角坐标系中的每一条直线都有一个确定的倾斜角,且倾斜程度相同的直线,其倾斜角相等;倾斜程度不同的直线,其倾斜角不相等.[提出问题]日常生活中,常用坡度(坡度=升高量前进量)表示倾斜程度,例如,“进2升3”与“进2升2”比较,前者更陡一些,因为坡度32>22.问题1:对于直线可利用倾斜角描述倾斜程度,可否借助于坡度来描述直线的倾斜程度?提示:可以.问题2:由上图中坡度为升高量与水平前进量的比值,那么对于平面直角坐标系中直线的倾斜程度能否如此度量?提示:可以.问题3:通过坐标比,你会发现它与倾斜角有何关系? 提示:与倾斜角的正切值相等. [导入新知]1.斜率的定义:一条直线的倾斜角α的正切值叫做这条直线的斜率.常用小写字母k 表示,即k =tan_α.2.斜率公式:经过两点P 1(x 1,y 1),P 2(x 2,y 2)(x 1≠x 2)的直线的斜率公式为k =y 2-y 1x 2-x 1.当x 1=x 2时,直线P 1P 2没有斜率.3.斜率作用:用实数反映了平面直角坐标系内的直线的倾斜程度.[化解疑难]1.倾斜角α与斜率k 的关系(1)直线都有倾斜角,但并不是所有的直线都有斜率.当倾斜角是90°时,直线的斜率不存在,此时,直线垂直于x 轴(平行于y 轴或与y 轴重合).(2)直线的斜率也反映了直线相对于x 轴的正方向的倾斜程度.当0°≤α<90°时,斜率越大,直线的倾斜程度越大;当90°<α<180°时,斜率越大,直线的倾斜程度也越大.2.斜率公式(1)直线的斜率与两点的顺序无关,即两点的纵坐标和横坐标在公式中的次序可以同时调换,就是说, 如果分子是y 2-y 1,分母必须是x 2-x 1;反过来,如果分子是y 1-y 2,分母必须是x 1-x 2,即k =y 1-y 2x 1-x 2=y 2-y 1x 2-x 1.(2)用斜率公式时要一看,二用,三求值.一看,就是看所给两点的横坐标是否相等,若相等,则直线的斜率不存在,若不相等,则进行第二步;二用,就是将点的坐标代入斜率公式;三求值,就是计算斜率的值,尤其是点的坐标中含有参数时,应用斜率公式时要对参数进行讨论.[例1] (1)若直线l 的向上方向与y 轴的正方向成30°角,则直线l 的倾斜角为( ) A .30° B .60° C .30°或150°D .60°或120°(2)下列说法中,正确的是( )A .直线的倾斜角为α,则此直线的斜率为tan αB .直线的斜率为tan α,则此直线的倾斜角为αC .若直线的倾斜角为α,则sin α>0D .任意直线都有倾斜角α,且α≠90°时,斜率为tan α[解析] (1)如图,直线l 有两种情况,故l 的倾斜角为60°或120°.(2)对于A,当α=90°时,直线的斜率不存在,故不正确;对于B,虽然直线的斜率为tan α,但只有0°≤α<180°时,α才是此直线的倾斜角,故不正确;对于C,当直线平行于x 轴时,α=0°,sin α=0,故C 不正确,故选D.[答案] (1)D (2)D [类题通法]求直线的倾斜角的方法及两点注意(1)方法:结合图形,利用特殊三角形(如直角三角形)求角.(2)两点注意:①当直线与x 轴平行或重合时,倾斜角为0°,当直线与x 轴垂直时,倾斜角为90°.②注意直线倾斜角的取值范围是0°≤α<180°. [活学活用]1.直线l 经过第二、四象限,则直线l 的倾斜角范围是( ) A .[0°,90°) B .[90°,180°) C .(90°,180°)D .(0°,180°)解析:选C 直线倾斜角的取值范围是[0°,180°),又直线l 经过第二、四象限,所以直线l 的倾斜角范围是(90°,180°).2.设直线l 过原点,其倾斜角为α,将直线l 绕坐标原点沿逆时针方向旋转45°,得到直线l 1,则直线l 1的倾斜角为( )A .α+45°B .α-135°C .135°-αD .当0°≤α<135°时为α+45°,当135°≤α<180°时为α-135°解析:选D 当0°≤α<135°时,l 1的倾斜角是α+45°.当135°≤α<180°时,结合图形和倾斜角的概念,即可得到l 1的倾斜角为α-135°,故应选D.[例2] (1)已知过两点A (4,y ),B (2,-3)的直线的倾斜角为135°,则y =________; (2)过点P (-2,m ),Q (m,4)的直线的斜率为1,则m 的值为________; (3)已知过A (3,1),B (m ,-2)的直线的斜率为1,则m 的值为________. [解析] (1)直线AB 的斜率k =tan 135°=-1, 又k =-3-y 2-4,由-3-y 2-4=-1,得y =-5.(2)由斜率公式k =4-mm +2=1,得m =1.(3)当m =3时,直线AB 平行于y 轴,斜率不存在. 当m ≠3时,k =-2-1m -3=-3m -3=1,解得m =0.[答案] (1)-5 (2)1 (3)0 [类题通法]利用斜率公式求直线的斜率应注意的事项(1)运用公式的前提条件是“x 1≠x 2”,即直线不与x 轴垂直,因为当直线与x 轴垂直时,斜率是不存在的;(2)斜率公式与两点P 1,P 2的先后顺序无关,也就是说公式中的x 1与x 2,y 1与y 2可以同时交换位置.[活学活用]3.(2012·河南平顶山高一调研)若直线过点 (1,2),(4,2+3),则此直线的倾斜角是( )A .30° B.45° C .60° D.90°解析:选A 设直线的倾斜角为α, 直线斜率k =+3-24-1=33,∴tan α=33. 又∵0°≤α<180°,∴α=30°.[例3] 已知实数x ,y 满足y =-2x +8,且2≤x ≤3,求y x的最大值和最小值.[解] 如图所示,由于点(x ,y )满足关系式2x +y =8,且2≤x ≤3,可知点P (x ,y )在线段AB 上移动,并且A ,B 两点的坐标可分别求得为A (2,4),B (3,2).由于y x 的几何意义是直线OP 的斜率,且k OA =2,k OB =23,所以可求得yx的最大值为2,最小值为23. [类题通法]根据题目中代数式的特征,看是否可以写成y 2-y 1x 2-x 1的形式,若能,则联想其几何意义(即直线的斜率),再利用图形的直观性来分析解决问题.[活学活用]4.点M (x ,y )在函数y =-2x +8的图象上,当x ∈[2,5]时,求y +1x +1的取值范围. 解:y +1x +1=y --x --的几何意义是过M (x ,y ),N (-1,-1)两点的直线的斜率.∵点M 在函数y =-2x +8的图象上,且x ∈[2,5], ∴设该线段为AB 且A (2,4),B (5,-2). ∵k NA =53,k NB =-16,∴-16≤y +1x +1≤53.∴y +1x +1的取值范围为[-16,53].6.倾斜角与斜率的关系[典例] 已知两点A (-3,4),B (3,2),过点P (1,0)的直线l 与线段AB 有公共点,则l 的倾斜角的取值范围________;直线l 的斜率k 的取值范围________.[解析] 如图,由题意可知k PA =4-0-3-1=-1,k PB =2-03-1=1,则直线l 的倾斜角介于直线PB 与PA 的倾斜角之间,又PB 的倾斜角是45°,PA 的倾斜角是135°,∴直线l 的倾斜角α的取值范围是45°≤α≤135°;要使l 与线段AB 有公共点,则直线l 的斜率k 的取值范围是k ≤-1或k ≥1.