5.7 1轻绳轻杆模型解析
- 格式:ppt
- 大小:423.00 KB
- 文档页数:18
轻绳模型轻杆模型常见类型过最高点的临界条件最高点:F T =0 即mg =m v2r 得v 临=gr最高点v =0 即F 向=0 F N =mg讨论分析(1)过最高点时,v ≥gr , F N +mg =m v 2r,绳、轨道对球产生弹力F N(2)不能过最高点时,v <gr ,在到达最高点前小球已经脱离了圆轨道了圆轨道(1)当v =0时,F N=mg ,F N为支持力,沿半径背离圆心力,沿半径背离圆心 (2)当0<v <gr 时,时,-F N +mg =m v 2r,F N 背离圆心且随v 的增大而减小的增大而减小(3)当v =gr 时,F N =0 (4)当v >gr 时,F N +mg =m v 2r ,F N指向圆心并随v 的增大而增大的增大而增大如图所示,有一长为L 的细线,细线的一端固定在O 点,另一端拴一质量为m 的小球。
现使小球恰好能在竖直面内做完整的圆周运动。
已知水平地面上的C 点位于O 点正下方,且到O 点的距离为1.9L 。
不计空气阻力。
不计空气阻力。
(1)求小球通过最高点A 时的速度v A ;(2)若小球通过最低点B 时,细线对小球的拉力F T 恰好为小球重力的6倍,且小球经过B 点的瞬间细线断裂,求小球的落地点到C 点的距离。
点的距离。
解题指导: 解答本题可按以下思路进行:物理建模系列 竖直平面内竖直平面内圆周运动圆周运动的“轻绳、轻杆”模型1.模型条件(1)物体在竖直平面内做变速圆周运动。
物体在竖直平面内做变速圆周运动。
(2)“轻绳模型”在轨道最高点无支撑,“轻杆模型”在轨道最高点有支撑。
“轻绳模型”在轨道最高点无支撑,“轻杆模型”在轨道最高点有支撑。
2.常用模型该类问题常有临界问题,并伴有“最大”“最小”“刚好”等词语,现对两种模型分析比较如下:该类问题常有临界问题,并伴有“最大”“最小”“刚好”等词语,现对两种模型分析比较如下:分析小球的运动过程抓住小球在最高点的临界条件利用牛顿第二定律列方程mg =m v 2AL解得v A =gL 。
高中物理必考模型:轻绳、轻弹簧、轻杆联系与区别全解析轻绳特点轻绳模型的建立轻绳或称为细线,它的质量可忽略不计,轻绳是软的,不能产生侧向力,只能产生沿着绳子方向的力。
它的劲度系数非常大,以至于认为在受力时形变极微小,看作不可伸长。
轻绳模型的特点①轻绳各处受力相等,且拉力方向沿着绳子;②轻绳不能伸长;③用轻绳连接的系统通过轻绳的碰撞、撞击时,系统的机械能有损失;④轻绳的弹力会发生突变。
轻杆特点轻杆模型的建立轻杆的质量可忽略不计,轻杆是硬的,能产生侧向力,它的劲度系数非常大,以至于认为在受力时形变极微小,看作不可伸长或压缩。
轻杆模型的特点①轻杆各处受力相等,其力的方向不一定沿着杆的方向;②轻杆不能伸长或压缩;③轻杆受到的弹力的方式有拉力或压力。
轻弹簧特点轻弹簧模型的建立轻弹簧可以被压缩或拉伸,其弹力的大小与弹簧的伸长量或缩短量有关。
轻弹簧的特点①轻弹簧各处受力相等,其方向与弹簧形变的方向相反;②弹力的大小为F=kx,其中k 为弹簧的劲度系数,x为弹簧的伸长量或缩短量;③弹簧的弹力不会发生突变。
特别提醒:橡皮筋与轻弹簧极为相似,只是橡皮筋不能被压缩静止或匀速运动例1、如图所示,有一质量为m的小球用轻绳悬挂于小车顶部,小车静止或匀速直线运动时,求绳子对小球作用力的大小和方向。
解析:小车静止或匀速直线运动时,小球也处于静止或匀速直线运动状态。
