Bayesphone Precomputation of context-sensitive policies for inquiry and action in mobile de
- 格式:pdf
- 大小:445.32 KB
- 文档页数:11
基于Bayes判别法的脑电图数据分析的研究史原;刘瑞杰【期刊名称】《价值工程》【年(卷),期】2015(34)13【摘要】ObjectiveIn this paper, we have done Bayes discriminant analysis to EEG data of experiment objects which are recorded impersonally, come up with a relatively accurate method used in feature extraction and classification decisions. The present study is the groundwork analysis for other analysis in EEG study. Methods:In accordance with the strength of α wave, the head electrodes are divided into four species. In use of part of 21 electrodes EEG data of 63 people, we have done Bayes discriminant analysis to EEG data of six objects. EEG data processing and statistic analysis adopted independently designed EEG analysis toolbox and the program of correlation analysis. Results:In use of part of EEG data of 63 people, we have done Bayes discriminant analysis, the electrode classification accuracy rates is 75.4%. Conclusions:Bayes discriminant has higher prediction accuracy, EEG features (mainlyαwave) extract more accurate. Bayes discriminant would be better applied to the feature extraction and classification decisions of EEG data.%目的:本文通过对客观记录的受试者脑电图数据进行Bayes判别分析,判断其能否应用于脑电数据特征提取和分类决策。
泛化概率贝叶斯-概述说明以及解释1.引言1.1 概述概述部分的内容可以包括对于泛化概率和贝叶斯方法的简要介绍,以及这两者在机器学习和统计学中的重要性和应用。
下面是一个概述的参考例子:概述:在机器学习和统计学领域中,泛化概率和贝叶斯方法是两个重要的概念。
泛化概率是指模型在新样本上表现良好的能力,也可以理解为模型的预测结果与真实情况之间的一致性。
贝叶斯方法是一种概率推断的框架,它通过基于已有的先验知识和观测数据,更新对未知参数的置信度。
泛化概率是衡量一个模型在未见过的数据上的表现能力。
在机器学习中,我们通常会用训练数据来构建一个模型,并根据这个模型的性能指标(如准确率、精确率等)来评估其在训练数据上的表现。
然而,这并不一定代表该模型在实际应用中的表现。
泛化能力好的模型具有对未见过的数据进行准确预测的能力。
贝叶斯方法是一种基于贝叶斯定理的概率推断方法。
贝叶斯定理通过将已有的先验知识与观测数据进行结合,更新对未知参数的概率分布。
在机器学习中,贝叶斯方法可以用来解决参数估计、模型选择和预测等问题。
通过引入先验知识,贝叶斯方法可以有效地减少数据不足的影响,提高模型的鲁棒性和预测能力。
泛化概率和贝叶斯方法在机器学习和统计学的应用非常广泛。
它们不仅可以帮助我们理解模型的性能和可靠性,还可以用于解决各种实际问题,如图像识别、自然语言处理、风险预测等。
通过对泛化概率和贝叶斯方法的深入理解和应用,我们可以更好地掌握机器学习和统计学的理论基础,提高模型的性能和应用的效果。
在本文的接下来部分,我们将详细介绍泛化概率和贝叶斯方法的原理和应用,并探讨它们在机器学习和统计学中的重要性和前景。
通过深入了解这些概念,我们将能够更好地应用它们来解决实际的问题,并为未来的研究和应用提供新的思路和方法。
1.2 文章结构文章结构部分的内容可以包括以下内容:文章结构部分旨在向读者介绍整篇文章的框架和组织结构。
通过这一部分,读者可以明确了解到文章的主要章节和各个章节的主题内容。
机器学习与人工智能领域中常用的英语词汇1.General Concepts (基础概念)•Artificial Intelligence (AI) - 人工智能1)Artificial Intelligence (AI) - 人工智能2)Machine Learning (ML) - 机器学习3)Deep Learning (DL) - 深度学习4)Neural Network - 神经网络5)Natural Language Processing (NLP) - 自然语言处理6)Computer Vision - 计算机视觉7)Robotics - 机器人技术8)Speech Recognition - 语音识别9)Expert Systems - 专家系统10)Knowledge Representation - 知识表示11)Pattern Recognition - 模式识别12)Cognitive Computing - 认知计算13)Autonomous Systems - 自主系统14)Human-Machine Interaction - 人机交互15)Intelligent Agents - 智能代理16)Machine Translation - 机器翻译17)Swarm Intelligence - 群体智能18)Genetic Algorithms - 遗传算法19)Fuzzy Logic - 模糊逻辑20)Reinforcement Learning - 强化学习•Machine Learning (ML) - 机器学习1)Machine Learning (ML) - 机器学习2)Artificial Neural Network - 人工神经网络3)Deep Learning - 深度学习4)Supervised Learning - 有监督学习5)Unsupervised Learning - 无监督学习6)Reinforcement Learning - 强化学习7)Semi-Supervised Learning - 半监督学习8)Training Data - 训练数据9)Test Data - 测试数据10)Validation Data - 验证数据11)Feature - 特征12)Label - 标签13)Model - 模型14)Algorithm - 算法15)Regression - 回归16)Classification - 分类17)Clustering - 聚类18)Dimensionality Reduction - 降维19)Overfitting - 过拟合20)Underfitting - 欠拟合•Deep Learning (DL) - 深度学习1)Deep Learning - 深度学习2)Neural Network - 神经网络3)Artificial Neural Network (ANN) - 人工神经网络4)Convolutional Neural Network (CNN) - 卷积神经网络5)Recurrent Neural Network (RNN) - 循环神经网络6)Long Short-Term Memory (LSTM) - 长短期记忆网络7)Gated Recurrent Unit (GRU) - 门控循环单元8)Autoencoder - 自编码器9)Generative Adversarial Network (GAN) - 生成对抗网络10)Transfer Learning - 迁移学习11)Pre-trained Model - 预训练模型12)Fine-tuning - 微调13)Feature Extraction - 特征提取14)Activation Function - 激活函数15)Loss Function - 损失函数16)Gradient Descent - 梯度下降17)Backpropagation - 反向传播18)Epoch - 训练周期19)Batch Size - 批量大小20)Dropout - 丢弃法•Neural Network - 神经网络1)Neural Network - 神经网络2)Artificial Neural Network (ANN) - 人工神经网络3)Deep Neural Network (DNN) - 深度神经网络4)Convolutional Neural Network (CNN) - 卷积神经网络5)Recurrent Neural Network (RNN) - 循环神经网络6)Long Short-Term Memory (LSTM) - 长短期记忆网络7)Gated Recurrent Unit (GRU) - 门控循环单元8)Feedforward Neural Network - 前馈神经网络9)Multi-layer Perceptron (MLP) - 多层感知器10)Radial Basis Function Network (RBFN) - 径向基函数网络11)Hopfield Network - 霍普菲尔德网络12)Boltzmann Machine - 玻尔兹曼机13)Autoencoder - 自编码器14)Spiking Neural Network (SNN) - 脉冲神经网络15)Self-organizing Map (SOM) - 自组织映射16)Restricted Boltzmann Machine (RBM) - 受限玻尔兹曼机17)Hebbian Learning - 海比安学习18)Competitive Learning - 竞争学习19)Neuroevolutionary - 神经进化20)Neuron - 神经元•Algorithm - 算法1)Algorithm - 算法2)Supervised Learning Algorithm - 有监督学习算法3)Unsupervised Learning Algorithm - 无监督学习算法4)Reinforcement Learning Algorithm - 强化学习算法5)Classification Algorithm - 分类算法6)Regression Algorithm - 回归算法7)Clustering Algorithm - 聚类算法8)Dimensionality Reduction Algorithm - 降维算法9)Decision Tree Algorithm - 决策树算法10)Random Forest Algorithm - 随机森林算法11)Support Vector Machine (SVM) Algorithm - 支持向量机算法12)K-Nearest Neighbors (KNN) Algorithm - K近邻算法13)Naive Bayes Algorithm - 朴素贝叶斯算法14)Gradient Descent Algorithm - 梯度下降算法15)Genetic Algorithm - 遗传算法16)Neural Network Algorithm - 神经网络算法17)Deep Learning Algorithm - 深度学习算法18)Ensemble Learning Algorithm - 集成学习算法19)Reinforcement Learning Algorithm - 强化学习算法20)Metaheuristic Algorithm - 元启发式算法•Model - 模型1)Model - 模型2)Machine Learning Model - 机器学习模型3)Artificial Intelligence Model - 人工智能模型4)Predictive Model - 预测模型5)Classification Model - 分类模型6)Regression Model - 回归模型7)Generative Model - 生成模型8)Discriminative Model - 判别模型9)Probabilistic Model - 概率模型10)Statistical Model - 统计模型11)Neural Network Model - 神经网络模型12)Deep Learning Model - 深度学习模型13)Ensemble Model - 集成模型14)Reinforcement Learning Model - 强化学习模型15)Support Vector Machine (SVM) Model - 支持向量机模型16)Decision Tree Model - 决策树模型17)Random Forest Model - 随机森林模型18)Naive Bayes Model - 朴素贝叶斯模型19)Autoencoder Model - 自编码器模型20)Convolutional Neural Network (CNN) Model - 卷积神经网络模型•Dataset - 数据集1)Dataset - 数据集2)Training Dataset - 训练数据集3)Test Dataset - 测试数据集4)Validation Dataset - 验证数据集5)Balanced Dataset - 平衡数据集6)Imbalanced Dataset - 不平衡数据集7)Synthetic Dataset - 合成数据集8)Benchmark Dataset - 基准数据集9)Open Dataset - 开放数据集10)Labeled Dataset - 标记数据集11)Unlabeled Dataset - 未标记数据集12)Semi-Supervised Dataset - 半监督数据集13)Multiclass Dataset - 多分类数据集14)Feature Set - 特征集15)Data Augmentation - 数据增强16)Data Preprocessing - 数据预处理17)Missing Data - 缺失数据18)Outlier Detection - 异常值检测19)Data Imputation - 数据插补20)Metadata - 元数据•Training - 训练1)Training - 训练2)Training Data - 训练数据3)Training Phase - 训练阶段4)Training Set - 训练集5)Training Examples - 训练样本6)Training Instance - 训练实例7)Training Algorithm - 训练算法8)Training Model - 训练模型9)Training Process - 训练过程10)Training Loss - 训练损失11)Training Epoch - 训练周期12)Training Batch - 训练批次13)Online Training - 在线训练14)Offline Training - 离线训练15)Continuous Training - 连续训练16)Transfer Learning - 迁移学习17)Fine-Tuning - 微调18)Curriculum Learning - 课程学习19)Self-Supervised Learning - 自监督学习20)Active Learning - 主动学习•Testing - 测试1)Testing - 测试2)Test Data - 测试数据3)Test Set - 测试集4)Test Examples - 测试样本5)Test Instance - 测试实例6)Test Phase - 测试阶段7)Test Accuracy - 测试准确率8)Test Loss - 测试损失9)Test Error - 测试错误10)Test Metrics - 测试指标11)Test Suite - 测试套件12)Test Case - 测试用例13)Test Coverage - 测试覆盖率14)Cross-Validation - 交叉验证15)Holdout Validation - 留出验证16)K-Fold Cross-Validation - K折交叉验证17)Stratified Cross-Validation - 分层交叉验证18)Test Driven Development (TDD) - 测试驱动开发19)A/B Testing - A/B 测试20)Model Evaluation - 模型评估•Validation - 验证1)Validation - 验证2)Validation Data - 验证数据3)Validation Set - 验证集4)Validation Examples - 验证样本5)Validation Instance - 验证实例6)Validation Phase - 验证阶段7)Validation Accuracy - 验证准确率8)Validation Loss - 验证损失9)Validation Error - 验证错误10)Validation Metrics - 验证指标11)Cross-Validation - 交叉验证12)Holdout Validation - 留出验证13)K-Fold Cross-Validation - K折交叉验证14)Stratified Cross-Validation - 分层交叉验证15)Leave-One-Out Cross-Validation - 留一法交叉验证16)Validation Curve - 验证曲线17)Hyperparameter Validation - 超参数验证18)Model Validation - 模型验证19)Early Stopping - 提前停止20)Validation Strategy - 验证策略•Supervised Learning - 有监督学习1)Supervised Learning - 有监督学习2)Label - 标签3)Feature - 特征4)Target - 目标5)Training Labels - 训练标签6)Training Features - 训练特征7)Training Targets - 训练目标8)Training Examples - 训练样本9)Training Instance - 训练实例10)Regression - 回归11)Classification - 分类12)Predictor - 预测器13)Regression Model - 回归模型14)Classifier - 分类器15)Decision Tree - 决策树16)Support Vector Machine (SVM) - 支持向量机17)Neural Network - 神经网络18)Feature Engineering - 特征工程19)Model Evaluation - 模型评估20)Overfitting - 过拟合21)Underfitting - 欠拟合22)Bias-Variance Tradeoff - 偏差-方差权衡•Unsupervised Learning - 无监督学习1)Unsupervised Learning - 无监督学习2)Clustering - 聚类3)Dimensionality Reduction - 降维4)Anomaly Detection - 异常检测5)Association Rule Learning - 关联规则学习6)Feature Extraction - 特征提取7)Feature Selection - 特征选择8)K-Means - K均值9)Hierarchical Clustering - 层次聚类10)Density-Based Clustering - 基于密度的聚类11)Principal Component Analysis (PCA) - 主成分分析12)Independent Component Analysis (ICA) - 独立成分分析13)T-distributed Stochastic Neighbor Embedding (t-SNE) - t分布随机邻居嵌入14)Gaussian Mixture Model (GMM) - 高斯混合模型15)Self-Organizing Maps (SOM) - 自组织映射16)Autoencoder - 自动编码器17)Latent Variable - 潜变量18)Data Preprocessing - 数据预处理19)Outlier Detection - 异常值检测20)Clustering Algorithm - 聚类算法•Reinforcement Learning - 强化学习1)Reinforcement Learning - 强化学习2)Agent - 代理3)Environment - 环境4)State - 状态5)Action - 动作6)Reward - 奖励7)Policy - 策略8)Value Function - 值函数9)Q-Learning - Q学习10)Deep Q-Network (DQN) - 深度Q网络11)Policy Gradient - 策略梯度12)Actor-Critic - 演员-评论家13)Exploration - 探索14)Exploitation - 开发15)Temporal Difference (TD) - 时间差分16)Markov Decision Process (MDP) - 马尔可夫决策过程17)State-Action-Reward-State-Action (SARSA) - 状态-动作-奖励-状态-动作18)Policy Iteration - 策略迭代19)Value Iteration - 值迭代20)Monte Carlo Methods - 蒙特卡洛方法•Semi-Supervised Learning - 半监督学习1)Semi-Supervised Learning - 半监督学习2)Labeled Data - 有标签数据3)Unlabeled Data - 无标签数据4)Label Propagation - 标签传播5)Self-Training - 自训练6)Co-Training - 协同训练7)Transudative Learning - 传导学习8)Inductive Learning - 归纳学习9)Manifold Regularization - 流形正则化10)Graph-based Methods - 基于图的方法11)Cluster Assumption - 聚类假设12)Low-Density Separation - 低密度分离13)Semi-Supervised Support Vector Machines (S3VM) - 半监督支持向量机14)Expectation-Maximization (EM) - 期望最大化15)Co-EM - 协同期望最大化16)Entropy-Regularized EM - 熵正则化EM17)Mean Teacher - 平均教师18)Virtual Adversarial Training - 虚拟对抗训练19)Tri-training - 三重训练20)Mix Match - 混合匹配•Feature - 特征1)Feature - 特征2)Feature Engineering - 特征工程3)Feature Extraction - 特征提取4)Feature Selection - 特征选择5)Input Features - 输入特征6)Output Features - 输出特征7)Feature Vector - 特征向量8)Feature Space - 特征空间9)Feature Representation - 特征表示10)Feature Transformation - 特征转换11)Feature Importance - 特征重要性12)Feature Scaling - 特征缩放13)Feature Normalization - 特征归一化14)Feature Encoding - 特征编码15)Feature Fusion - 特征融合16)Feature Dimensionality Reduction - 特征维度减少17)Continuous Feature - 连续特征18)Categorical Feature - 分类特征19)Nominal Feature - 名义特征20)Ordinal Feature - 有序特征•Label - 标签1)Label - 标签2)Labeling - 标注3)Ground Truth - 地面真值4)Class Label - 类别标签5)Target Variable - 目标变量6)Labeling Scheme - 标注方案7)Multi-class Labeling - 多类别标注8)Binary Labeling - 二分类标注9)Label Noise - 标签噪声10)Labeling Error - 标注错误11)Label Propagation - 标签传播12)Unlabeled Data - 无标签数据13)Labeled Data - 有标签数据14)Semi-supervised Learning - 半监督学习15)Active Learning - 主动学习16)Weakly Supervised Learning - 弱监督学习17)Noisy Label Learning - 噪声标签学习18)Self-training - 自训练19)Crowdsourcing Labeling - 众包标注20)Label Smoothing - 标签平滑化•Prediction - 预测1)Prediction - 预测2)Forecasting - 预测3)Regression - 回归4)Classification - 分类5)Time Series Prediction - 时间序列预测6)Forecast Accuracy - 预测准确性7)Predictive Modeling - 预测建模8)Predictive Analytics - 预测分析9)Forecasting Method - 预测方法10)Predictive Performance - 预测性能11)Predictive Power - 预测能力12)Prediction Error - 预测误差13)Prediction Interval - 预测区间14)Prediction Model - 预测模型15)Predictive Uncertainty - 预测不确定性16)Forecast Horizon - 预测时间跨度17)Predictive Maintenance - 预测性维护18)Predictive Policing - 预测式警务19)Predictive Healthcare - 预测性医疗20)Predictive Maintenance - 预测性维护•Classification - 分类1)Classification - 分类2)Classifier - 分类器3)Class - 类别4)Classify - 对数据进行分类5)Class Label - 类别标签6)Binary Classification - 二元分类7)Multiclass Classification - 多类分类8)Class Probability - 类别概率9)Decision Boundary - 决策边界10)Decision Tree - 决策树11)Support Vector Machine (SVM) - 支持向量机12)K-Nearest Neighbors (KNN) - K最近邻算法13)Naive Bayes - 朴素贝叶斯14)Logistic Regression - 逻辑回归15)Random Forest - 随机森林16)Neural Network - 神经网络17)SoftMax Function - SoftMax函数18)One-vs-All (One-vs-Rest) - 一对多(一对剩余)19)Ensemble Learning - 集成学习20)Confusion Matrix - 混淆矩阵•Regression - 回归1)Regression Analysis - 回归分析2)Linear Regression - 线性回归3)Multiple Regression - 多元回归4)Polynomial Regression - 多项式回归5)Logistic Regression - 逻辑回归6)Ridge Regression - 岭回归7)Lasso Regression - Lasso回归8)Elastic Net Regression - 弹性网络回归9)Regression Coefficients - 回归系数10)Residuals - 残差11)Ordinary Least Squares (OLS) - 普通最小二乘法12)Ridge Regression Coefficient - 岭回归系数13)Lasso Regression Coefficient - Lasso回归系数14)Elastic Net Regression Coefficient - 弹性网络回归系数15)Regression Line - 回归线16)Prediction Error - 预测误差17)Regression Model - 回归模型18)Nonlinear Regression - 非线性回归19)Generalized Linear Models (GLM) - 广义线性模型20)Coefficient of Determination (R-squared) - 决定系数21)F-test - F检验22)Homoscedasticity - 同方差性23)Heteroscedasticity - 异方差性24)Autocorrelation - 自相关25)Multicollinearity - 多重共线性26)Outliers - 异常值27)Cross-validation - 交叉验证28)Feature Selection - 特征选择29)Feature Engineering - 特征工程30)Regularization - 正则化2.Neural Networks and Deep Learning (神经网络与深度学习)•Convolutional Neural Network (CNN) - 卷积神经网络1)Convolutional Neural Network (CNN) - 卷积神经网络2)Convolution Layer - 卷积层3)Feature Map - 特征图4)Convolution Operation - 卷积操作5)Stride - 步幅6)Padding - 填充7)Pooling Layer - 池化层8)Max Pooling - 最大池化9)Average Pooling - 平均池化10)Fully Connected Layer - 全连接层11)Activation Function - 激活函数12)Rectified Linear Unit (ReLU) - 线性修正单元13)Dropout - 随机失活14)Batch Normalization - 批量归一化15)Transfer Learning - 迁移学习16)Fine-Tuning - 微调17)Image Classification - 图像分类18)Object Detection - 物体检测19)Semantic Segmentation - 语义分割20)Instance Segmentation - 实例分割21)Generative Adversarial Network (GAN) - 生成对抗网络22)Image Generation - 图像生成23)Style Transfer - 风格迁移24)Convolutional Autoencoder - 卷积自编码器25)Recurrent Neural Network (RNN) - 循环神经网络•Recurrent Neural Network (RNN) - 循环神经网络1)Recurrent Neural Network (RNN) - 循环神经网络2)Long Short-Term Memory (LSTM) - 长短期记忆网络3)Gated Recurrent Unit (GRU) - 门控循环单元4)Sequence Modeling - 序列建模5)Time Series Prediction - 时间序列预测6)Natural Language Processing (NLP) - 自然语言处理7)Text Generation - 文本生成8)Sentiment Analysis - 情感分析9)Named Entity Recognition (NER) - 命名实体识别10)Part-of-Speech Tagging (POS Tagging) - 词性标注11)Sequence-to-Sequence (Seq2Seq) - 序列到序列12)Attention Mechanism - 注意力机制13)Encoder-Decoder Architecture - 编码器-解码器架构14)Bidirectional RNN - 双向循环神经网络15)Teacher Forcing - 强制教师法16)Backpropagation Through Time (BPTT) - 通过时间的反向传播17)Vanishing Gradient Problem - 梯度消失问题18)Exploding Gradient Problem - 梯度爆炸问题19)Language Modeling - 语言建模20)Speech Recognition - 语音识别•Long Short-Term Memory (LSTM) - 长短期记忆网络1)Long Short-Term Memory (LSTM) - 长短期记忆网络2)Cell State - 细胞状态3)Hidden State - 隐藏状态4)Forget Gate - 遗忘门5)Input Gate - 输入门6)Output Gate - 输出门7)Peephole Connections - 窥视孔连接8)Gated Recurrent Unit (GRU) - 门控循环单元9)Vanishing Gradient Problem - 梯度消失问题10)Exploding Gradient Problem - 梯度爆炸问题11)Sequence Modeling - 序列建模12)Time