[答案] 45°≤α≤135° k ≤-1或k ≥1 [易错防范]1.本题易错误地认为-1≤k ≤1,结合图形考虑,l 的倾斜角应介于直线PB 与直线PA 的倾斜角之间,要特别注意,当l 的倾斜角小于90°时,有k ≥k PB ;当l 的倾斜角大于90°时,则有k ≤k PA .2.如图,过点P 的直线l 与直线段AB 相交时,因为过点P 且与x 轴垂直的直线PC 的斜率不存在,而PC 所在的直线与线段AB 不相交,所以满足题意的斜率夹在中间,即k PA ≤k ≤k PB .解决这类问题时,可利用数形结合思想直观地判断直线是夹在中间还是在两边.[成功破障]已知直线l 过点P (3,4),且与以A (-1,0),B (2,1)为端点的线段AB 有公共点,求直线l 的斜率k 的取值范围.解:∵直线PA 的斜率k PA =4-03--=1,直线PB 的斜率k PB =4-13-2=3,∴要使直线l 与线段AB 有公共点,k 的取值范围为[1,3].[随堂即时演练]1.关于直线的倾斜角和斜率,下列说法正确的是( ) A .任一直线都有倾斜角,都存在斜率 B .倾斜角为135°的直线的斜率为1C .若一条直线的倾斜角为α,则它的斜率为k =tan αD .直线斜率的取值范围是(-∞,+∞)解析:选D 任一直线都有倾斜角,但当倾斜角为90°时,斜率不存在.所以A 、C 错误;倾斜角为135°的直线的斜率为-1,所以B 错误;只有D 正确.2.已知经过两点(5,m )和(m,8)的直线的斜率等于1,则m 的值是( ) A .5 B .8 C.132D .7解析:选C 由斜率公式可得8-m m -5=1,解之得m =132.3.直线l 经过原点和(-1,1),则它的倾斜角为________. 解析:k l =1-0-1-0=-1,因此倾斜角为135°. 答案:135°4.已知三点A (a,2),B (3,7),C (-2,-9a )在同一条直线上,实数a 的值为________. 解析:∵A 、B 、C 三点共线,∴k AB =k BC ,即53-a =9a +75,∴a =2或29.答案:2或295.已知A (m ,-m +3),B (2,m -1),C (-1,4),直线AC 的斜率等于直线BC 的斜率的3倍,求m 的值.解:由题意直线AC 的斜率存在,即m ≠-1. ∴k AC =-m +-4m +1,k BC =m --42--.∴-m +-4m +1=3·m --42--.整理得:-m -1=(m -5)(m +1), 即(m +1)(m -4)=0, ∴m =4或m =-1(舍去). ∴m =4.[课时达标检测]一、选择题1.给出下列说法,正确的个数是( )①若两直线的倾斜角相等,则它们的斜率也一定相等; ②一条直线的倾斜角为-30°; ③倾斜角为0°的直线只有一条;④直线的倾斜角α的集合{α|0°≤α<180°}与直线集合建立了一一对应关系. A .0 B .1 C .2D .3解析:选A 若两直线的倾斜角为90°,则它们的斜率不存在,①错;直线倾斜角的取值范围是[0°,180°),②错;所有垂直于y 轴的直线倾斜角均为0°,③错;不同的直线可以有相同的倾斜角,④错.2.过两点A (4,y ),B (2,-3)的直线的倾斜角为45°,则y =( ) A .-32B.32C .-1D .1解析:选C tan 45°=k AB =y +34-2,即y +34-2=1,所以y =-1.3.如图,设直线l 1,l 2,l 3的斜率分别为k 1,k 2,k 3,则k 1,k 2,k 3的大小关系为( )A .k 1<k 2<k 3B .k 1<k 3<k 2C .k 2<k 1<k 3D .k 3<k 2<k 1解析:选A 根据“斜率越大,直线的倾斜程度越大”可知选项A 正确. 4.经过两点A (2,1),B (1,m 2)的直线l 的倾斜角为锐角,则m 的取值范围是( ) A .m <1 B .m >-1 C .-1<m <1D .m >1或m <-1解析:选C ∵直线l 的倾斜角为锐角, ∴斜率k =m 2-11-2>0,∴-1<m <1.5.(2012·广州高一检测)如果直线l 过点(1,2),且不通过第四象限,那么l 的斜率的取值范围是( )A .[0,1]B .[0,2] C.⎣⎢⎡⎦⎥⎤0,12 D .(0,3]解析:选B 过点(1,2)的斜率为非负且最大斜率为此点与原点的连线斜率时,图象不过第四象限.二、填空题6.已知a >0,若平面内三点A (1,-a ),B (2,a 2),C (3,a 3)共线,则a =________. 解析:若平面内三点共线,则k AB =k BC ,即a 2+a 2-1=a 3-a 23-2,整理得a 2-2a -1=0,解得a =1+2,或a =1-2(舍去).答案:1+ 27.如果直线l 1的倾斜角是150°,l 2⊥l 1,垂足为B .l 1,l 2与x 轴分别相交于点C ,A ,l 3平分∠BAC ,则l 3的倾斜角为________.解析:因为直线l 1的倾斜角为150°,所以∠BCA =30°,所以l 3的倾斜角为12×(90°-30°)=30°.答案:30°8.已知实数x ,y 满足方程x +2y =6,当1≤x ≤3时,y -1x -2的取值范围为________. 解析:y -1x -2的几何意义是过M (x ,y ),N (2,1)两点的直线的斜率,因为点M 在函数x +2y =6的图象上,且1≤x ≤3,所以可设该线段为AB ,且A ⎝ ⎛⎭⎪⎫1,52,B ⎝ ⎛⎭⎪⎫3,32,由于k NA =-32,k NB =12,所以y -1x -2的取值范围是⎝ ⎛⎦⎥⎤-∞,-32∪⎣⎢⎡⎭⎪⎫12,+∞.答案:⎝ ⎛⎦⎥⎤-∞,-32∪⎣⎢⎡⎭⎪⎫12,+∞三、解答题9.已知直线l 过点A (1,2),B (m,3),求直线l 的斜率和倾斜角的取值范围. 解:设l 的斜率为k ,倾斜角为α, 当m =1时,斜率k 不存在,α=90°, 当m ≠1时,k =3-2m -1=1m -1,当m >1时,k =1m -1>0,此时α为锐角,0°<α<90°, 当m <1时,k =1m -1<0,此时α为钝角, 90°<α<180°.所以α∈(0°,180°),k ∈(-∞,0)∪(0,+∞). 10.已知A (3,3),B (-4,2),C (0,-2), (1)求直线AB 和AC 的斜率.(2)若点D 在线段BC (包括端点)上移动时,求直线AD 的斜率的变化范围.解:(1)由斜率公式可得直线AB 的斜率k AB =2-3-4-3=17.直线AC 的斜率k AC =-2-30-3=53.故直线AB 的斜率为17,直线AC 的斜率为53.(2)如图所示,当D 由B 运动到C 时,直线AD 的斜率由k AB 增大到k AC ,所以直线AD 的斜率的变化范围是⎣⎢⎡⎦⎥⎤17,53.3.1.2 两条直线平行与垂直的判定[提出问题]平面几何中,两条直线平行同位角相等.问题1:在平面直角坐标中,若l1∥l2,则它们的倾斜角α1与α2有什么关系?提示:相等.问题2:若l1∥l2,则l1,l2的斜率相等吗?提示:不一定,可能相等,也可能都不存在.问题3:若l1与l2的斜率相等,则l1与l2一定平行吗?提示:不一定.可能平行也可能重合.[导入新知]对于两条不重合的直线l1,l2,其斜率分别为k1,k2,有l1∥l2⇔k1=k2.