高中数学:2.2.2 二次函数的性质与图象 _1
- 格式:ppt
- 大小:1.43 MB
- 文档页数:33
二次函数图像与性质完整归纳二次函数的图像与性质二次函数是高中数学中的重要内容之一,掌握其图像与性质是必不可少的。
二次函数的基本形式是y=ax^2,其中a表示开口方向和抛物线开口大小,x^2表示自变量的平方。
根据a的正负,抛物线的开口方向和顶点的坐标可以得到不同的性质。
当a>0时,抛物线开口向上,顶点坐标为(0,0),对称轴为y轴;当a<0时,抛物线开口向下,顶点坐标为(0,0),对称轴为y轴。
在y=ax^2的基础上,加上常数项c可以得到y=ax^2+c的形式,其中c表示抛物线在y轴上的截距。
根据a和c的正负,抛物线的开口方向、顶点坐标和对称轴可以得到不同的性质。
当a>0,c>0时,抛物线开口向上,顶点坐标为(0,c),对称轴为y轴;当a>0,c0时,抛物线开口向下,顶点坐标为(0,c),对称轴为y轴;当a<0,c<0时,抛物线开口向下,顶点坐标为(0,c),对称轴为y轴。
除了基本形式和加上常数项的形式,二次函数还有一种顶点式的形式y=a(x-h)^2+k,其中(h,k)表示顶点坐标。
根据a的正负,抛物线的开口方向和顶点坐标可以得到不同的性质。
当a>0时,抛物线开口向上,顶点坐标为(h,k),对称轴为直线x=h;当a<0时,抛物线开口向下,顶点坐标为(h,k),对称轴为直线x=h。
在顶点式的基础上,加上常数项k可以得到y=a(x-h)^2+k的形式。
根据a和k的正负,抛物线的开口方向、顶点坐标和对称轴可以得到不同的性质。
当a>0,k>0时,抛物线开口向上,顶点坐标为(h,k),对称轴为直线x=h;当a>0,k0时,抛物线开口向下,顶点坐标为(h,k),对称轴为直线x=h;当a<0,k<0时,抛物线开口向下,顶点坐标为(h,k),对称轴为直线x=h。
二次函数图象的平移二次函数的图像可以通过平移来得到新的图像。
平移的步骤是先确定顶点坐标,然后根据顶点坐标的变化来确定平移方向和距离。
二次函数的图像与性质二次函数是高中数学中一个重要的概念,它在数学和实际问题中有着广泛的应用。
本文将介绍二次函数的图像与性质,包括图像的形状与位置、顶点坐标、对称性、最值和零点等方面。
1. 图像的形状与位置二次函数的一般形式为f(x) = ax² + bx + c,其中a、b、c为常数,且a不等于0。
二次函数的图像是一个抛物线,它的形状取决于二次项的系数a的正负和大小。
如果a大于0,则抛物线开口朝上;如果a小于0,则抛物线开口朝下。
a的绝对值越大,抛物线的开口越窄;a的绝对值越小,抛物线的开口越宽。
2. 顶点坐标二次函数的顶点是抛物线的最高点(开口朝下)或最低点(开口朝上),它的坐标可以通过顶点公式来求得。
顶点公式为:x = -b/(2a),y = f(x) = c - b²/(4a)顶点坐标的x值表示抛物线的对称轴位置,y值表示抛物线的最值。
3. 对称性二次函数的图像具有对称性。
对于任意点(x, y)在图像上,其关于对称轴的对称点也必定在图像上。
对称轴通过顶点,因此对称性可以通过对称轴方程来表示:x = -b/(2a)。
4. 最值二次函数的最值即为函数在定义区间内的最大值或最小值。
开口朝上的二次函数在顶点处取得最小值,开口朝下的二次函数在顶点处取得最大值。
最值的计算可以通过顶点坐标中的y值来得到。
5. 零点二次函数的零点是函数图像与x轴的交点。
也就是函数取值为0时的x值,可以通过解二次方程f(x) = 0来求得。
二次方程的解可以使用求根公式,即:x = (-b ±√(b²-4ac))/(2a)其中±表示两个解,可能有两个不同的零点,也可能有两个相等的零点,甚至可能没有实数解。
总结:二次函数的图像与性质可以通过以下几个方面来描述:图像的形状与位置,顶点坐标,对称性,最值和零点。
这些性质对于理解和应用二次函数都非常重要。
通过本文的介绍,相信读者对二次函数的图像与性质有了更深入的理解。