Series Prediction - 时间序列预测13)Natural Language Processing (NLP) - 自然语言处理14)Text Generation - 文本生成15)Sentiment Analysis - 情感分析16)Named Entity Recognition (NER) - 命名实体识别17)Part-of-Speech Tagging (POS Tagging) - 词性标注18)Attention Mechanism - 注意力机制19)Encoder-Decoder Architecture - 编码器-解码器架构20)Bidirectional LSTM - 双向长短期记忆网络•Attention Mechanism - 注意力机制1)Attention Mechanism - 注意力机制2)Self-Attention - 自注意力3)Multi-Head Attention - 多头注意力4)Transformer - 变换器5)Query - 查询6)Key - 键7)Value - 值8)Query-Value Attention - 查询-值注意力9)Dot-Product Attention - 点积注意力10)Scaled Dot-Product Attention - 缩放点积注意力11)Additive Attention - 加性注意力12)Context Vector - 上下文向量13)Attention Score - 注意力分数14)SoftMax Function - SoftMax函数15)Attention Weight - 注意力权重16)Global Attention - 全局注意力17)Local Attention - 局部注意力18)Positional Encoding - 位置编码19)Encoder-Decoder Attention - 编码器-解码器注意力20)Cross-Modal Attention - 跨模态注意力•Generative Adversarial Network (GAN) - 生成对抗网络1)Generative Adversarial Network (GAN) - 生成对抗网络2)Generator - 生成器3)Discriminator - 判别器4)Adversarial Training - 对抗训练5)Minimax Game - 极小极大博弈6)Nash Equilibrium - 纳什均衡7)Mode Collapse - 模式崩溃8)Training Stability - 训练稳定性9)Loss Function - 损失函数10)Discriminative Loss - 判别损失11)Generative Loss - 生成损失12)Wasserstein GAN (WGAN) - Wasserstein GAN(WGAN)13)Deep Convolutional GAN (DCGAN) - 深度卷积生成对抗网络(DCGAN)14)Conditional GAN (c GAN) - 条件生成对抗网络(c GAN)15)Style GAN - 风格生成对抗网络16)Cycle GAN - 循环生成对抗网络17)Progressive Growing GAN (PGGAN) - 渐进式增长生成对抗网络(PGGAN)18)Self-Attention GAN (SAGAN) - 自注意力生成对抗网络(SAGAN)19)Big GAN - 大规模生成对抗网络20)Adversarial Examples - 对抗样本•Encoder-Decoder - 编码器-解码器1)Encoder-Decoder Architecture - 编码器-解码器架构2)Encoder - 编码器3)Decoder - 解码器4)Sequence-to-Sequence Model (Seq2Seq) - 序列到序列模型5)State Vector - 状态向量6)Context Vector - 上下文向量7)Hidden State - 隐藏状态8)Attention Mechanism - 注意力机制9)Teacher Forcing - 强制教师法10)Beam Search - 束搜索11)Recurrent Neural Network (RNN) - 循环神经网络12)Long Short-Term Memory (LSTM) - 长短期记忆网络13)Gated Recurrent Unit (GRU) - 门控循环单元14)Bidirectional Encoder - 双向编码器15)Greedy Decoding - 贪婪解码16)Masking - 遮盖17)Dropout - 随机失活18)Embedding Layer - 嵌入层19)Cross-Entropy Loss - 交叉熵损失20)Tokenization - 令牌化•Transfer Learning - 迁移学习1)Transfer Learning - 迁移学习2)Source Domain - 源领域3)Target Domain - 目标领域4)Fine-Tuning - 微调5)Domain Adaptation - 领域自适应6)Pre-Trained Model - 预训练模型7)Feature Extraction - 特征提取8)Knowledge Transfer - 知识迁移9)Unsupervised Domain Adaptation - 无监督领域自适应10)Semi-Supervised Domain Adaptation - 半监督领域自适应11)Multi-Task Learning - 多任务学习12)Data Augmentation - 数据增强13)Task Transfer - 任务迁移14)Model Agnostic Meta-Learning (MAML) - 与模型无关的元学习(MAML)15)One-Shot Learning - 单样本学习16)Zero-Shot Learning - 零样本学习17)Few-Shot Learning - 少样本学习18)Knowledge Distillation - 知识蒸馏19)Representation Learning - 表征学习20)Adversarial Transfer Learning - 对抗迁移学习•Pre-trained Models - 预训练模型1)Pre-trained Model - 预训练模型2)Transfer Learning - 迁移学习3)Fine-Tuning - 微调4)Knowledge Transfer - 知识迁移5)Domain Adaptation - 领域自适应6)Feature Extraction - 特征提取7)Representation Learning - 表征学习8)Language Model - 语言模型9)Bidirectional Encoder Representations from Transformers (BERT) - 双向编码器结构转换器10)Generative Pre-trained Transformer (GPT) - 生成式预训练转换器11)Transformer-based Models - 基于转换器的模型12)Masked Language Model (MLM) - 掩蔽语言模型13)Cloze Task - 填空任务14)Tokenization - 令牌化15)Word Embeddings - 词嵌入16)Sentence Embeddings - 句子嵌入17)Contextual Embeddings - 上下文嵌入18)Self-Supervised Learning - 自监督学习19)Large-Scale Pre-trained Models - 大规模预训练模型•Loss Function - 损失函数1)Loss Function - 损失函数2)Mean Squared Error (MSE) - 均方误差3)Mean Absolute Error (MAE) - 平均绝对误差4)Cross-Entropy Loss - 交叉熵损失5)Binary Cross-Entropy Loss - 二元交叉熵损失6)Categorical Cross-Entropy Loss - 分类交叉熵损失7)Hinge Loss - 合页损失8)Huber Loss - Huber损失9)Wasserstein Distance - Wasserstein距离10)Triplet Loss - 三元组损失11)Contrastive Loss - 对比损失12)Dice Loss - Dice损失13)Focal Loss - 焦点损失14)GAN Loss - GAN损失15)Adversarial Loss - 对抗损失16)L1 Loss - L1损失17)L2 Loss - L2损失18)Huber Loss - Huber损失19)Quantile Loss - 分位数损失•Activation Function - 激活函数1)Activation Function - 激活函数2)Sigmoid Function - Sigmoid函数3)Hyperbolic Tangent Function (Tanh) - 双曲正切函数4)Rectified Linear Unit (Re LU) - 矩形线性单元5)Parametric Re LU (P Re LU) - 参数化Re LU6)Exponential Linear Unit (ELU) - 指数线性单元7)Swish Function - Swish函数8)Softplus Function - Soft plus函数9)Softmax Function - SoftMax函数10)Hard Tanh Function - 硬双曲正切函数11)Softsign Function - Softsign函数12)GELU (Gaussian Error Linear Unit) - GELU(高斯误差线性单元)13)Mish Function - Mish函数14)CELU (Continuous Exponential Linear Unit) - CELU(连续指数线性单元)15)Bent Identity Function - 弯曲恒等函数16)Gaussian Error Linear Units (GELUs) - 高斯误差线性单元17)Adaptive Piecewise Linear (APL) - 自适应分段线性函数18)Radial Basis Function (RBF) - 径向基函数•Backpropagation - 反向传播1)Backpropagation - 反向传播2)Gradient Descent - 梯度下降3)Partial Derivative - 偏导数4)Chain Rule - 链式法则5)Forward Pass - 前向传播6)Backward Pass - 反向传播7)Computational Graph - 计算图8)Neural Network - 神经网络9)Loss Function - 损失函数10)Gradient Calculation - 梯度计算11)Weight Update - 权重更新12)Activation Function - 激活函数13)Optimizer - 优化器14)Learning Rate - 学习率15)Mini-Batch Gradient Descent - 小批量梯度下降16)Stochastic Gradient Descent (SGD) - 随机梯度下降17)Batch Gradient Descent - 批量梯度下降18)Momentum - 动量19)Adam Optimizer - Adam优化器20)Learning Rate Decay - 学习率衰减•Gradient Descent - 梯度下降1)Gradient Descent - 梯度下降2)Stochastic Gradient Descent (SGD) - 随机梯度下降3)Mini-Batch Gradient Descent - 小批量梯度下降4)Batch Gradient Descent - 批量梯度下降5)Learning Rate - 学习率6)Momentum - 动量7)Adaptive Moment Estimation (Adam) - 自适应矩估计8)RMSprop - 均方根传播9)Learning Rate Schedule - 学习率调度10)Convergence - 收敛11)Divergence - 发散12)Adagrad - 自适应学习速率方法13)Adadelta - 自适应增量学习率方法14)Adamax - 自适应矩估计的扩展版本15)Nadam - Nesterov Accelerated Adaptive Moment Estimation16)Learning Rate Decay - 学习率衰减17)Step Size - 步长18)Conjugate Gradient Descent - 共轭梯度下降19)Line Search - 线搜索20)Newton's Method - 牛顿法•Learning Rate - 学习率1)Learning Rate - 学习率2)Adaptive Learning Rate - 自适应学习率3)Learning Rate Decay - 学习率衰减4)Initial Learning Rate - 初始学习率5)Step Size - 步长6)Momentum - 动量7)Exponential Decay - 指数衰减8)Annealing - 退火9)Cyclical Learning Rate - 循环学习率10)Learning Rate Schedule - 学习率调度11)Warm-up - 预热12)Learning Rate Policy - 学习率策略13)Learning Rate Annealing - 学习率退火14)Cosine Annealing - 余弦退火15)Gradient Clipping - 梯度裁剪16)Adapting Learning Rate - 适应学习率17)Learning Rate Multiplier - 学习率倍增器18)Learning Rate Reduction - 学习率降低19)Learning Rate Update - 学习率更新20)Scheduled Learning Rate - 定期学习率•Batch Size - 批量大小1)Batch Size - 批量大小2)Mini-Batch - 小批量3)Batch Gradient Descent - 批量梯度下降4)Stochastic Gradient Descent (SGD) - 随机梯度下降5)Mini-Batch Gradient Descent - 小批量梯度下降6)Online Learning - 在线学习7)Full-Batch - 全批量8)Data Batch - 数据批次9)Training Batch - 训练批次10)Batch Normalization - 批量归一化11)Batch-wise Optimization - 批量优化12)Batch Processing - 批量处理13)Batch Sampling - 批量采样14)Adaptive Batch Size - 自适应批量大小15)Batch Splitting - 批量分割16)Dynamic Batch Size - 动态批量大小17)Fixed Batch Size - 固定批量大小18)Batch-wise Inference - 批量推理19)Batch-wise Training - 批量训练20)Batch Shuffling - 批量洗牌•Epoch - 训练周期1)Training Epoch - 训练周期2)Epoch Size - 周期大小3)Early Stopping - 提前停止4)Validation Set - 验证集5)Training Set - 训练集6)Test Set - 测试集7)Overfitting - 过拟合8)Underfitting - 欠拟合9)Model Evaluation - 模型评估10)Model Selection - 模型选择11)Hyperparameter Tuning - 超参数调优12)Cross-Validation - 交叉验证13)K-fold Cross-Validation - K折交叉验证14)Stratified Cross-Validation - 分层交叉验证15)Leave-One-Out Cross-Validation (LOOCV) - 留一法交叉验证16)Grid Search - 网格搜索17)Random Search - 随机搜索18)Model Complexity - 模型复杂度19)Learning Curve - 学习曲线20)Convergence - 收敛3.Machine Learning Techniques and Algorithms (机器学习技术与算法)•Decision Tree - 决策树1)Decision Tree - 决策树2)Node - 节点3)Root Node - 根节点4)Leaf Node - 叶节点5)Internal Node - 内部节点6)Splitting Criterion - 分裂准则7)Gini Impurity - 基尼不纯度8)Entropy - 熵9)Information Gain - 信息增益10)Gain