[化解疑难]对两直线平行与斜率的关系要注意以下几点(1)l1∥l2⇔k1=k2成立的前提条件是:①两条直线的斜率都存在;②l1与l2不重合.(2)当两条直线不重合且斜率都不存在时,l1与l2的倾斜角都是90°,则l1∥l2.(3)两条不重合直线平行的判定的一般结论是:l1∥l2⇔k1=k2或l1,l2斜率都不存在.[提出问题]已知两条直线l1,l2,若l1的倾斜角为30°,l1⊥l2.问题1:上述问题中,l1,l2的斜率是多少?提示:k1=33,k2=- 3.问题2:上述问题中两直线l1、l2的斜率有何关系?提示:k1k2=-1.问题3:若两条直线垂直且都有斜率,它们的斜率之积一定为-1吗?提示:一定.[导入新知]如果两条直线都有斜率,且它们互相垂直,那么它们的斜率之积等于-1;反之,如果它们的斜率之积等于-1,那么它们互相垂直,即l1⊥l2⇔k1·k2=-1.[化解疑难]对两直线垂直与斜率的关系要注意以下几点(1)l 1⊥l 2⇔k 1·k 2=-1成立的前提条件是:①两条直线的斜率都存在;②k 1≠0且k 2≠0. (2)两条直线中,一条直线的斜率不存在,同时另一条直线的斜率等于零,则两条直线垂直.(3)判定两条直线垂直的一般结论为:l 1⊥l 2⇔k 1·k 2=-1或一条直线的斜率不存在,同时另一条直线的斜率等于零.[例1] 根据下列给定的条件,判断直线l 1与直线l 2是否平行. (1)l 1经过点A (2,1),B (-3,5),l 2经过点C (3,-3),D (8,-7); (2)l 1经过点E (0,1),F (-2,-1),l 2经过点G (3,4),H (2,3); (3)l 1的倾斜角为60°,l 2经过点M (1,3),N (-2,-23); (4)l 1平行于y 轴,l 2经过点P (0,-2),Q (0,5).[解] (1)由题意知,k 1=5-1-3-2=-45,k 2=-7+38-3=-45,所以直线l 1与直线l 2平行或重合,又k BC =5---3-3=-43≠-45,故l 1∥l 2.(2)由题意知,k 1=-1-1-2-0=1,k 2=3-42-3=1,所以直线l 1与直线l 2平行或重合,k FG =4--3--=1,故直线l 1与直线l 2重合.(3)由题意知,k 1=tan 60°=3,k 2=-23-3-2-1=3,k 1=k 2,所以直线l 1与直线l 2平行或重合.(4)由题意知l 1的斜率不存在,且不是y 轴,l 2的斜率也不存在,恰好是y 轴,所以l 1∥l 2. [类题通法]判断两条不重合直线是否平行的步骤[活学活用]1.试确定m 的值,使过点A (m +1,0),B (-5,m )的直线与过点C (-4,3),D (0,5)的直线平行.解:由题意直线CD 的斜率存在,则与其平行的直线AB 的斜率也存在.k AB =m -0-5-m +=m-6-m ,k CD =5-30--=12,由于AB ∥CD ,即k AB =k CD ,所以m -6-m =12,得m =-2.经验证m =-2时直线AB 的斜率存在,所以m =-2.[例2] 已知直线l 1经过点A (3,a ),B (a -2,-3),直线l 2经过点C (2,3),D (-1,a -2),如果l 1⊥l 2,求a 的值.[解] 设直线l 1,l 2的斜率分别为k 1,k 2.∵直线l 2经过点C (2,3),D (-1,a -2),且2≠-1, ∴l 2的斜率存在.当k 2=0时,a -2=3,则a =5,此时k 1不存在,符合题意.当k 2≠0时,即a ≠5,此时k 1≠0, 由k 1·k 2=-1,得-3-a a -2-3·a -2-3-1-2=-1,解得a =-6.综上可知,a 的值为5或-6. [类题通法]使用斜率公式判定两直线垂直的步骤(1)一看,就是看所给两点的横坐标是否相等,若相等,则直线的斜率不存在,若不相等,则进行第一步.(2)二用:就是将点的坐标代入斜率公式.(3)求值:计算斜率的值,进行判断.尤其是点的坐标中含有参数时,应用斜率公式要对参数进行讨论.总之,l 1与l 2一个斜率为0,另一个斜率不存在时,l 1⊥l 2;l 1与l 2斜率都存在时,满足k 1·k 2=-1.[活学活用]2.已知定点A (-1,3),B (4,2),以A 、B 为直径作圆,与x 轴有交点C ,则交点C 的坐标是________.解析:以线段AB 为直径的圆与x 轴的交点为C ,则AC ⊥BC .设C (x,0),则k AC =-3x +1,k BC =-2x -4,所以-3x +1·-2x -4=-1,得x =1或2,所以C (1,0)或(2,0). 答案:(1,0)或(2,0)[例3] 已知A (-4,3),B (2,5),C (6,3),D (-3,0)四点,若顺次连接A ,B ,C ,D 四点,试判定图形ABCD 的形状.[解] 由题意知A ,B ,C ,D 四点在坐标平面内的位置,如图所示,由斜率公式可得k AB =5-32--=13, k CD =0-3-3-6=13,k AD =0-3-3--=-3,k BC =3-56-2=-12. 所以k AB =k CD ,由图可知AB 与CD 不重合, 所以AB ∥CD .由k AD ≠k BC ,所以AD 与BC 不平行. 又因为k AB ·k AD =13×(-3)=-1,所以AB ⊥AD ,故四边形ABCD 为直角梯形. [类题通法]1.在顶点确定的情况下,确定多边形形状时,要先画出图形,由图形猜测其形状,为下面证明提供明确目标.2.证明两直线平行时,仅有k 1=k 2是不够的,注意排除两直线重合的情况. [活学活用]3.已知A (1,0),B (3,2),C (0,4),点D 满足AB ⊥CD ,且AD ∥BC ,试求点D 的坐标. 解:设D (x ,y ),则k AB =23-1=1,k BC =4-20-3=-23,k CD =y -4x ,k DA =y x -1.因为AB ⊥CD ,AD ∥BC ,所以,k AB ·k CD =-1,k DA =k BC,所以⎩⎪⎨⎪⎧1×y -4x =-1,y x -1=-23.解得⎩⎪⎨⎪⎧x =10,y =-6.即D (10,-6).8.利用平行或垂直确定参数值[典例] 已知直线l 1经过A (3,m ),B (m -1,2),直线l 2经过点C (1,2),D (-2,m +2). (1)若l 1∥l 2,求m 的值; (2)若l 1⊥l 2,求m 的值. [解题流程]欲求m 的值,需根据l 1∥l 2或l 1⊥l 2列出关于m 的关系式由直线l 1过A 、B 两点,直线l 2过C 、D 两点,求斜率[规范解答]由题知直线l 2的斜率存在且k 2=2-m +1--=-m 3①分若l 1∥l 2,则直线l 1的斜率也存在,由k 1=k 2,得2-m m -4=-m3,解得m =1或m =6,分经检验,当m =1或m =6时,l 1∥l ③2分若l 1⊥l 2,当k 2=0②时,此时m =0,l 1斜率存在,不符合题意;分当k2≠0②时,直线l2的斜率存在且不为0,则直线l1的斜率也存在,且k1·k2=-1,即-m 3·2-mm-4=-1,解得m=3或m=-4,(10分)所以m=3或m=-4时,l1⊥l③2.