2.2.2 二次函数的性质与图象自我小测1.函数y=x2-2x+m的单调增区间为( )A.(-∞,+∞) B.[1,+∞) C.(-∞,1] D.[-2,+∞)2.函数f(x)=x2-mx+4(m>0)在(-∞,0]上的最小值是( )A.4 B.-4 C.与m的取值有关 D.不存在3.已知二次函数y=6x-2x2-m的值恒小于零,那么实数m的取值范围为( )A.92⎧⎫⎨⎬⎩⎭B.9,2⎛⎫+∞⎪⎝⎭C.{9} D.(-∞,9)4.已知一次函数y=ax+c(a≠0)与二次函数y=ax2+bx+c(a≠0),它们在同一平面直角坐标系中的大致图象是( )5.已知定义在R上的二次函数f(x),对任意x∈R,有f(4-x)=f(x),且函数在区间(2,+∞)上是增函数,则( )A.f(-25)<f(11)<f(80) B.f(80)<f(11)<f(-25)C.f(11)<f(-25)<f(80) D.f(-25)<f(80)<f(11)6.若函数y=x2-3x-4的定义域为[0,m],值域为25,44⎡⎤--⎢⎥⎣⎦,则m的取值范围是( )A.(0,4]B.3,42⎡⎤⎢⎥⎣⎦C.3,32⎡⎤⎢⎥⎣⎦D.3,2⎡⎫+∞⎪⎢⎣⎭7.抛物线y=-x2-2x+3与x轴的两个交点为A,B,顶点为C,则△ABC的面积为__________.8.设二次函数f(x)=ax2-2ax+c在区间[0,1]上是减函数,且f(m)≤f(0),则实数m 的取值范围是__________.9.若二次函数f(x)满足下列性质:(1)定义域为R,值域为[1,+∞);(2)图象关于x=2对称;(3)对任意x1,x2∈(-∞,0),若x1<x2,都有f(x1)>f(x2).请写出函数f(x)的一个解析式__________(只要写出一个即可).10.已知二次函数y=x2-2kx+k2+k-2.(1)当k=1时,写出函数图象的对称轴方程、单调区间;(2)当实数k为何值时,图象经过原点?(3)当实数k在什么范围取值时,函数图象的顶点在第四象限内?11.定义在R上的函数y=f(x)是偶函数,当x≥0时,f(x)=-4x2+8x-3.(1)当x<0时,求f(x)的解析式.(2)求y=f(x)的最大值,并写出f(x)在R上的单调区间(不必证明).参考答案1. 解析:此二次函数的图象开口向上,且对称轴为x =1,所以其单调增区间为[1,+∞).答案:B2. 解析:∵函数f (x )的图象开口向上,且对称轴x =2m>0, ∴f (x )在(-∞,0]上为减函数, ∴f (x )min =f (0)=4. 答案:A3. 解析:由题意,得Δ=36-4×2m <0,则m >92. 答案:B 4. 答案:D5. 解析:因为对任意x ∈R ,有f (4-x )=f (x ),所以二次函数f (x )图象的对称轴为直线x =2.因为函数在(2,+∞)上是增函数,所以抛物线开口向上.又因为11离2最近,80离2最远,所以f (11)最小,f (80)最大. 所以f (11)<f (-25)<f (80). 答案:C6. 解析:函数y =x 2-3x -4=32x ⎛⎫-⎪⎝⎭2-254,作出图象如图所示:由图象知对称轴为x =32,f (0)=-4,f 32⎛⎫⎪⎝⎭=-254,f (3)=-4, 若函数在[0,m ]上有最小值-254, 所以m ≥32. 若函数在[0,m ]上有最大值-4, 因为f (0)=f (3)=-4,所以m≤3.综上可知,32≤m≤3.答案:C7.解析:由y=-x2-2x+3=-(x+1)2+4,得点A(-3,0),B(1,0),C(-1,4),所以|AB|=|1-(-3)|=4,点C到边AB的距离为4,所以S△ABC=12×4×4=8.答案:88.解析:二次函数f(x)=ax2-2ax+c图象的对称轴为x=1.由f(x)在[0,1]上是减函数,可知a>0,所以f(m)≤f(0)可化为am2-2am+c≤c,即m2-2m≤0,得0≤m≤2.答案:[0,2]9.解析:二次函数的最小值为1,图象关于x=2对称,在(-∞,0)上为减函数,所以f(x)=(x-2)2+1(f(x)=a(x-2)2+1(a>0)均可).答案:f(x)=(x-2)2+1(f(x)=a(x-2)2+1(a>0)均可)10. 