Ratio - 增益率11)Pruning - 剪枝12)Recursive Partitioning - 递归分割13)CART (Classification and Regression Trees) - 分类回归树14)ID3 (Iterative Dichotomiser 3) - 迭代二叉树315)C4.5 (successor of ID3) - C4.5(ID3的后继者)16)C5.0 (successor of C4.5) - C5.0(C4.5的后继者)17)Split Point - 分裂点18)Decision Boundary - 决策边界19)Pruned Tree - 剪枝后的树20)Decision Tree Ensemble - 决策树集成•Random Forest - 随机森林1)Random Forest - 随机森林2)Ensemble Learning - 集成学习3)Bootstrap Sampling - 自助采样4)Bagging (Bootstrap Aggregating) - 装袋法5)Out-of-Bag (OOB) Error - 袋外误差6)Feature Subset - 特征子集7)Decision Tree - 决策树8)Base Estimator - 基础估计器9)Tree Depth - 树深度10)Randomization - 随机化11)Majority Voting - 多数投票12)Feature Importance - 特征重要性13)OOB Score - 袋外得分14)Forest Size - 森林大小15)Max Features - 最大特征数16)Min Samples Split - 最小分裂样本数17)Min Samples Leaf - 最小叶节点样本数18)Gini Impurity - 基尼不纯度19)Entropy - 熵20)Variable Importance - 变量重要性•Support Vector Machine (SVM) - 支持向量机1)Support Vector Machine (SVM) - 支持向量机2)Hyperplane - 超平面3)Kernel Trick - 核技巧4)Kernel Function - 核函数5)Margin - 间隔6)Support Vectors - 支持向量7)Decision Boundary - 决策边界8)Maximum Margin Classifier - 最大间隔分类器9)Soft Margin Classifier - 软间隔分类器10) C Parameter - C参数11)Radial Basis Function (RBF) Kernel - 径向基函数核12)Polynomial Kernel - 多项式核13)Linear Kernel - 线性核14)Quadratic Kernel - 二次核15)Gaussian Kernel - 高斯核16)Regularization - 正则化17)Dual Problem - 对偶问题18)Primal Problem - 原始问题19)Kernelized SVM - 核化支持向量机20)Multiclass SVM - 多类支持向量机•K-Nearest Neighbors (KNN) - K-最近邻1)K-Nearest Neighbors (KNN) - K-最近邻2)Nearest Neighbor - 最近邻3)Distance Metric - 距离度量4)Euclidean Distance - 欧氏距离5)Manhattan Distance - 曼哈顿距离6)Minkowski Distance - 闵可夫斯基距离7)Cosine Similarity - 余弦相似度8)K Value - K值9)Majority Voting - 多数投票10)Weighted KNN - 加权KNN11)Radius Neighbors - 半径邻居12)Ball Tree - 球树13)KD Tree - KD树14)Locality-Sensitive Hashing (LSH) - 局部敏感哈希15)Curse of Dimensionality - 维度灾难16)Class Label - 类标签17)Training Set - 训练集18)Test Set - 测试集19)Validation Set - 验证集20)Cross-Validation - 交叉验证•Naive Bayes - 朴素贝叶斯1)Naive Bayes - 朴素贝叶斯2)Bayes' Theorem - 贝叶斯定理3)Prior Probability - 先验概率4)Posterior Probability - 后验概率5)Likelihood - 似然6)Class Conditional Probability - 类条件概率7)Feature Independence Assumption - 特征独立假设8)Multinomial Naive Bayes - 多项式朴素贝叶斯9)Gaussian Naive Bayes - 高斯朴素贝叶斯10)Bernoulli Naive Bayes - 伯努利朴素贝叶斯11)Laplace Smoothing - 拉普拉斯平滑12)Add-One Smoothing - 加一平滑13)Maximum A Posteriori (MAP) - 最大后验概率14)Maximum Likelihood Estimation (MLE) - 最大似然估计15)Classification - 分类16)Feature Vectors - 特征向量17)Training Set - 训练集18)Test Set - 测试集19)Class Label - 类标签20)Confusion Matrix - 混淆矩阵•Clustering - 聚类1)Clustering - 聚类2)Centroid - 质心3)Cluster Analysis - 聚类分析4)Partitioning Clustering - 划分式聚类5)Hierarchical Clustering - 层次聚类6)Density-Based Clustering - 基于密度的聚类7)K-Means Clustering - K均值聚类8)K-Medoids Clustering - K中心点聚类9)DBSCAN (Density-Based Spatial Clustering of Applications with Noise) - 基于密度的空间聚类算法10)Agglomerative Clustering - 聚合式聚类11)Dendrogram - 系统树图12)Silhouette Score - 轮廓系数13)Elbow Method - 肘部法则14)Clustering Validation - 聚类验证15)Intra-cluster Distance - 类内距离16)Inter-cluster Distance - 类间距离17)Cluster Cohesion - 类内连贯性18)Cluster Separation - 类间分离度19)Cluster Assignment - 聚类分配20)Cluster Label - 聚类标签•K-Means - K-均值1)K-Means - K-均值2)Centroid - 质心3)Cluster - 聚类4)Cluster Center - 聚类中心5)Cluster Assignment - 聚类分配6)Cluster Analysis - 聚类分析7)K Value - K值8)Elbow Method - 肘部法则9)Inertia - 惯性10)Silhouette Score - 轮廓系数11)Convergence - 收敛12)Initialization - 初始化13)Euclidean Distance - 欧氏距离14)Manhattan Distance - 曼哈顿距离15)Distance Metric - 距离度量16)Cluster Radius - 聚类半径17)Within-Cluster Variation - 类内变异18)Cluster Quality - 聚类质量19)Clustering Algorithm - 聚类算法20)Clustering Validation - 聚类验证•Dimensionality Reduction - 降维1)Dimensionality Reduction - 降维2)Feature Extraction - 特征提取3)Feature Selection - 特征选择4)Principal Component Analysis (PCA) - 主成分分析5)Singular Value Decomposition (SVD) - 奇异值分解6)Linear Discriminant Analysis (LDA) - 线性判别分析7)t-Distributed Stochastic Neighbor Embedding (t-SNE) - t-分布随机邻域嵌入8)Autoencoder - 自编码器9)Manifold Learning - 流形学习10)Locally Linear Embedding (LLE) - 局部线性嵌入11)Isomap - 等度量映射12)Uniform Manifold Approximation and Projection (UMAP) - 均匀流形逼近与投影13)Kernel PCA - 核主成分分析14)Non-negative Matrix Factorization (NMF) - 非负矩阵分解15)Independent Component Analysis (ICA) - 独立成分分析16)Variational Autoencoder (VAE) - 变分自编码器17)Sparse Coding - 稀疏编码18)Random Projection - 随机投影19)Neighborhood Preserving Embedding (NPE) - 保持邻域结构的嵌入20)Curvilinear Component Analysis (CCA) - 曲线成分分析•Principal Component Analysis (PCA) - 主成分分析1)Principal Component Analysis (PCA) - 主成分分析2)Eigenvector - 特征向量3)Eigenvalue - 特征值4)Covariance Matrix - 协方差矩阵。
自然语言处理中的贝叶斯分析
贝叶斯分析是一种基于概率的统计学方法,在自然语言处理(NLP)中用于分析语言
数据。
它是一种用于确定给定一段特定语言文本的可能分类的方法。
贝叶斯分析借助贝叶
斯定理,允许计算和求解语料库中的概率值,以便很容易确定一段文本在各个分类之间的
关系。
贝叶斯分析主要关注概率,因此它有助于让NLP系统在处理不确定性的语言时能更加
准确。
具体而言,贝叶斯分析可以帮助NLP系统计算出在一组类别里面,一个特定语言文
本被分配到指定分类的几率。
因此,这项技术有助于帮助NLP系统更智能地权衡多种可能性,并给出一个正确的概率结果。
贝叶斯分析通常用于文本分类,用于识别一段文本是属于某一类别的概率,或者某一
类概率最高。
它还可以用于文本摘要,用于确定在一段长文章里包含哪些信息,及其重要性。
另外,它还可以利用贝叶斯模型预测下一个词会是什么,可以被用于自动补全和建议。
此外,贝叶斯分析还可以用于自动识别语义里的概念,即指定文本属于特定实体的可
能性。
根据机器学习的定义,可以将贝叶斯分析当做一种监督学习的方法,它可以用于预
测文本内容的内容。
综上所述,贝叶斯分析是NLP中一种重要的技术,可用于文本分类、摘要、识别概念
等功能,只要对某个语料库有足够的数据,NLP系统就可以基于贝叶斯定理,以优化的方
式处理语言文本,带来更准确的结果。
人工智能中的不确定性估计是一个重要的研究领域,它涉及到如何评估人工智能系统在处理不确定信息时的表现。
不确定性估计可以帮助我们更好地理解人工智能系统的性能,并为其提供更准确的决策支持。
以下是一些人工智能中不确定性估计的方法:
1. 概率模型:概率模型是一种常见的不确定性估计方法,它使用概率分布来描述输入数据的不确定性。
这些模型通常使用贝叶斯网络、隐马尔可夫模型等工具来建模数据的不确定性。
2. 随机森林和集成学习:随机森林和集成学习方法通过组合多个预测模型的输出来提高不确定性估计的准确性。
这些方法通常使用多个决策树或神经网络来生成预测,并使用投票或加权平均等方法来组合它们的输出。
3. 贝叶斯推理:贝叶斯推理是一种基于概率的方法,它使用先验知识来更新对不确定性的认识。
这种方法通常用于处理因果推理和异常检测等问题。
4. 深度强化学习:深度强化学习使用深度神经网络来学习如何做出最优决策,同时考虑到各种不确定性因素。
这种方法通常用于处理具有挑战性的实时决策问题,如自动驾驶和机器人控制。
5. 贝叶斯近似方法:贝叶斯近似方法是一种基于贝叶斯统计的方法,它使用简单的模型来近似复杂的模型,并估计其不确定性。
这种方法通常用于处理大规模数据集和复杂模型的不确定性估计。
总之,人工智能中的不确定性估计是一个重要的研究领域,涉及多种方法和技术。
这些方法和技术可以帮助我们更好地理解人工智能系统的性能,并为其提供更准确的决策支持。
- 贝叶斯近似算法介绍-概述说明以及解释1.引言1.1 概述在贝叶斯统计学中,贝叶斯近似算法是一种通过近似地求解贝叶斯推断问题的方法。
贝叶斯推断是一种基于贝叶斯定理的统计推断方法,旨在估计未知参数的后验分布。
然而,由于后验分布通常难以解析求解,因此需要采用近似算法来求解。
贝叶斯近似算法通过在后验分布中进行采样或使用近似的数值方法来估计参数的后验分布。
这些算法包括马尔可夫链蒙特卡洛方法(MCMC)、变分推断方法等。
本文将介绍贝叶斯近似算法的基本概念,探讨其原理及应用场景,并介绍一些常见的贝叶斯近似算法。
通过深入了解贝叶斯近似算法,读者可以更好地理解和应用这些方法于实际问题中。
1.2 文章结构文章结构部分的内容:本文将首先介绍贝叶斯推断的基本概念,包括其原理和应用场景。
接着,将详细讨论贝叶斯近似算法的概述,包括其核心思想和主要方法。
最后,将探讨贝叶斯近似算法在实际应用中的具体案例和效果。
通过深入了解贝叶斯近似算法的原理和应用,希望读者能够更好地理解其在数据分析和机器学习领域的重要性和价值。
1.3 目的本文旨在介绍贝叶斯近似算法,讨论其在贝叶斯推断中的应用以及其优势和局限性。
通过深入了解贝叶斯近似算法的工作原理和算法流程,读者将能够更好地理解该算法在实际问题中的应用场景和效果。
此外,本文还将探讨贝叶斯近似算法的发展趋势和未来可能的改进方向,为读者提供对该算法的全面认识和深入了解。
通过本文的阅读,读者将能够掌握贝叶斯近似算法的基本概念和原理,从而在实际问题中灵活运用该算法,提高问题求解的效率和精度。
2.正文2.1 贝叶斯推断简介贝叶斯推断是一种基于贝叶斯定理的统计推断方法。
在统计学中,我们通常需要根据收集到的数据来对未知参数进行推断。
贝叶斯推断通过将先验知识和数据信息结合起来,得出对参数的后验分布,从而对参数进行推断。
贝叶斯推断的核心思想是先验概率和后验概率之间的贝叶斯定理。
在贝叶斯推断中,我们首先给定一个先验分布,描述对参数的初始信念或者认识。
贝叶斯网络是一种用来描述随机变量之间依赖关系的图模型,也是一种用来进行概率推断的工具。
在实际应用中,贝叶斯网络可以帮助我们对未知变量进行推断,从而做出更加合理的决策。
然而,精确的贝叶斯推断通常需要计算复杂的概率分布,这在实际问题中往往是不可行的。
因此,近似推断方法成为了贝叶斯网络研究的重要内容之一。
一、蒙特卡洛方法蒙特卡洛方法是一种常见的近似推断方法。
它通过从概率分布中抽取大量的样本来近似计算分布的期望值。
在贝叶斯网络中,蒙特卡洛方法可以用来对后验分布进行近似推断。
具体来说,我们可以通过抽取大量的样本来近似计算后验概率分布,从而得到对未知变量的推断结果。
蒙特卡洛方法的优点是简单易行,而且在一定条件下可以得到较为精确的近似结果。
但是,它也存在着计算量大、收敛速度慢等缺点,特别是在高维问题中往往难以有效应用。
二、变分推断方法变分推断方法是另一种常见的近似推断方法。
它通过寻找一个与真实后验分布相近的分布来进行推断。
在贝叶斯网络中,变分推断方法可以通过最大化一个变分下界来近似计算后验分布。
具体来说,我们可以假设一个参数化的分布族,然后寻找一个参数使得该分布在KL散度意义下与真实后验分布最为接近。
变分推断方法的优点是可以通过参数化的方式来近似计算后验分布,从而在一定程度上减少计算量。
但是,它也存在着对分布族的选择敏感、局部最优解等问题。
三、马尔科夫链蒙特卡洛方法马尔科夫链蒙特卡洛方法是一种结合了蒙特卡洛方法和马尔科夫链的近似推断方法。
它通过构建一个转移核函数来对后验分布进行采样,从而得到对未知变量的推断结果。
在贝叶斯网络中,马尔科夫链蒙特卡洛方法可以用来对后验分布进行采样。
具体来说,我们可以构建一个马尔科夫链,使得其平稳分布为真实后验分布,然后通过该链进行采样。
马尔科夫链蒙特卡洛方法的优点是可以通过马尔科夫链的方式来进行采样,从而在一定程度上减少计算量。
但是,它也存在着收敛速度慢、样本自相关等问题,特别是在高维问题中往往难以有效应用。
参考文献(人工智能)曹晖目的:对参考文献整理(包括摘要、读书笔记等),方便以后的使用。
分类:粗分为论文(paper)、教程(tutorial)和文摘(digest)。