(12分)[名师批注]①处易漏掉而直接利用两直线平行或垂直所具备的条件来求m值,解答过程不严谨②处讨论k2=0和k2≠0两种情况③此处易漏掉检验做解答题要注意解题的规范[活学活用]已知A(-m-3,2),B(-2m-4,4),C(-m,m),D(3,3m+2),若直线AB⊥CD,求m的值.解:因为A,B两点纵坐标不等,所以AB与x轴不平行.因为AB⊥CD,所以CD与x轴不垂直,故m≠-3.当AB与x轴垂直时,-m-3=-2m-4,解得m=-1,而m=-1时,C,D纵坐标均为-1,所以CD∥x轴,此时AB⊥CD,满足题意.当AB与x轴不垂直时,由斜率公式得k AB=4-2-2m-4--m-=2-m+,k CD=3m+2-m 3--m =m+m+3.因为AB⊥CD,所以k AB·k CD=-1,解得m=1.综上,m的值为1或-1.[随堂即时演练]1.下列说法正确的有( )①若两条直线的斜率相等,则这两条直线平行;②若l1∥l2,则k1=k2;③若两条直线中有一条直线的斜率不存在,另一条直线的斜率存在,则这两条直线垂直;④若两条直线的斜率都不存在且两直线不重合,则这两条直线平行.A.1个B.2个C.3个D.4个解析:选A 若k1=k2,则这两条直线平行或重合,所以①错;当两条直线垂直于x轴时,两条直线平行,但斜率不存在,所以②错;若两直线中有一条直线的斜率不存在,另一条直线的斜率为0时,才有这两条直线垂直,所以③错;④正确.2.直线l 1,l 2的斜率是方程x 2-3x -1=0的两根,则l 1与l 2的位置关系是( ) A .平行 B .重合 C .相交但不垂直D .垂直解析:选D 设l 1,l 2的斜率分别为k 1,k 2,则k 1·k 2=-1.3.已知△ABC 中,A (0,3)、B (2,-1),E 、F 分别为AC 、BC 的中点,则直线EF 的斜率为________.解析:∵E 、F 分别为AC 、BC 的中点, ∴EF ∥AB .∴k EF =k AB =-1-32-0=-2.答案:-24.经过点(m,3)和(2,m )的直线l 与斜率为-4的直线互相垂直,则m 的值是________. 解析:由题意可知k l =14,又因为k l =m -32-m ,所以m -32-m =14,解得m =145.答案:1455.判断下列各小题中的直线l 1与l 2的位置关系. (1)l 1的斜率为-10,l 2经过点A (10,2),B (20,3);(2)l 1过点A (3,4),B (3,100),l 2过点M (-10,40),N (10,40); (3)l 1过点A (0,1),B (1,0),l 2过点M (-1,3),N (2,0); (4)l 1过点A (-3,2),B (-3,10),l 2过点M (5,-2),N (5,5). 解:(1)k 1=-10,k 2=3-220-10=110.∵k 1k 2=-1,∴l 1⊥l 2.(2)l 1的倾斜角为90°,则l 1⊥x 轴.k 2=40-4010--=0,则l 2∥x 轴,∴l 1⊥l 2. (3)k 1=0-11-0=-1,k 2=0-32--=-1,∴k 1=k 2.又k AM =3-1-1-0=-2≠k 1,∴l 1∥l 2.(4)∵l 1与l 2都与x 轴垂直,∴l 1∥l 2.[课时达标检测]一、选择题1.已知过点P (3,2m )和点Q (m,2)的直线与过点M (2,-1)和点N (-3,4)的直线平行,则m 的值是( )A .1B .-1C .2D .-2解析:选B 因为MN ∥PQ ,所以k MN =k PQ ,即4---3-2=2-2m m -3,解得m =-1. 2.以A (-1,1),B (2,-1),C (1,4)为顶点的三角形是( ) A .锐角三角形 B .钝角三角形C .以A 点为直角顶点的直角三角形D .以B 点为直角顶点的直角三角形解析:选C 如右图所示,易知k AB =-1-12--=-23,k AC =4-11--=32,由k AB ·k AC =-1知三角形是以A 点为直角顶点的直角三角形. 3.已知点A (-2,-5),B (6,6),点P 在y 轴上,且∠APB =90°,则点P 的坐标为( )A .(0,-6)B .(0,7)C .(0,-6)或(0,7)D .(-6,0)或(7,0)解析:选C 由题意可设点P 的坐标为(0,y ).因为∠APB =90°,所以AP ⊥BP ,且直线AP 与直线BP 的斜率都存在.又k AP =y +52,k BP =y -6-6,k AP ·k BP =-1,即y +52·(-y -66)=-1,解得y =-6或y =7.所以点P 的坐标为(0,-6)或(0,7).4.若A (-4,2),B (6,-4),C (12,6),D (2,12),则下面四个结论:①AB ∥CD ;②AB ⊥AD ;③AC ∥BD ;④AC ⊥BD 中正确的个数为( )A .1B .2C .3D .4解析:选C 由题意得k AB =-4-26--=-35,k CD =12-62-12=-35,k AD =12-22--=53,k AC=6-212--=14,k BD =12--2-6=-4,所以AB ∥CD ,AB ⊥AD ,AC ⊥BD .5.已知点A (2,3),B (-2,6),C (6,6),D (10,3),则以A ,B ,C ,D 为顶点的四边形是( ) A .梯形 B .平行四边形 C .菱形D .矩形解析:选B 如图所示,易知k AB =-34,k BC =0,k CD =-34,k AD =0,k BD =-14,k AC =34,所以k AB =k CD ,k BC =k AD ,k AB ·k AD =0,k AC ·k BD =-312, 故AD ∥BC ,AB ∥CD ,AB 与AD 不垂直,BD 与AC 不垂直. 所以四边形ABCD 为平行四边形. 二、填空题6.l 1过点A (m,1),B (-3,4),l 2过点C (0,2),D (1,1),且l 1∥l 2,则m =________. 解析:∵l 1∥l 2,且k 2=1-21-0=-1,∴k 1=4-1-3-m =-1,∴m =0.答案:07.已知直线l 1的倾斜角为45°,直线l 2∥l 1,且l 2过点A (-2,-1)和B (3,a ),则a 的值为________.解析:∵l 2∥l 1,且l 1的倾斜角为45°,∴kl 2=kl 1=tan 45°=1,即a --3--=1,所以a =4.答案:48.已知A (2,3),B (1,-1),C (-1,-2),点D 在x 轴上,则当点D 坐标为________时,AB ⊥CD .解析:设点D (x,0),因为k AB =-1-31-2=4≠0,所以直线CD 的斜率存在.则由AB ⊥CD 知,k AB ·k CD =-1,所以4·-2-0-1-x =-1,解得x =-9.答案:(-9,0) 三、解答题9.当m 为何值时,过两点A (1,1),B (2m 2+1,m -2)的直线: (1)倾斜角为135°;(2)与过两点(3,2),(0,-7)的直线垂直; (3)与过两点(2,-3),(-4,9)的直线平行? 解:(1)由k AB =m -32m 2=tan 135°=-1,解得m =-32,或m =1. (2)由k AB =m -32m 2,且-7-20-3=3. 则m -32m 2=-13,解得m =32,或m =-3. (3)令m -32m 2=9+3-4-2=-2, 解得m =34,或m =-1.10.