解:(1)当k=1时,函数y=x2-2x,函数图象的对称轴方程为x=1,函数的单调减区间为(-∞,1],单调增区间为[1,+∞).(2)当k2+k-2=0,即k=-2或k=1时,函数y=x2-2kx+k2+k-2的图象经过原点.(3)因为函数y=x2-2kx+k2+k-2图象的顶点坐标为(k,k-2),若函数图象的顶点在第四象限内,则20kk>⎧⎨<⎩,-,解得0<k<2.11. 解:(1)设x<0,则-x>0,f(-x)=-4(-x)2+8(-x)-3=-4x2-8x-3,∵f(x)是偶函数,∴f(-x)=f(x),∴x<0时,f(x)=-4x2-8x-3.(2)由(1)知f(x)=224(1)104(1)10x xx x⎧≥⎪⎨<⎪⎩--+,,-++,,∴y=f(x)有最大值f(1)=f(-1)=1.函数y=f(x)的单调增区间是(-∞,-1]和[0,1];单调减区间是[-1,0)和[1,+∞).。
二次函数图像与性质分析引言:二次函数是高中数学中的重要内容之一,它在数学和实际生活中都有着广泛的应用。
本文将对二次函数的图像和性质进行详细的分析,帮助读者更好地理解和应用二次函数。
一、二次函数的定义和一般形式二次函数是指形式为y=ax^2+bx+c的函数,其中a、b、c为常数且a≠0。
二次函数的图像通常是一个抛物线,其开口方向取决于a的正负。
二、二次函数的图像特征1. 抛物线的开口方向当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。
这是因为二次函数的一次导数是一次函数,其斜率为常数,因此二次函数的图像是平滑的曲线。
2. 抛物线的顶点二次函数的顶点是抛物线的最高点或最低点,其横坐标为-x轴对称的点,纵坐标为函数值最大或最小的点。
顶点的坐标可以通过求导数或使用顶点公式来确定。
3. 抛物线的对称轴二次函数的对称轴是通过顶点的垂直线,对称轴方程的形式为x=h,其中h为顶点的横坐标。
4. 抛物线的焦点和准线当抛物线开口向上时,焦点在对称轴上方,准线在对称轴下方;当抛物线开口向下时,焦点在对称轴下方,准线在对称轴上方。
焦点和准线的计算可以使用焦点公式和准线公式。
三、二次函数的性质分析1. 零点和因式分解二次函数的零点是函数值为0的横坐标,可以通过求解二次方程来求得。
而二次函数可以因式分解为两个一次因子的乘积形式,这在求解零点和分析函数性质时非常有用。
2. 增减性和极值二次函数的增减性取决于二次项系数a的正负。
当a>0时,函数在对称轴两侧递增;当a<0时,函数在对称轴两侧递减。
二次函数的极值即为顶点,当a>0时,函数有最小值;当a<0时,函数有最大值。
3. 零点和系数的关系二次函数的零点与系数之间存在着重要的关系。
对于形式为y=ax^2+bx+c的二次函数,其零点的和为-x轴对称点的横坐标的相反数,即x1+x2=-b/a;而零点的乘积等于常数项c的相反数,即x1*x2=c/a。
2.2.2 二次函数的性质与图象【目标要求】1.掌握二次函数的基本性质.2.理解二次函数和二次方程的关系.3.能利用二次函数的图象及性质解决有关问题. 【巩固教材——稳扎马步】1.二次函数)(x f =12++x x 的对称轴是 ( ) A.x=21 B.x=-21 C.y=21D.没有对称轴 2.已知二次函数的顶点是(2,1)且与x轴交与(3,0),则此二次函数 ( ) A.1142-+=x x y B.2142+--=x x y C.342-+-=x x y D.342+-=x x y3.已知二次函数)(x f =a ax x 322-+在区间()3,∞-递增,在[)+∞,3递减,则a的值为()A.3 B.-3 C.23 D.-23 4.函数)(x f =322++-x x 的定义域是 ( ) A.(][)+∞⋃-∞-,31, B.(][)+∞⋃-∞-,13, C.[]1,3- D.[]3,1- 【重难突破——重拳出击】5.若函数6)1(2)(2+--=x a x x f 在区间(]4,∞-上递减,那么实数a的取值范围是( )A.[)+∞,3 B.(]3,-∞- C.