由平衡条件可知,绳子对小球的弹力为F=mg,方向是沿着绳子向上。
若将轻绳换成轻弹簧,其结果是一样的。
例2、如图所示,小车上有一弯折轻杆,杆下端固定一质量为m的小球。
当小车处于静止或匀速直线运动状态时,求杆对球的作用力的大小和方向。
解析:以小球为研究对象,可知小球受到杆对它一个的弹力和重力作用,由平衡条件可知小球受力如图所示。
则可知杆对小球的弹力为F=mg,方向与重力的方向相反即竖直向上。
注意:在这里杆对小球的作用力方向不是沿着杆的方向。
以加速度a做匀加速直线运动时,求轻绳对小球的作用力的大小和方向。
轻绳轻杆模型一、轻绳模型:“活结”与“死结”绳是物体间连接的一种方式,当多个物体用绳连接的时候,其间必然有“结”的出现,根据“结”的形式不同,可以分为“活结”和“死结”两种。
“活结”是绳子间的一种光滑连接,其特点是结的两端同一绳上的张力相等;而“死结”是绳子间的一种固定连接,结的两端绳子上的张力不一定相等。
1.“死结”问题的解决方法:(动态平衡问题)(1)正交分解法:建立直角坐标系,把力分解到X 轴和Y 轴上,然后水平方向合力为零,竖直方向合力为零列方程组。
(2)力的合成(图解法):如果物体受3个力作用,那么其中两个力的合力与第三个力大小相等,方向相反。
把这3个力放到三角形中,根据三角形三个边长的变化情况来判断力的变化情况。
(3)拉密定理:物体受到3个力的作用,一个恒力(方向大小不变),一个定力(方向不变大小变),一个变力(方向大小都变化),定力与变力的夹角为θ(即恒力屁股对着的夹角), 那么会有:定力与θ角的变化情况相同当θ角为钝角时,变力与θ角的变化情况相同当θ角为直角时,变力有最小值。
当θ角为锐角时,变力与θ角的变化情况相反。
无论θ角时从锐角变成钝角,还是钝角变成锐角,变力都是先减小后增加。
2.“活结”问题的解决方法:(1) 无论OB 与水平方向的角度如何,OA 、OC 的拉力都不会变,都等于C 的重力。
(2)轻绳的拉力与MN 之间的距离有关,距离越大拉力大,距离约小拉力越小。
如果距离不变(即a 点或b点只是竖直方向移动),那么拉力不变,轻绳与水平方向的夹角也不会变化。
二、轻杆模型:“活杆”与“死杆” 死杆是不可转动,所以杆所受弹力的方向不一定沿杆方向.活杆是可以转动的杆所以杆所受弹力的方向沿杆方向。
1. “死杆”问题的解决方法:由于死杆是不可转动,所以杆所受弹力的方向不一定沿杆方向,也就是说可以是任意方向,那么只能先求出除了杆受到的弹力之外的所有力的合力,那么杆受到的弹力与这个合力大小相等,方向相反。
轻绳轻杆轻弹簧三种模型的比较在力学中有很多的研究对象是通过轻绳、轻杆、轻弹簧连接的,在实际解题过程中,发现不少同学对这三种模型的特点、区别还不够清楚。
下面就这三种模型的特点和不同之处总结如下。
一、三种模型的主要特点1.轻绳(1)轻绳模型的建立轻绳又称细线,它的质量可以忽略不计,轻绳是软的,不能产生沿着绳子方向的力。
它的劲度系数非常大,可以认为在受力时形变极微小,看做不可伸长。
(2)轻绳模型的特点○1轻绳各处受力相等,且拉力方向沿着绳子。
○2轻声不能伸长。
○3用轻绳连接的系统通过轻绳的碰撞、撞击时,系统的机械能有损失。
○4轻绳的弹力会发生突变。
2.轻杆(1)轻杆模型的建立轻杆的质量可忽略不计,轻杆是硬的,能产生侧向力,它的劲度系数非常大,可以认为在受力时形变极微小,看作不可伸长或压缩。
(2)轻杆模型的特点○1轻杆各处受力相等,其力的方向不一定沿着杆的方向。