直线l 1经过点A (m,1),B (-3,4),直线l 2经过点C (1,m ),D (-1,m +1),当l 1∥l 2或l 1⊥l 2时,分别求实数m 的值.解:当l 1∥l 2时,由于直线l 2的斜率存在,则直线l 1的斜率也存在,则k AB =k CD ,即4-1-3-m =m +1-m -1-1,解得m=3;当l 1⊥l 2时,由于直线l 2的斜率存在且不为0,则直线l 1的斜率也存在,则k AB k CD =-1, 即4-1-3-m ·m +1-m -1-1=-1,解得m =-92. 综上,当l 1∥l 2时,m 的值为3; 当l 1⊥l 2时,m 的值为-92.3.2直线的方程3.2.1 直线的点斜式方程[提出问题]斜拉桥又称斜张桥,桥身简约刚毅,力感十足.若以桥面所在直线为x 轴,桥塔所在直线为y 轴建立平面直角坐标系,那么斜拉索可看成过桥塔上同一点的直线.问题1:已知某一斜拉索过桥塔上一点B ,那么该斜拉索位置确定吗?提示:不确定.从一点可引出多条斜拉索.问题2:若某条斜拉索过点B (0,b ),斜率为k ,则该斜拉索所在直线上的点P (x ,y )满足什么条件?提示:满足y -bx -0=k . 问题3:可以写出问题2中的直线方程吗?提示:可以.方程为y -b =kx . [导入新知]1.直线的点斜式方程(1)定义:如图所示,直线l 过定点P (x 0,y 0),斜率为k ,则把方程y -y 0=k (x -x 0)叫做直线l 的点斜式方程,简称点斜式.(2)说明:如图所示,过定点P (x 0,y 0),倾斜角是90°的直线没有点斜式,其方程为x -x 0=0,或x =x 0.2.直线的斜截式方程(1)定义:如图所示,直线l 的斜率为k ,且与y 轴的交点为(0,b ),则方程y =kx +b 叫做直线l 的斜截式方程,简称斜截式.(2)说明:一条直线与y 轴的交点(0,b )的纵坐标b 叫做直线在y 轴上的截距.倾斜角是直角的直线没有斜截式方程.[化解疑难]1.关于点斜式的几点说明:(1)直线的点斜式方程的前提条件是:①已知一点P (x 0,y 0)和斜率k ;②斜率必须存在.只有这两个条件都具备,才可以写出点斜式方程.(2)方程y -y 0=k (x -x 0)与方程k =y -y 0x -x 0不是等价的,前者是整条直线,后者表示去掉点P (x 0,y 0)的一条直线.(3)当k 取任意实数时,方程y -y 0=k (x -x 0)表示恒过定点(x 0,y 0)的无数条直线. 2.斜截式与一次函数的解析式相同,都是y =kx +b 的形式,但有区别,当k ≠0时,y =kx +b 即为一次函数;当k =0时,y =b ,不是一次函数,一次函数y =kx +b (k ≠0)必是一条直线的斜截式方程.截距不是距离,可正、可负也可为零.[例1] (1)经过点(-5,2)且平行于y轴的直线方程为________.(2)直线y=x+1绕着其上一点P(3,4)逆时针旋转90°后得直线l,则直线l的点斜式方程为________.(3)求过点P(1,2)且与直线y=2x+1平行的直线方程为________.[解析] (1)∵直线平行于y轴,∴直线不存在斜率,∴方程为x=-5.(2)直线y=x+1的斜率k=1,所以倾斜角为45°.由题意知,直线l的倾斜角为135°,所以直线l的斜率k′=tan 135°=-1,又点P(3,4)在直线l上,由点斜式方程知,直线l 的方程为y-4=-(x-3).(3)由题意知,所求直线的斜率为2,且过点P(1,2),∴直线方程为y-2=2(x-1),即2x -y=0.[答案] (1)x=-5 (2)y-4=-(x-3) (3)2x-y=0[类题通法]已知直线上一点的坐标以及直线斜率或已知直线上两点的坐标,均可用直线方程的点斜式表示,直线方程的点斜式,应在直线斜率存在的条件下使用.当直线的斜率不存在时,直线方程为x=x0.[活学活用]1.写出下列直线的点斜式方程:(1)经过点A(2,5),斜率是4;(2)经过点B(2,3),倾斜角是45°;(3)经过点C(-1,-1),与x轴平行.解:(1)由点斜式方程可知,所求直线的点斜式方程为y-5=4(x-2).(2)∵直线的倾斜角为45°,∴此直线的斜率k=tan45°=1.∴直线的点斜式方程为y-3=x-2.(3)∵直线与x轴平行,∴倾斜角为0°,斜率k=0.∴直线的点斜式方程为y+1=0×(x+1),即y=-1.[例2] (1)倾斜角为150°,在y 轴上的截距是-3的直线的斜截式方程为________. (2)已知直线l 1的方程为y =-2x +3,l 2的方程为y =4x -2,直线l 与l 1平行且与l 2在y 轴上的截距相同,求直线l 的方程.[解析] (1)∵倾斜角α=150°,∴斜率k =tan 150°=-33,由斜截式可得所求的直线方程为y =-33x -3. (2)由斜截式方程知直线l 1的斜率k 1=-2, 又∵l ∥l 1,∴l 的斜率k =k 1=-2.由题意知l 2在y 轴上的截距为-2,∴l 在y 轴上的截距b =-2,由斜截式可得直线l 的方程为y =-2x -2.[答案] (1)y =-33x -3 [类题通法]1.斜截式方程的应用前提是直线的斜率存在.当b =0时,y =kx 表示过原点的直线;当k =0时,y =b 表示与x 轴平行(或重合)的直线.2.截距不同于日常生活中的距离,截距是一个点的横(纵)坐标,是一个实数,可以是正数,也可以是负数或零,而距离是一个非负数.[活学活用]2.求倾斜角是直线y =-3x +1的倾斜角的14,且在y 轴上的截距是-5的直线方程.解:∵直线y =-3x +1的斜率k =-3,∴其倾斜角α=120°,由题意,得所求直线的倾斜角α1=14α=30°,故所求直线的斜率k 1=tan 30°=33.∵所求直线的斜率是33,在y 轴上的截距为-5, ∴所求直线的方程为y =33x -5.[例3] 当a 为何值时,(1)两直线y =ax -2与y =(a +2)x +1互相垂直? (2)两直线y =-x +4a 与y =(a 2-2)x +4互相平行? [解] (1)设两直线的斜率分别为k 1,k 2,则k 1=a ,k 2=a +2.∵两直线互相垂直, ∴k 1k 2=a (a +2)=-1, 解得a =-1.故当a =-1时,两条直线互相垂直. (2)设两直线的斜率分别为k 3,k 4, 则k 3=-1,k 4=a 2-2. ∵两条直线互相平行,∴⎩⎪⎨⎪⎧a 2-2=-1,4a ≠4,解得a =-1.故当a =-1时,两条直线互相平行. [类题通法]判断两条直线位置关系的方法直线l 1:y =k 1x +b 1,直线l 2:y =k 2x +b 2. (1)若k 1≠k 2,则两直线相交. (2)若k 1=k 2,则两直线平行或重合, 当b 1≠b 2时,两直线平行; 当b 1=b 2时,两直线重合.(3)特别地,当k 1·k 2=-1时,两直线垂直. (4)对于斜率不存在的情况,应单独考虑. [活学活用]3.(1)若直线l 1:y =(2a -1)x +3与直线l 2:y =4x -3垂直,则a =________. (2)若直线l 1:y =-x +2a 与直线l 2:y =(a 2-2)x +2平行,则a =________. 解析:(1)由题意可知kl 1=2a -1,kl 2=4. ∵l 1⊥l 2,∴4(2a -1)=-1,解得a =38.