(]5,∞- D.[)+∞-,3 6.若二次函数b x a ax x f +-=2242)(对任意的实数x都满足)3()3(x f x f -=+,则实数a的值为 ( ) A.23 B.-23C.-3 D.3 7.已知函数b ax x x f ++=2)(满足0)2()1(==f f ,则)1(-f = ( ) A.3 B.-3 C.6 D.-6 8.已知二次函数开口向上且对称轴为x=2,则)21(f 与)3(f 的大小关系为 ( )A.)21(f <)3(f B.)21(f >)3(fC.)21(f =)3(f D.不确定9.函数322+-=x x y 在区间[]m ,0上最小值是2最大值是3,则m的取值范围是( ) A.[)+∞,1 B.[]2,0 C.(]2,∞- D.[]2,110.函数c bx ax y ++=2与ab b ax y (+=≠0)的图象只可能是 ( )A B C D11.若函数)(x f =962+-mx mx 的定义域是R,则实数m的取值范围是 ( )A.(][)+∞⋃∞-,10, B.[)+∞,1 C.[]1,0 D.(]1,012.设βα,是关于x的方程622++-a ax x 的两个实根,则()()2211-+-βα 的最小值是 ( ) A.4112- B.18 C.8 D.43 【巩固提高——登峰揽月】13.已知:二次函数)(x f 满足)2(f =-1,)1(-f =-1且)(x f 的最大值是8,试求此二次函数.14.已知函数)(x f =222++ax x ,x[]5,5-∈.(1)当a=-1时,求函数)(x f 的最大值与最小值.(2)求实数a的取值范围,使y=)(x f 在区间[-5,5]上是单调函数. 【课外拓展——超越自我】15.设)(x f =222+-ax x ,当x[)+∞-∈,1时,)(x f ≥a恒成立,求a的取值范围.16.设a>0,x[]1,1-∈时,函数b ax x y +--=2有最小值-1,最大值1,求使函数取得最小值和最大值时相应的x值.2.2.2 二次函数的性质与图象13.(解法1)利用二次函数的一般式设)(x f =c bx ax ++2(a≠0),由题意得⎪⎪⎪⎩⎪⎪⎪⎨⎧=--=+--=++84411242bb ac c b a c b a ,解之得⎪⎩⎪⎨⎧==-=744c b a 所以所求二次函数是y=-4x2+4x+7 (解法2)利用二次函数顶点式设)(x f =n m x a +-2)(,因为)1()2(-=f f ,所以抛物线对称轴是x=2)1(2-+ =21,所以m=21,又根据题意函数有最大值为n=8,所以)(x f y ==8)21(2+-x a .因为)2(f =-1,所以1)212(2-=-a ,解之得a=-4.所以)(x f =8)21(42+--x =7442++-x x .14.(1)a=-1时,)(x f =222+-x x =1)1(2+-x ,x[]5,5-∈,所以x=1时,)(x f 的最小值是1,x=-5时,)(x f 的最大值是37.(2)函数)(x f =222)(a a x -++图象对称轴是x=-a,因为)(x f 在区间[-5,5]上是单调函数,所以-a≤-5或-a≥5,故a的取值范围是a≤-5或a≥5. 15.由题意,222+-ax x ≥a在[)+∞-,1恒成立,)(x f =222+-ax x =222)(a a x -+-,当a(]1,-∞-∈时,)(x f 得最小值是32)1(+=-a f ,所以a32+≤a ,解得13-≤≤-a ,当a[)+∞-∈,1时,)(x f 的最小值是22a -,所以a22a -≤,解得11≤≤-a ,由以上知,13≤≤-a .16.y=)(x f =-(x+2a )2+42a +b由a>0,抛物线对称轴x=02<-a ,)1(min -=f y =-1所以a-b=0,对y取得最大值的情况,可有 (1)若12-<-a,即a>2,则)1(max -=f y ,由)1(-f =1得a+b=2,联立a-b=0得a=b=1与a>2矛盾,应舍去.(2)若021<-≤-a,即20≤<a ,则m ax y =f(-2a )=1得0142=-+b a 与a-b=0联立得a=b-2+22,所以x=1时,y最取小值,x=1-2时,y取最大值.。