○2轻杆不能伸长或压缩○3轻杆受到的弹力的方式有拉力或压力3.轻弹簧(1)轻弹簧模型的建立轻弹簧可以被压缩或拉伸,其弹力的大小与弹簧的伸长量或缩短量有关(2)轻弹簧的特点○1轻弹簧各处受力相等,其方向与弹簧形变的方向相反○2弹力的大小为F=-kx,其中k为弹簧的劲度系数,x为弹簧的伸长量或压缩量。
二.三种模型的主要区别1.静止或做匀速直线运动时【例1】如图所示,有一质量为m 的小球用轻绳悬挂于小车顶部,小车静止或做匀速直线运动时,求绳子对小球作用力的大小和方向。
解析:小车静止或做匀速直线运动时,小球也将处于静止或匀速直线运动状态。
由平衡条件可知,绳子对小球的弹力F=mg ,方向是沿着绳子向上。
若将轻绳换成轻弹簧,其结果是一样的。
【例2】如图所示,小车上有一弯折轻杆,杆下端固定一质量为m 的小球。
当小车处于静止或匀速直线运动状态时,求杆对小球的作用力的大小和方向。
解析:以小球为研究对象,可知小车受到杆对它的弹力和重力作用,由平衡条件可知,小球受力如图a 所示,则可知杆对小球的弹力为F=mg ,方西向上。
浅析轻绳、轻杆和轻弹簧模型的应用山西泽州县第一中学成文荣李智涛 048000轻绳、轻杆和轻弹簧,是力学中三个重要的理想模型,在高中物理解题中有着重要的地位,为了帮助学生正确地分析和解决与轻绳、轻杆和轻弹簧有关的问题,笔者对三个模型的相同点和不同点进行了总结,并想通过一定的实例,对学生学习和应用给与启迪思考。
一、三个模型的相同点1、“轻”- 不计质量,不受重力。
2、在任何情况下,沿绳、杆和弹簧伸缩方向的张力、弹力处处相等.二、三个模型的不同点1、形变特点轻绳—可以任意弯曲,但不能伸长,即伸长形变不计。
轻杆—不能任意弯曲,不能伸长和缩短,即伸缩形变不计。
轻弹簧—可以伸长,也可以缩短,且伸缩形变不能忽略不计。
2、施力和受力特点轻绳 - 只能产生和承受沿绳方向的拉力.轻杆 - 不仅能产生和承受沿杆方向的拉力和压力,还能产生和承受不沿杆方向的拉力和压力。
轻弹簧—可以产生和承受沿弹簧伸缩方向的拉力和压力。
3、力的变化特点轻绳—张力的产生、变化、或消失不需要时间,具有突变性和瞬时性。
轻杆 - 拉力和压力的产生、变化或消失不需要时间,具有突变性和瞬时性.轻弹簧—弹力的产生、变化或消失需要时间,即只能渐变,不具有瞬时性,且在形变保持瞬间,弹力保持不变。
(注意 :当弹簧的自由端无重物时,形变消失不需要时间)4、连接体的运动特点轻绳 - 轻绳平动时,两端的连接体沿绳方向的速度(或速度分量)总是相等,且等于省上各点的平动速度;轻绳转动并拉直时,连接体具有相同的角速度,而线速度与转动半径成正比。
轻杆—轻杆平动时,连接体具有相同的平动的速度;轻杆转动时,连接体具有相同的角速度,而线速度与转动半径成正比.轻弹簧—在弹簧发生形变的过程中,两端连接体的速率不一定相等;在弹簧形变最大,即弹性势能最大时,两端连接体的速率相等;在弹簧转动时,连接体的转动半径随弹力变化,速度方向不一定垂直于弹力。
5、作功和能量转化特点轻绳 - 在连接体作匀速率和变速率圆周运动的过程中,绳的拉力都不作功;在绳突然拉直的瞬间,有机械能转化为绳的内能,即机械能不守恒.轻杆—在连接体作匀速率和变速率圆周运动的过程中,轻杆的法向力对物体不作功,而切向力既可以对物体作正功,也可以对物体作负功,但系统机械能守恒。
轻绳、轻杆和轻弹簧模型一、模型解读“轻绳”是指质量不计的柔软物体,只能产生沿绳方向伸长的弹性形变,阻碍与其相连接的物体沿绳伸长方向的运动,因形变量很小,故在研究具体问题时不考虑绳的伸长,绳上只存在沿绳方向处处相等的拉力,且拉力大小随外界条件变化而变化,这种变化的时间极短,即拉力可以发生突变。