(2)因为l 1∥l 2,所以a 2-2=-1,且2a ≠2,解得a =-1,所以a =-1时两直线平行. 答案:(1)38(2)-17.斜截式判断两条直线平行的误区[典例] 已知直线l 1:x +my +6=0,l 2:(m -2)x +3y +2m =0,当l 1∥l 2时,求m 的值. [解] 由题设l 2的方程可化为y =-m -23x -23m ,则其斜率k 2=-m -23,在y 轴上的截距b 2=-23m . ∵l 1∥l 2,∴l 1的斜率一定存在,即m ≠0. ∴l 1的方程为y =-1m x -6m.由l 1∥l 2,得⎩⎪⎨⎪⎧-m -23=-1m,-23m ≠-6m ,解得m =-1.∴m 的值为-1. [易错防范]1.两条直线平行时,斜率存在且相等,截距不相等.当两条直线的斜率相等时,也可能平行,也可能重合.2.解决此类问题要明确两直线平行的条件,尤其是在求参数时要考虑两直线是否重合. [成功破障]当a 为何值时,直线l 1:y =-2ax +2a 与直线l 2:y =(a 2-3)x +2平行? 解:∵l 1∥l 2,∴a 2-3=-2a 且2a ≠2, 解得a =-3.[随堂即时演练]1.直线y =2x -3的斜率和在y 轴上的截距分别等于( ) A .2,3 B .-3,-3 C .-3,2 D .2,-3答案:D2.直线l 经过点P (2,-3),且倾斜角α=45°,则直线的点斜式方程是( ) A .y +3=x -2 B .y -3=x +2 C .y +2=x -3D .y -2=x +3 解析:选A ∵直线l 的斜率k =tan 45°=1, ∴直线l 的方程为y +3=x -2.3.过点(-2,-4),倾斜角为60°的直线的点斜式方程是________.解析:α=60°,k =tan 60°=3, 由点斜式方程,得y +4=3(x +2). 答案:y +4=3(x +2)4.在y 轴上的截距为2,且与直线y =-3x -4平行的直线的斜截式方程为________. 解析:∵直线y =-3x -4的斜率为-3, 所求直线与此直线平行,∴斜率为-3,又截距为2,∴由斜截式方程可得y =-3x +2. 答案:y =-3x +25.(1)求经过点(1,1),且与直线y =2x +7平行的直线的方程; (2)求经过点(-2,-2),且与直线y =3x -5垂直的直线的方程. 解:(1)由y =2x +7得其斜率为2,由两直线平行知所求直线的斜率是2. ∴所求直线方程为y -1=2(x -1), 即2x -y -1=0.(2)由y =3x -5得其斜率为3,由两直线垂直知,所求直线的斜率是-13.∴所求直线方程为y +2=-13(x +2),即x +3y +8=0.[课时达标检测]一、选择题1.已知直线的方程是y +2=-x -1,则( ) A .直线经过点(-1,2),斜率为-1 B .直线经过点(2,-1),斜率为-1 C .直线经过点(-1,-2),斜率为-1 D .直线经过点(-2,-1),斜率为1解析:选C 直线的方程可化为y -(-2)=-[x -(-1)],故直线经过点(-1,-2),斜率为-1.2.直线y =ax -1a的图象可能是( )解析:选B 由y =ax -1a可知,斜率和截距必须异号,故B 正确.3.与直线y =2x +1垂直,且在y 轴上的截距为4的直线的斜截式方程是( )。
3.2.2直线的两点式方程学习目标1.掌握直线方程两点式的形式、特点及适用范围.2.了解直线方程截距式的形式、特点及适用范围.3.会用中点坐标公式求两点的中点坐标.知识点一直线方程的两点式思考1已知两点P 1(x 1,y 1),P 2(x 2,y 2),其中x 1≠x 2,y 1≠y 2,求通过这两点的直线方程. 答案y -y 1=y2-y1x2-x1(x -x 1),即y -y1y2-y1=x -x1x2-x1.思考2过点(1,3)和(1,5)的直线能用两点式表示吗?为什么?过点(2,3),(5,3)的直线呢? 答案不能,因为1-1=0,而0不能做分母.过点(2,3),(5,3)的直线也不能用两点式表示. 梳理知识点二直线方程的截距式思考1过点(5,0)和(0,7)的直线能用x5+y7=1表示吗?答案能.由直线方程的两点式得y -07-0=x -50-5,即x5+y7=1. 思考2已知两点P 1(a,0),P 2(0,b ),其中a ≠0,b ≠0,求通过这两点的直线方程. 答案由直线方程的两点式,得y -0b -0=x -a0-a ,即x a +yb =1. 梳理知识点三线段的中点坐标公式若点P 1,P 2的坐标分别为(x 1,y 1),(x 2,y 2),设P (x ,y )是线段P 1P 2的中点,则⎩⎪⎨⎪⎧x =x1+x22,y =y1+y22.类型一直线的两点式方程例1已知A (-3,2),B (5,-4),C (0,-2),在△ABC 中, (1)求BC 边的方程;(2)求BC 边上的中线所在直线的方程. 解(1)BC 边过两点B (5,-4),C (0,-2),由两点式,得y -(-4)-2-(-4)=x -50-5,即2x +5y +10=0,故BC 边的方程是2x +5y +10=0(0≤x ≤5). (2)设BC 的中点M (a ,b ),则a =5+02=52,b =-4+(-2)2=-3,所以M (52,-3), 又BC 边的中线过点A (-3,2),所以y -2-3-2=x -(-3)52-(-3),即10x +11y +8=0,所以BC 边上的中线所在直线的方程为10x +11y +8=0. 引申探究若本例条件不变,试求BC 边的垂直平分线所在的直线方程. 解k BC =-4-(-2)5-0=-25,则BC 的垂直平分线的斜率为52,又BC 的中点坐标为(52,-3),由点斜式方程可得y +3=52(x -52),即10x -4y -37=0.反思与感悟(1)当已知两点坐标,求过这两点的直线方程时,首先要判断是否满足两点式方程的适用条件:两点的连线不平行于坐标轴,若满足,则考虑用两点式求方程.(2)由于减法的顺序性,一般用两点式求直线方程时常会将字母或数字的顺序错位而导致错误,在记忆和使用两点式方程时,必须注意坐标的对应关系,即x 2与y 2是同一点坐标,而x 1与y 1是另一点坐标. 跟踪训练1若点P (3,m )在过点A (2,-1),B (-3,4)的直线上,则m =________. 答案-2解析由直线方程的两点式得y -(-1)4-(-1)=x -2-3-2,即y +15=x -2-5.∴直线AB 的方程为y +1=-x +2, ∵点P (3,m )在直线AB 上, ∴m +1=-3+2,得m =-2. 类型二直线的截距式方程命题角度1与三角形有关的直线方程例2过点P (1,3),且与x 轴、y 轴的正半轴围成的三角形的面积等于6的直线方程是() A .3x +y -6=0B .x +3y -10=0 C .3x -y =0D .x -3y +8=0 答案A解析设所求的直线方程为xa +yb=1(a >0,b >0),由于过点P (1,3)且与两坐标轴的正半轴所围成的三角形面积等于6,因此有⎩⎪⎨⎪⎧1a +3b=1,12ab =6,解得a =2,b =6,故所求直线的方程为3x +y -6=0,故选A.