0介绍 (1)1系统与综述 (1)2神经网络 (2)3机器学习 (2)3.1联合训练的有效性和可用性分析 (2)3.2文本学习工作的引导 (2)3.3★采用机器学习技术来构造受限领域搜索引擎 (3)3.4联合训练来合并标识数据与未标识数据 (5)3.5在超文本学习中应用统计和关系方法 (5)3.6在关系领域发现测试集合规律性 (6)3.7网页挖掘的一阶学习 (6)3.8从多语种文本数据库中学习单语种语言模型 (6)3.9从因特网中学习以构造知识库 (7)3.10未标识数据在有指导学习中的角色 (8)3.11使用增强学习来有效爬行网页 (8)3.12★文本学习和相关智能A GENTS:综述 (9)3.13★新事件检测和跟踪的学习方法 (15)3.14★信息检索中的机器学习——神经网络,符号学习和遗传算法 (15)3.15用NLP来对用户特征进行机器学习 (15)4模式识别 (16)4.1JA VA中的模式处理 (16)0介绍1系统与综述2神经网络3机器学习3.1 联合训练的有效性和可用性分析标题:Analyzing the Effectiveness and Applicability of Co-training链接:Papers 论文集\AI 人工智能\Machine Learning 机器学习\Analyzing the Effectiveness and Applicability of Co-training.ps作者:Kamal Nigam, Rayid Ghani备注:Kamal Nigam (School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, knigam@)Rayid Ghani (School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213 rayid@)摘要:Recently there has been significant interest in supervised learning algorithms that combine labeled and unlabeled data for text learning tasks. The co-training setting [1] applies todatasets that have a natural separation of their features into two disjoint sets. We demonstrate that when learning from labeled and unlabeled data, algorithms explicitly leveraging a natural independent split of the features outperform algorithms that do not. When a natural split does not exist, co-training algorithms that manufacture a feature split may out-perform algorithms not using a split. These results help explain why co-training algorithms are both discriminativein nature and robust to the assumptions of their embedded classifiers.3.2 文本学习工作的引导标题:Bootstrapping for Text Learning Tasks链接:Papers 论文集\AI 人工智能\Machine Learning 机器学习\Bootstrap for Text Learning Tasks.ps作者:Rosie Jones, Andrew McCallum, Kamal Nigam, Ellen Riloff备注:Rosie Jones (rosie@, 1 School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213)Andrew McCallum (mccallum@, 2 Just Research, 4616 Henry Street, Pittsburgh, PA 15213)Kamal Nigam (knigam@)Ellen Riloff (riloff@, Department of Computer Science, University of Utah, Salt Lake City, UT 84112)摘要:When applying text learning algorithms to complex tasks, it is tedious and expensive to hand-label the large amounts of training data necessary for good performance. This paper presents bootstrapping as an alternative approach to learning from large sets of labeled data. Instead of a large quantity of labeled data, this paper advocates using a small amount of seed information and alarge collection of easily-obtained unlabeled data. Bootstrapping initializes a learner with the seed information; it then iterates, applying the learner to calculate labels for the unlabeled data, and incorporating some of these labels into the training input for the learner. Two case studies of this approach are presented. Bootstrapping for information extraction provides 76% precision for a 250-word dictionary for extracting locations from web pages, when starting with just a few seed locations. Bootstrapping a text classifier from a few keywords per class and a class hierarchy provides accuracy of 66%, a level close to human agreement, when placing computer science research papers into a topic hierarchy. The success of these two examples argues for the strength of the general bootstrapping approach for text learning tasks.3.3 ★采用机器学习技术来构造受限领域搜索引擎标题:Building Domain-specific Search Engines with Machine Learning Techniques链接:Papers 论文集\AI 人工智能\Machine Learning 机器学习\Building Domain-Specific Search Engines with Machine Learning Techniques.ps作者:Andrew McCallum, Kamal Nigam, Jason Rennie, Kristie Seymore备注:Andrew McCallum (mccallum@ , Just Research, 4616 Henry Street Pittsburgh, PA 15213)Kamal Nigam (knigam@ , School of Computer Science, Carnegie Mellon University Pittsburgh, PA 15213)Jason Rennie (jr6b@)Kristie Seymore (kseymore@)摘要:Domain-specific search engines are growing in popularity because they offer increased accuracy and extra functionality not possible with the general, Web-wide search engines. For example, allows complex queries by age-group, size, location and cost over summer camps. Unfortunately these domain-specific search engines are difficult and time-consuming to maintain. This paper proposes the use of machine learning techniques to greatly automate the creation and maintenance of domain-specific search engines. We describe new research in reinforcement learning, information extraction and text classification that enables efficient spidering, identifying informative text segments, and populating topic hierarchies. Using these techniques, we have built a demonstration system: a search engine forcomputer science research papers. It already contains over 50,000 papers and is publicly available at ....采用多项Naive Bayes 文本分类模型。
Bayesphone: Precomputation of Context-SensitivePolicies for Inquiry and Action in Mobile DevicesEric Horvitz1, Paul Koch1, Raman Sarin1, Johnson Apacible1, andMuru Subramani11 Microsoft Research, One Microsoft WayRedmond, Washington 98052 USA{Horvitz, Paulkoch, Ramans, Johnsona, Murus}@Abstract. Inference and decision making with probabilistic user models may beinfeasible on portable devices such as cell phones. We highlight the opportunityfor storing and using precomputed inferences about ideal actions for futuresituations, based on offline learning and reasoning with the user models. As amotivating example, we focus on the use precomputation of call-handlingpolicies for cell phones. The methods hinge on the learning of Bayesian usermodels for predicting whether users will attend meetings on their calendar andthe cost of being interrupted by incoming calls should a meeting be attended.1 IntroductionOver the last decade, there has been increasing research on the use of probabilisticuser modeling for inferring user goals and states of the world [6,7] under uncertainty.The user models have been applied typically in desktop settings, where designers can assume that a personal computer is available for performing inferences. We focus inthis paper on the precomputation of ideal decision-theoretic policies from probabilisticuser models and the caching of the policies on a cell phone for decision making in a mobile setting. We believe that such precomputation and caching of policies will enable probabilistic learning and reasoning to be applied to the large and growing number of devices and appliances in the world with limited computational abilities.We focus on the example of using probabilistic models to guide the handling of telephone calls, so as to deliberate about the cost of interruption versus the cost of deferral of an incoming call. Such decisions can be made locally at cell phones, basedon a consideration of context and multiple properties of meetings. We analyze the caseof local decision making based on sensed properties of meetings on a user’s calendarand on properties of callers based on caller identification, as well on real-time sensingof motion and ongoing conversation.We first discuss the learning of predictive models of attendance and of interruptability.We present the computation of the expected cost of interruption from the output ofthese models. Then we discuss the computation of value of information to reason about the value of acquiring additional information from users in real time. We review how we can precompute and cache policies on cell phones that consider whether calls should interrupt users. We discuss how the methods have been used to field a prototype call handling system that we call Bayesphone.2 Learning Models of Interruptability and AttendanceEfforts over the last several years have demonstrated that relatively accurate models can be constructed for predicting the interruptability of users from such contextually relevant observations as sensed activity and calendar properties [2,3,4,5,8]. We shall focus first on