“轻杆”是指质量不计的刚性体,它不仅可以产生拉伸形变,还可以产生压缩、弯曲和扭转形变,因此,轻杆上的力既可以是拉力也可以是压力,而且力的方向不一定沿杆的方向,并认为其内部弹力处处相等,由于轻杆受力时的形变量很小,故处理轻杆问题时不考虑其形变大小,其受力可以发生突变。
“轻质弹簧”是指质量不计、形变量明显的理想模型,可以产生拉伸和压缩形变,其弹力方向沿弹簧纵轴方向,弹力大小在弹性范围内遵循胡克定律,其内部弹力处处相等,由于弹簧形变需要经历一段时间且弹力大小随形变而渐变,因此,弹力不能突变。
二、典例剖析类型1 静止或匀速直线运动例1、如图1所示,小车上有一弯折轻杆,杆下端固定一质量为m的小球。
当小车处于静止或匀速直线运动状态时,求杆对球的作用力的大小和方向。
图1类型2 匀变速直线运动例2、如图2所示,一质量为m的小球用轻绳悬挂在小车顶部,小车向左以加速度a做匀加速直线运动时,求轻绳对小球的作用力的大小和方向。
图2类型3 弹力的突变问题例3. 如图3所示,小球在细线OB和水平细线AB的作用下而处于静止状态,则在剪断水平细线的瞬间,小球的加速度多大?方向如何?图3例4. 如图4所示,一轻质弹簧和一根细线共同提住一个质量为m的小球,平衡时细线是水平的,弹簧与竖直方向的夹角是,若突然剪断细线,则在剪断的瞬间,弹簧拉力的大小是__________,小球加速度与竖直方向夹角等于_________。
感谢您的阅读,祝您生活愉快。
图4。
高中物理动力学-轻绳轻杆模型轻绳轻杆模型一、轻绳模型:“活结”与“死结”绳是物体间连接的一种方式,当多个物体用绳连接的时候,其间必然有“结”的出现,根据“结”的形式不同,可以分为“活结”和“死结”两种。
“活结”是绳子间的一种光滑连接,其特点是结的两端同一绳上的张力相等;而“死结”是绳子间的一种固定连接,结的两端绳子上的张力不一定相等。
1.“死结”问题的解决方法:(动态平衡问题)(1)正交分解法:建立直角坐标系,把力分解到X轴和Y轴上,然后水平方向合力为零,竖直方向合力为零列方程组。
(2)力的合成(图解法):如果物体受3个力作用,那么其中两个力的合力与第三个力大小相等,方向相反。
把这3个力放到三角形中,根据三角形三个边长的变化情况来判断力的变化情况。
(3)拉密定理:物体受到3个力的作用,一个恒力(方向大小不变),一个定力(方向不变大小变),一个变力(方向大小都变化),定力与变力的夹角为θ(即恒力屁股对着的夹角),那么会有:定力与θ角的变化情况相同当θ角为钝角时,变力与θ角的变化情况相同当θ角为直角时,变力有最小值。
当θ角为锐角时,变力与θ角的变化情况相反。
无论θ角时从锐角变成钝角,还是钝角变成锐角,变力都是先减小后增加。
2.“活结”问题的解决方法:(1)无论OB与水平方向的角度如何,OA、OC的拉力都不会变,都等于C的重力。
(2)轻绳的拉力与MN之间的距离有关,距离越大拉力大,距离约小拉力越小。
如果距离不变(即a点或b点只是竖直方向移动),那么拉力不变,轻绳与水平方向的夹角也不会变化。
二、轻杆模型:“活杆”与“死杆”死杆是不可转动,所以杆所受弹力的方向不一定沿杆方向.活杆是可以转动的杆所以杆所受弹力的方向沿杆方向。
1. “死杆”问题的解决方法:由于死杆是不可转动,所以杆所受弹力的方向不一定沿杆方向,也就是说可以是任意方向,那么只能先求出除了杆受到的弹力之外的所有力的合力,那么杆受到的弹力与这个合力大小相等,方向相反。