高考数学中的二次函数图像与性质总结二次函数是高中数学中最重要的一章之一,也是高考数学中出现频率最高的知识点之一。
二次函数是关于自变量的二次多项式,其一般式为:$ y=ax^2+bx+c $。
本文将从二次函数的图像以及性质两个方面进行总结。
一、二次函数图像二次函数的图像是一个通常被称为“开口”的抛物线。
其开口的方向、顶点、轴线等均与函数中的系数有关。
1、开口方向:当 $ a > 0 $ 时,抛物线开口向上;当 $ a < 0 $ 时,抛物线开口向下。
在解决应用问题时,我们需要根据问题中的实际含义来确定开口方向。
2、顶点:二次函数的图像上有一个最高点或最低点,被称为顶点。
顶点坐标为 $ ( -\frac{b}{2a}, -\frac{\Delta}{4a} ) $ ,其中 $ \Delta =b^2-4ac $ 称作判别式。
当 $ \Delta > 0 $ 时,二次函数有两个实数根,此时抛物线与$ x $ 轴有两个交点,顶点处为最低点或最高点;当 $ \Delta = 0 $ 时,二次函数有一个实数根,此时抛物线与$ x $ 轴有一个交点,顶点处在此时的交点处;当 $ \Delta < 0 $ 时,二次函数无实数根,此时抛物线与 $ x $ 轴没有交点,顶点处为反比例函数的最高点或最低点。
在实际问题中,顶点常常代表着最优解,需要我们加以研究。
3、对称轴:在二次函数的图像中,顶点是对称轴的中心点。
对称轴的方程为 $ x = -\frac{b}{2a} $。
在实际问题中,通过对称轴我们可以更好的分析函数的性质,例如计算函数的最值、判断函数的增减性等。
二、二次函数性质二次函数的性质多种多样,常常被用于实际问题中的优化模型以及图像的分析。
本文将从函数的零点、单调性、极值、函数值域四个方面进行总结。
1、零点:二次函数的零点是指函数图像与 $ x $ 轴相交的点。
我们可以通过化二次函数的标准式、配方法和公式法等多种方法求得函数的零点。
二次函数的基本性质和图像二次函数是高中数学中的一种重要函数,它的图像形状为抛物线。
在学习二次函数之前,我们需要了解一些基本性质和图像特征。
本文将介绍二次函数的基本性质和图像特点,帮助读者更好地理解和掌握这一概念。
一、二次函数的标准形式二次函数的标准形式为:f(x) = ax² + bx + c其中,a、b、c为实数,且a≠0。
二、二次函数的图像特点1. 开口方向二次函数的开口方向由二次项的系数a的正负确定。
当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。
2. 最值点当二次函数的开口方向向上时,函数的最值点为抛物线的顶点,记作(h,k),其中h为顶点的横坐标,k为顶点的纵坐标。
当二次函数的开口方向向下时,函数的最值点为抛物线的谷点。
3. 对称轴二次函数的对称轴是通过抛物线的最值点和对称轴的直角中点所得直线。
对称轴与x轴垂直,并且通过抛物线的顶点。
4. 零点二次函数的零点即函数的根,可以通过求解二次方程ax² + bx + c = 0来得到。
二次函数的零点可以有0个、1个或2个零点,取决于二次方程的判别式b²-4ac 的值。
三、二次函数的图像画法和变换1. 平移变换对于二次函数f(x) = ax² + bx + c,当x平移h个单位和y平移k 个单位时,变换后的函数表达式为f(x-h)+k。
2. 垂直方向的伸缩变换对于二次函数f(x) = ax² + bx + c,当a变为ka(k≠0)时,函数的图像在y轴方向上发生伸缩。
当a>1时,抛物线变瘦高;当0<a<1时,抛物线变粗矮;当a<0时,抛物线变为开口向下。
3. 水平方向的伸缩变换对于二次函数f(x) = ax² + bx + c,当b变为kb(k≠0)时,函数的图像在x轴方向上发生伸缩。
当b>1时,抛物线朝y轴正方向平移;当0<b<1时,抛物线朝y轴负方向平移;当b<0时,抛物线左右翻转。