the construction of two Bayesian network models via supervised machine learning. One model predicts the interruptability of a user. More specifically, we build a model that is used to infer a probability distribution over the cost of interruption of users. The second model outputs the probability that users will attend meetings that appear on their electronic calendar. Inferences from both models are used to predict the expected cost of interruption at different times for a user. Additionally, we show how we compute from the output of the models, the value of information associated with asking users in real time about their situation. Such an analysis considers the inferences from the models as well as the frequency and types of calls coming in over time.2.1 Models of a User’s InterruptabilityWe have been investigating predictive models of the cost of interruption from evidence associated with a user’s context, including a stream of sensed data generated by a user’s interaction with a desktop computer and properties of items on a user’s electronic calendar [4,5]. Online calendars are central for coordinating meetings in many enterprises. For example, the Outlook calendaring subsystem is used universally at our organization for extending invitations to meetings, monitoring responses about planned attendance, and scheduling and tracking daily agendas. As part of the Coordinate project, we constructed an appointment crawler and assessment tool that searches through users’ online calendars, as represented in the Microsoft Outlook messaging and calendaring application [3]. The appointment crawler sifts through online appointments and records sets of properties associated with each appointment. The appointment crawler notes, for each appointment, a set of properties drawn from the Outlook application, including the time of day and day of week of the meeting, meeting duration, subject, location, organizer, the response status of the user (responded yes, responded as tentative, did not respond, or no response request was made), whether the meeting is recurrent or not, whether the time is marked as busy or free on the user’s calendar, whether the user was required or optional, the number of invitees, the organizational relationships of the invitees to the user, and the role of the user (user was the organizer versus a required or optional invitee). The system accesses the Microsoft Active Directory service to identify the organizer of the meeting and invitees and notes whether the organizer and attendees are organizational peers, direct reports, managers, or managers of the user’s manager.The crawled data is used to build an assessment view that displays a form to users. The form consists of a list of titles of meetings and provides fields for indicating the state of interruptability of users. Fig. 1 shows the assessment palette for assigning a cost of interruption to each crawled calendar item and a form used to define the meaning of high, medium, and low cost of interruption states. Users use this form to assign scalar values to each state of interruptability. For this assessment, we ask users to estimate the cost associated with a ringing phone during states of high, medium, and low cost of interruption. To ground the semantics of cost throughout the system, we consider the decision-analytic notion of willingness to pay; and assess dollar values that users would be willing to pay to avoid a call in each setting.Given the interruptability tags and appointment properties, we build a library of cases, and then employ a Bayesian structure search procedure, based on methods developed by Chickering, et al. [1], to build a Bayesian network. The methods employ a greedy search across different structures to identify the probabilistic dependency structure that best explains the data, based on a score known as the Bayesian Information Criterion. The resulting Bayesian network can be used later to infer probability distributions over the states of interruptability for previously unseen meetings, based upon a consideration of a set of observations consisting of the properties of meetings.Fig. 1. Cost of interruption assessment palette that enables users to view a list of prior appointments and to assess the cost of a phone call during each meeting (left). Overall dollar-valued costs are assigned to each state (right).Fig. 2 displays a Bayesian network model learned from a set of cases tagged by cost of interruption. The model can be used to infer a probability distribution over states of interruptability, outputting for each previously unforeseen appointment the likelihood that the meeting has a high, medium, or low cost of interruption. A study of a model constructed from the same 559 appointments and tested on 100 hold out cases showeda classification accuracy of 0.81 for assigning interruptability.2.1 Models of Meeting AttendanceBeyond models of the cost of interruption associated with a context associated with the attendance of a meeting, we also assess and learn in an analogous mannerBayesian network models that predict the likelihood that the meetings will be attended, based on meeting properties. Fig. 3 shows a sample Bayesian network learned from training data for inferring the likelihood that a user would attend meetings, based on meeting properties. The model was trained with the same appointments as were used to train the model for the cost of interruption. In use, the personalized attendance model generates, for previously untagged meetings, the likelihood that users will attend the meetings. For this model, a study of the accuracy on 100 cases held out for testing found that attendance was classified at an accuracy of 0.92.Fig. 2. Bayesian network learned from case library that can be used to infer the probability distribution over states of a variable representing the interruptability of a user, given attendance of a meeting with particular properties. The most influencing variables and their probabilistic dependencies are highlighted with shading.Fig. 3. Bayesian network learned from case library that can be used to infer whether a user will attend a meeting or not, based on meeting properties. The most influencing variables and their probabilistic dependencies are highlighted with shading.3 Computing Expected Cost of InterruptionWe can employ the Bayesian networks for predicting attendance and the cost ofinterruption to compute the expected cost of interruption (ECI) associated with callsthat ring through to users who are attending different kinds of meetings. To performthe computation of expected cost of interruption, we consider the probabilitydistribution over the cost associated with the meeting at hand, as provided by theinterruptability model, and the likelihood that a user will attend the meeting indicatedon the user’s calendar, as provided by the attendance model. To compute the ECI ofinterrupting a user when a meeting on a user’s calendar is recognized as being inprogress, we need one additional piece of information—the default cost associatedwith receiving a phone call when a user does not attend a meeting indicated on auser’s calendar. Such a default cost is typically a function of the time of day, asreceiving a call during the early hours of the morning or very late at night is likely tobe different than receiving a call during business hours, and the cost of interruptionmay also be dependent on the day of week. To assess default costs of interruption, weallow users to sweep over default high, medium, and low cost regions within a sevenday by twenty-four hour time palette, and to define default costs of interruption to each value. Fig. 4 