反思与感悟求解此类题需过双关:一是待定系数法关,即根据题中条件设出直线方程,如在x 轴、y 轴上的截距分别为a ,b (a ≠0,b ≠0)的直线方程常设为xa +yb =1;二是方程(组)思想关,即根据已知条件,寻找关于参数的方程(组),解方程(组),得参数的值.跟踪训练2直线l 过点P (43,2),且与两坐标正半轴围成的三角形周长为12,求直线l 的方程.解设直线l 的方程为xa +yb =1(a >0,b >0),由题意知,a +b +a2+b2=12.又因为直线l 过点P (43,2),所以43a +2b=1,即5a 2-32a +48=0,解得⎩⎪⎨⎪⎧a1=4,b1=3,⎩⎪⎨⎪⎧a2=125,b2=92,所以直线l 的方程为3x +4y -12=0 或15x +8y -36=0. 命题角度2判断直线的条数例3过点A (3,-1)且在两坐标轴上截距的绝对值相等的直线有() A .2条B .3条C .4条D .无数多条 答案B解析当截距都为零时满足题意要求,直线为y =-13x ,当截距不为零时,设直线方程为xa +yb=1,∴⎩⎪⎨⎪⎧3a +-1b =1,|a|=|b|,∴⎩⎪⎨⎪⎧ a =2,b =2或⎩⎪⎨⎪⎧a =4,b =-4,即直线方程为x 2+y2=1或x 4+y-4=1,∴满足条件的直线共有3条.故选B.反思与感悟如果题目中出现直线在两坐标轴上的“截距相等”“截距互为相反数”“在一坐标轴上的截距是另一坐标轴上截距的m 倍(m >0)”等条件时,若采用截距式求直线方程,则一定要注意考虑“零截距”的情况.跟踪训练3过点P (2,3)且在两坐标轴上的截距相等的直线有() A .1条B .2条C .3条D .无数多条 答案B解析设直线的两截距都是a ,则有①当a =0时,直线设为y =kx ,将P (2,3)代入得k =32,∴直线l 的方程为3x -2y =0;②当a ≠0时,直线设为xa +ya =1,即x +y =a ,把P (2,3)代入得a =5, ∴直线l 的方程为x +y =5.∴直线l 的方程为3x -2y =0或x +y -5=0. 类型三直线方程的应用例4设直线l 的方程为y =(-a -1)x +a -2. (1)若l 在两坐标轴上的截距相等,求l 的方程; (2)若l 不经过第二象限,求实数a 的取值范围.解(1)当直线过原点时,该直线在x 轴和y 轴上的截距均为0, ∴a -2=0,∴a =2,此时直线方程为3x +y =0;当直线不过原点时,a ≠2,由a -2a +1=a -2,得a =0,直线方程为x +y +2=0.故所求的直线方程为3x +y =0或x +y +2=0.(2)由l 的方程为y =-(a +1)x +a -2,欲使l 不经过第二象限,当且仅当⎩⎨⎧-(a +1)≥0,a -2≤0,解得a ≤-1.故所求的a 的取值范围为(-∞,-1].反思与感悟(1)由直线方程求出直线在两坐标轴上的截距应先分类讨论,再列方程求解. (2)根据斜率和截距的取值列式求解. 跟踪训练4已知三角形的顶点坐标是A (-5,0),B (3,-3),C (0,2),试求这个三角形的三条边所在的斜截式方程. 解直线AB 的斜率k AB =-3-03-(-5)=-38,过点A (-5,0),∴直线AB 的点斜式方程为y =-38(x +5),即所求的斜截式方程为y =-38x -158.同理,直线BC 的方程为y -2=-53x ,即y =-53x +2.直线AC 的方程为y -2=25x ,即y =25x +2.∴直线AB ,BC ,AC 的斜截式方程分别为y =-38x -158,y =-53x +2,y =25x +2.1.直线x-2+y-3=1在x 轴,y 轴上的截距分别为()A .2,3B .-2,-3C .-2,3D .2,-3 答案B2.过两点(-2,1)和(1,4)的直线方程为()A .y =x +3B .y =-x +1C .y =x +2D .y =-x -2 答案A解析代入两点式得直线方程y -14-1=x +21+2, 整理得y =x +3.3.经过M (3,2)与N (6,2)两点的直线方程为() A .x =2B .y =2 C .x =3D .x =6 答案B解析由M ,N 两点的坐标可知,直线MN 与x 轴平行,所以直线方程为y =2,故选B. 4.已知点A (3,2),B (-1,4),则经过点C (2,5)且经过线段AB 的中点的直线方程为________. 答案2x -y +1=0解析AB 的中点坐标为(1,3), 由直线的两点式方程可得y -35-3=x -12-1, 即2x -y +1=0.5.直线l 过点(1,2)和第一、二、四象限,若直线l 的横截距与纵截距之和为6,求直线l 的方程. 解设直线l 的横截距为a ,由题意可得纵截距为6-a , 所以直线l 的方程为xa +y6-a=1,因为点(1,2)在直线l 上,所以1a +26-a =1,解得a 1=2,a 2=3,当a =2时,直线的方程为2x +y -4=0,直线经过第一、二、四象限; 当a =3时,直线的方程为x +y -3=0,直线经过第一、二、四象限. 综上所述,所求直线方程为2x +y -4=0或x +y -3=0.1.当直线没有斜率(x 1=x 2)或斜率为0(y 1=y 2)时,不能用两点式y -y1y2-y1=x -x1x2-x1求它的方程,此时直线的方程分别是x =x 1和y =y 1,而它们都适合(x 2-x 1)·(y -y 1)=(y 2-y 1)(x -x 1),即两点式的整式形式,因此过任意两点的直线的方程都可以写成(x 2-x 1)(y -y 1)=(y 2-y 1)(x -x 1)的形式.2.直线的截距式是两点式的一个特殊情形,用它来画直线以及判断直线经过的象限或求直线与坐标轴围成的三角形的面积比较方便.注意直线过原点或与坐标轴平行时,没有截距式方程,但直线过原点时两截距存在且同时等于零.课时作业一、选择题1.下列说法正确的是()A .经过定点P 0(x 0,y 0)的直线都可以用方程y -y 0=k (x -x 0)表示B .经过定点A (0,b )的直线都可以用方程y =kx +b 表示C .不经过原点的直线都可以用方程xa +yb=1表示D .经过任意两个不同的点P 1(x 1,y 1),P 2(x 2,y 2)的直线都可以用方程(y -y 1)(x 2-x 1)=(x -x 1)(y 2-y 1)表示 答案D解析斜率有可能不存在,截距也有可能为0,故选D. 2.若直线l 的横截距与纵截距都是负数,则() A .l 的倾斜角为锐角且不过第二象限 B .l 的倾斜角为钝角且不过第一象限 C .l 的倾斜角为锐角且不过第四象限 D .l 的倾斜角为钝角且不过第三象限 答案B解析依题意知,直线l 的截距式方程为x-a +y-b =1(a >0,b >0),显然直线l 只能过第二、三、四象限,而不会过第一象限,且倾斜角为钝角,故选B. 3.直线xa2-yb2=1在y 轴上的截距是()A .|b |B .-b 2C .b 2D .±b 答案B解析令x =0得,y =-b 2.4.以A (1,3),B (-5,1)为端点的线段的垂直平分线方程是() A .3x -y -8=0B .3x +y +4=0 C .3x -y +6=0D .3x +y +2=0 答案B解析因为k AB =1-3-5-1=13,AB 的中点坐标为(-2,2),所以所求直线方程为y -2=-3(x +2),化简为3x +y +4=0.5.