displays the palette for assessing the default ofinterruption by time.Fig. 4. Time palette for assessing costs of interruption by time via a sweeping out of regions oftime, and assessing default costs for non-meeting times assigned high, medium, and low costs.Given (1) an inferred probability distribution over the interruptability of a meeting, (2)the likelihood that a user will attend a meeting on their calendar, and (3) the defaultcost associated with the no-meeting situation, the ECI at any moment is computed byweighting the cost of interruption for the no-attendance and attendance situations inaccordance with the likelihoods of these states. Taking the expectation, the ECI is,)())|(1()|()|(S c E A p c E c p E A p ECI b i i i −+=∑ (1)where p (A|E ) is the likelihood that users will attend a meeting, given evidentialproperties E associated with the meeting, obtained via Outlook appointmentproperties, p (c i |E ) is the probability that users will assign a cost c i to the meeting,where i indexes the meeting as being either in low, medium, or high cost, and c b(S) is the background cost of being interrupted in the default situation S, representing the case where a user does not attend a meeting, as captured by the time of day and day of week. The default cost can be extended to be dependent on multiple aspects of a user’s overall context S. Also, special mutually-exclusive contexts can be considered as active in a priority-order relationship. In the current Bayesphone prototype, the special contexts of user driving(stop-and-go versus smooth highway driving) and local conversation in progress are sensed from a Bluetooth-based GPS system and headset, respectively. If neither of these situations is sensed, the meeting and default day and time context is considered as active. Otherwise the costs of interruption assessed for the special contexts are assumed.4Performing Cost-Benefit Analysis in Real TimeWe can balance a computed cost of interruption with the cost of deferring a conversation until later. A key piece of the decision is the cost of deferring calls from different callers. We thus obtain from users the dollar-value cost associated with delayed communication when a call is routed to voicemail rather than a real-time conversation. For such an assessment, we allow users to define groups of callers, based on properties of people, so as to provide a manageable set of classes. The deferral-cost assessment tool allows users to create groups of people based on sets of properties of people including organizational relationships and activities. The tool allows users to create such organization-related groups as peers, direct reports, manager, position higher-up in the organizational chart, person within organization, and people identified in a user’s list of contacts. Users can also pick activity-based groups, so as to have their device recognize people who are scheduled in meetings in the next hour, on the same day, or later in the same week. Another activity-based group provided by the system is “people I have called today” and “people I have called this week.” The tool can also be used to build ad hoc groups like “critical associates,” and “close friends.”We employ Equation 1 to precompute the expected cost of interruption based on meeting properties for any time during the day. We shall return to the desktop and mobile device application in Section 5. First, we review the precomputation of value of information for making decisions about when to acquire additional information from users.4 Precomputing Ideal Interactions with UsersBeyond storing policies for making the best decision based on information that is currently available to a system, we have extended the basic cost-benefit analysis with precomputation about whether it is worthwhile for the phone to ask users at run time to assist with resolving key uncertainties about the user’s situation. More specifically, we precompute the value of asking users for information about whether they are attending a meeting that appears on their calendars. Answers to such queries can resolve key uncertainties used in the ECI computation, potentially increasing the value of the call-handling policies.To identify ideal queries, we compute the expected value of information (EVI) of asking users a question. EVI is a decision-theoretic measure of the value of gathering additional information that considers the current uncertainties, the likelihood of different answers to a query for more information, and the ultimate influence of the different answers on ideal policies. For the case of Bayesphone, we precompute the value of asking a user if they intend to attend a meeting before a meeting is scheduled to begin. The question itself incurs a cost of interruption that must be balanced with the gains in value based in the new information.To compute the value of asking the user about attendance, we must consider the ECI before and after asking, and cost of querying the user. Given an answer, the ECI will be either be the expected cost associated with the meeting (the first term in Equation1), or the background cost of the time of day (the second term Equation 1). To compute the value of information, we introduce the concept of the overall communication cost over a period of time. The expected communication cost (ECC) for a period of time is the cost of deferral and cost of interruption for all incoming calls during the period. We wish to interact with a user only if the reduction in ECC is greater than the cost of asking. Bayesphone precomputes the value of information for all meetings and uses this information to drive selective question asking.The ECC is computed by maintaining a log of incoming calls. Bayesphone records a log of incoming calls by group. This log is segmented into calls that arrive at different time periods. For the current prototype, we consider eight periods: mornings, afternoons, evenings , and late night for weekdays and weekends. For each period, we compute the rates at which calls associated with different caller groups arrive each hour. Given this information, we can compute the ECC for any value of the cost of interruption. We simply note the expected number of calls that will be deferred and the calls that will ring through to a user given the computed ECI. The expected numbers of each class of calls are computed as a product of the stored rates for each caller group and the duration of the period. The ECC for a meeting of duration t based on a consideration of current evidence E only about properties of the upcoming meeting is,t c f c f t E ECC j ring jj i defer i i )(),(∑∑+= (2)where f i is frequency of calls in each caller group i that has a cost of deferral lower than the cost of interruption, f j is the frequency of calls in each caller group j that has a cost of deferral higher than the cost of interruption, and c defer and c ring are the costs of deferral and cost of interruption of each of these caller classes, respectively. We note that c ring is just the current expected cost of interruption, ECI, as computed with Equation 1, so we can rewrite Equation 2 as,t E ECI f c f t E ECC jj i defer i i ))((),(∑∑+= (3)To compute the EVI of asking the user a question, we recompute ECI and ECC separately for the answers of “attending” and “not attending,” identifying the changes in the numbers of calls in the deferral and the ring-through classes for the updated values of ECI, and finally combine these two ECC values together, weighted by theprobability of hearing each answer. The communication cost for the answer, “attending meeting” considers the expected cost associated with being at the meeting, tc E c p f c f t a E ECC k k k j j i defer i i ))|((),,(''∑∑∑+= (4)The communication cost for the answer, “not attending” takes as the cost of interruption, the background cost associated with the time of day, tc f c f t a E ECC j b j i defer i i )(),,(''''∑∑+= (5)Putting these terms together, we can compute the expected value of asking the user as, a C t a E ECC E A p t a E ECC E A p t E ECC t E EVI −−+−=)],,())|(1(),,()|([),(),( (6)where C a is the cost of asking the user before the meeting, just the ECI before the meeting begins. The system also considers the added value of directly asking a user about the interruptability of a meeting, given that the user has answered that the meeting will be attended, using an analogous value of information computation. Users are asked to optionally answer a second question about the cost of interruption, if acquiring that information is worth the incremental cost of asking the second question. 5 Bayesphone Desktop and Mobile ApplicationsBayesphone consists of two applications: (1) a desktop application, running on WindowsXP, that performs inference, cost-benefit analyses, and value of information precomputation of ideal real-time actions and inquiries, and (2) an application running on Smartphones that downloads the precomputed policy file from the desktop via a device synchronization program. The Bayesphone desktop application analyzes each forthcoming meeting, making inferences with the Bayesian network models for both attendance and interruptability. The client application considers these inferences along with the costs of deferral of calls from callers in different groups, the expected cost of interruption with taking calls for each meeting, and the history of incoming calls in the user’s call log, and precomputes the ideal call-handling actions and interactions for each meeting. The desktop system creates an XML-encoded file, which includes for each meeting, the meeting title, date, and time, whether the user should be asked with an alert about meeting attendance before the meeting, and the list of caller groups who are allowed to breakthrough to the user during the meeting for the no-interaction or no-answer case, and for each answer.In use, a user may be asked before a meeting occurs about whether they plan to attend the forthcoming meeting. A special alert tone is used to inform the user about the question, and a screen appears that allows the user to specify whether they will attend the meeting. The maximum likelihood answer is displayed on the device, allowing the user to either confirm or to change the guess. If no answer is available with three minutes, the question times out and the title of the meeting appears on the screen, along with the groups who can breakthrough. Users can directly change theirattendance status or the cost of interruption directly at any time via a menu, and the ideal precomputed policy for the state will be accessed and displayed. Figure 6 displays two screens of the Bayesphone application executing the call-handling policies of one of the authors. In this case, the system has alerted the user to the value of answering a question about attendance before a meeting. The system has guessed that the user will not attend the meeting, and the user confirms this guess. After the interaction, the system shows the users the caller groups that will be allowed to breakthrough. At run time, Bayesphone intercepts incoming calls and takes control of the ringing of the phone. The application checks caller ID, examines the list of callers allowed via the precomputed cost-benefit analysis, and decides whether to ring the phone versus transfer the call to voicemail.Although the primary intent of this paper is to share with the User Modeling community methods for precomputing user models for fielding ideal policies on mobile devices that do not have the computational power of desktop machines, we are interested also in the value of these methods for the call-handling domain. The initial Bayesphone prototype has been used by two people on our team for four months. We have not yet performed a formal validation of satisfaction with call handling, but the system has been reported by both users to perform well overall in a qualitative survey. Both users provided us with feedback on the effort with setting up the system. The users found that the assessments of caller groups, costs of deferral, and costs of interruption were straightforward, taking under 15 minutes to complete. However, they found the assessment of the Bayesian models to be more burdensome, taking about two hours of time to assess crawled events from their online calendars. We are working on means for easing this burden via experience sampling along the lines of [5], and on the use of lighter-weight, but less precise models. Such an approach includes the reliance on the direct assessments of probability distributions for attendance and interruptability for classes of appointments.5 SummaryWe have described a project highlighting the opportunity for precomputing inferences from Bayesian networks and coupling these inferences with cost-benefit policies for fielding policies for action and dialog with users on simple end-point devices like cell phones. We reviewed the construction of probabilistic models that can infer the expected cost of interruption and the likelihood that users will attend meetings on their calendar. We showed how these models can drive a cost-benefit analysis of call-handling policies and reviewed a prototype application. We are now studying the difficulties that users may have in building probabilistic models for the prototype, and the overall experience with using the system. We are also working to extend the evidential considerations beyond meeting properties and time, to include such observations as local sensing of location, motion, and ambient acoustical signals, such as those representing a nearby conversation in progress.Fig. 5. Bayesphone application, showing the case where it is best to ask the user about attendance of a forthcoming meeting. When the meeting starts, the application displays the title of the meeting in progress, the input from the user, and the callers who can break through. Moving beyond the motivating example we selected to explore the precomputation of personalized policies, we are excited about the prospects for precomputing user models for fielding adaptive behavior that can be executed on a variety of small devices—especially on mobile devices that may have minimal computational power. References1.Chickering, D.M., Heckerman, D. and Meek, C. (1997). A Bayesian approach to learningBayesian networks with local structure. In Proc. of UAI 1997, pp. 80-89.2.Fogarty, J., Hudson, S.E., and Lai, J. (2004). Examining the Robustness of Sensor-BasedStatistical Models of Human Interruptability, Proc. of CHI 2004.3.Horvitz, E. Koch, P., Kadie, C.M. Jacobs, A. (2002). Coordinate: ProbabilisticForecasting of Presence and Availability. Proc. of UAI 2002, pp. 224-233.4.Horvitz, E. and Apacible, J. (2003) Learning and Reasoning about Interruption, Proc. ofICMI 2003, pp. 20-27.5.Horvitz, E. Apacible, J. and Koch, P. (2004) BusyBody: Creating and FieldingPersonalized Models of the Cost of Interruption, Proc. of CSCW 2004.6.Jameson, A. (1996) User Modeling and User-Adapted Interaction, Volume 5, pp. 193-251.7.Jameson, A. (2003). Adaptive Interfaces and Agents In J. Jacko and A. Sears (Eds.),Human-computer interaction handbook (pp. 305-330). Erlbaum Publishers.8.Mynatt, B. and Tullio, J. (2001). Inferring Calendar Event Attendance, Proc. ofIntelligent User Interfaces 2001, pp. 121-128. ACM Press.。