过点P (2,3),并且在两坐标轴上的截距互为相反数的直线方程是() A .x -y +1=0B .x -y +1=0或3x -2y =0C .x +y -5=0D .x +y -5=0或3x -2y =0 答案B解析设直线方程为xa +y-a =1或y =kx ,将P (2,3)代入求出a =-1或k =32.所以所求的直线方程为x -y +1=0或3x -2y =0.6.利用斜二测画法,作出直线AB 的直观图如图所示,若O ′A ′=O ′B ′=1,则直线AB 在直角坐标系中的方程为()A .x +y =1B .x -y =1C .x +y2=1D .x -y2=1答案D解析由斜二测画法可知在直角坐标系中,A (1,0),B (0,-2),由两点坐标可得直线方程为x -y2=1.7.两条直线l 1:xa -yb =1和l 2:xb -ya=1在同一直角坐标系中的图象可以是()答案A解析两条直线化为截距式分别为x a +y-b =1,x b +y-a =1.假定l 1,判断a ,b ,确定l 2的位置,知A 项符合.二、填空题8.已知直线xa +y6=1与坐标轴围成的图形面积为6,则a 的值为________.答案±2解析由xa +y 6=1知S =12|a |·|6|=6,所以a =±2.9.过点P (3,-1),且在x 轴上的截距等于在y 轴上的截距的2倍的直线l 的方程是______. 答案x +2y -1=0或x +3y =0解析设直线l 在x 轴上的截距为a ,在y 轴上的截距为b ,当a =0时,b =0,此时直线l 的方程为y x =-13,所以x +3y =0;当a ≠0时,a =2b ,此时直线l 的方程为x2b +yb =1,代入(3,-1)得x +2y -1=0.10.过(3,0)点且与x 轴垂直的直线方程为________,纵截距为-2且与y 轴垂直的直线方程为________. 答案x =3y =-211.过点P (1,3)的直线l 分别与两坐标轴交于A ,B 两点,若P 为AB 的中点,则直线l 的截距式方程是__________________________________________________________. 答案x2+y6=1解析设A (m,0),B (0,n ),由P (1,3)是AB 的中点可得m =2,n =6, 即A ,B 的坐标分别为(2,0),(0,6). 则l 的方程为x2+y6=1.三、解答题12.求经过点P (-5,-4)且与两坐标轴围成的面积为5的直线方程. 解设所求直线方程为xa +yb =1.∵直线过点P (-5,-4), ∴-5a +-4b =1,①于是得4a +5b =-ab ,又由已知,得12|a |·|b |=5,即|ab |=10.② 由①②,得⎩⎪⎨⎪⎧4a +5b =-ab ,|ab|=10, 解得⎩⎪⎨⎪⎧ a =-52,b =4或⎩⎪⎨⎪⎧a =5,b =-2. 故所求直线方程为x -52+y 4=1或x 5+y-2=1. 即8x -5y +20=0或2x -5y -10=0.13.在△ABC 中,已知A (5,-2),B (7,3),且AC 边的中点M 在y 轴上,BC 边的中点N 在x 轴上,求:(1)顶点C 的坐标;(2)直线MN 的方程.解(1)设C (x 0,y 0),则AC 边的中点为M ⎝ ⎛⎭⎪⎫x0+52,y0-22, BC 边的中点为N ⎝ ⎛⎭⎪⎫x0+72,y0+32, 因为M 在y 轴上,所以x0+52=0,得x 0=-5. 又因为N 在x 轴上,所以y0+32=0, 所以y 0=-3.即C (-5,-3).(2)由(1)可得M ⎝⎛⎭⎪⎫0,-52,N (1,0), 所以直线MN 的方程为x 1+y-52=1, 即5x -2y -5=0.四、探究与拓展14.若直线l 与两坐标轴围成一个等腰直角三角形,且此三角形的面积为18,则直线l 的方程为________. 答案x +y ±6=0,x -y ±6=0解析因为直线l 与两坐标轴围成一个等腰直角三角形,所以直线l 在两坐标轴上的截距相等或互为相反数且不为0.若l 在两坐标轴上的截距相等,且设为a ,则直线方程为x a +y a=1,即x +y -a =0. ∵12|a |·|a |=18,即a 2=36,∴a =±6, ∴直线方程为x +y ±6=0.若l 在两坐标轴上的截距互为相反数,不妨设横截距为a ,则纵截距为-a ,故直线方程为x a +y -a=1,即x -y -a =0. ∵12|-a |·|a |=18,即a 2=36,∴a =±6, ∴直线方程为x -y ±6=0.综上所述,直线l 的方程为x +y ±6=0或x -y ±6=0.15.已知直线l :x -y +3=0,一束光线从点A (1,2)处射向x 轴上一点B ,又从B 点反射到l 上的一点C ,最后从C 点反射回A 点,求直线BC 的方程.解作点A 关于x 轴的对称点A 2,则A 2(1,-2).设点A 关于l :x -y +3=0的对称点为A 1(x 0,y 0),则 ⎩⎪⎨⎪⎧ x0+12-y0+22+3=0,y0-2x0-1×1=-1,解得⎩⎪⎨⎪⎧x0=-1,y0=4, 即A 1点坐标为(-1,4).由已知条件知点A 1,A 2均在直线BC 上,∴由直线的两点式方程得y -4-2-4=x +11+1, 即3x +y -1=0.故直线BC 的方程为3x +y -1=0.。
(浙江专用)2018版高中数学第三章直线与方程3.1 3.1.2 两条直线平行与垂直的判定学案新人教A版必修2编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((浙江专用)2018版高中数学第三章直线与方程3.1 3.1.2 两条直线平行与垂直的判定学案新人教A版必修2)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(浙江专用)2018版高中数学第三章直线与方程3.1 3.1.2 两条直线平行与垂直的判定学案新人教A版必修2的全部内容。
3.1。
2 两条直线平行与垂直的判定目标定位1。
掌握用斜率判定两条直线平行和垂直的方法。
2.能根据两条直线平行或垂直的关系确定两条直线斜率的关系。
自主预习1.两条直线平行与斜率的关系(1)如图①设两条不重合的直线l1,l2的斜率分别为k1,k2,若l1∥l2,则k1=k2;反之,若k1=k2,则l1∥l2.(2)如图②若两条不重合的直线的斜率不存在,则这两条直线也平行.2.两条直线垂直与斜率的关系(1)如图①,如果两条直线都有斜率且它们互相垂直,那么它们的斜率之积等于-1;反之,如果它们的斜率之积等于-1,那么它们互相垂直.即k1k2=-1⇒l1⊥l2,l1⊥l2⇒k1k2=-1.(2)如图②,若l1与l2中的一条斜率不存在,另一条斜率为零,则l1与l2的位置关系是垂直.即时自测1.判断题(1)若两条直线斜率相等,则两直线平行(×)(2)若两直线中有一条直线的斜率不存在,另一条直线的斜率存在,则两直线相交。
(√)(3)若两直线的斜率之积等于-1,则两直线互相垂直.(√)(4)若直线l1⊥l2,则直线l1与l2的斜率互为负倒数.(×)提示(1)当两直线斜率相等时,两直线平行或重合.(4)当一条直线的斜率为0,另一条直线的斜率不存在时,两直线垂直。