用R软件做聚类分析的例子
- 格式:ppt
- 大小:755.54 KB
- 文档页数:95
R语言聚类分析实例教程R语言是一种广泛应用于数据分析和统计建模的开源编程语言。
聚类分析是一种无监督学习的技术,可以帮助我们发现数据中的隐藏模式和结构。
下面是一个使用R语言进行聚类分析的实例教程。
首先,我们使用一个虚拟的数据集来说明聚类分析的步骤。
假设我们有一个包含100个样本和5个变量的数据集。
我们可以使用以下代码来生成这个数据集:```Rset.seed(123)data <- matrix(rnorm(100*5), ncol = 5)```接下来,我们需要对数据进行预处理。
这包括标准化数据以确保每个变量具有相似的尺度。
我们可以使用以下代码对数据进行标准化:```Rscaled_data <- scale(data)```接下来,我们可以使用K均值聚类算法来对数据进行聚类。
K均值算法将数据集分成K个不同的簇,每个簇包含与其质心最近的样本。
我们可以使用以下代码来执行K均值聚类:```Rkmeans_result <- kmeans(scaled_data, centers = 3)```在这个例子中,我们将数据分成3个簇。
请注意,你可以根据数据的特点选择不同的簇数。
接下来,我们可以检查聚类结果,并将其可视化。
我们可以使用以下代码来绘制数据点,并使用不同的颜色表示不同的聚类:```Rlibrary(ggplot2)df <- data.frame(scaled_data, cluster =as.factor(kmeans_result$cluster))ggplot(df, aes(x = X1, y = X2, color = cluster)) +geom_point( +labs(x = "Variable 1", y = "Variable 2", title = "Cluster Analysis")```上述代码创建了一个散点图,其中x轴和y轴表示数据集的两个变量,颜色表示不同的聚类。
r语言dbscan聚类实例我们需要明确DBSCAN算法的基本原理。
DBSCAN算法通过定义一个距离阈值ε和一个最小样本数量MinPts来划分数据。
具体而言,算法从数据集中任意选择一个未被访问的样本点,然后找出其ε-邻域内的所有样本点。
如果该ε-邻域内的样本点数量大于等于MinPts,那么将这些样本点作为一个簇集,然后再递归地寻找这些样本点的ε-邻域内的其他样本点。
如果ε-邻域内的样本点数量小于MinPts,那么将该样本点标记为噪声点。
最终,所有的簇集将被找到,而噪声点将被排除在外。
在R语言中,我们可以使用dbscan包来实现DBSCAN算法。
首先,我们需要安装并加载dbscan包。
可以使用以下命令完成安装和加载:```Rinstall.packages("dbscan")library(dbscan)```接下来,我们将使用一个示例数据集来演示DBSCAN算法的使用。
假设我们有一个二维数据集,其中包含了一些簇集和一些噪声点。
我们可以使用以下代码生成示例数据集:```Rset.seed(123)n <- 1000x <- cbind(runif(n), runif(n))x <- rbind(x, matrix(rnorm(n*2), ncol=2))```接下来,我们可以使用dbscan函数来执行DBSCAN算法。
该函数的主要参数包括数据集x、距离阈值ε和最小样本数量MinPts。
以下是执行DBSCAN算法的代码:```Rdbscan_result <- dbscan(x, eps = 0.1, MinPts = 5)```执行完上述代码后,dbscan_result将包含DBSCAN算法的结果。
具体而言,dbscan_result$cluster将包含每个样本点所属的簇集编号,而dbscan_result$noise将包含被标记为噪声点的样本点。
我们可以使用以下代码查看聚类结果和噪声点:```R# 查看簇集编号clusters <- dbscan_result$clusterprint(clusters)# 查看噪声点noise <- dbscan_result$noiseprint(noise)```除了上述代码外,我们还可以使用其他函数来可视化聚类结果。
咨询QQ:3025393450有问题百度搜索“”就可以了欢迎登陆官网:/datablogR语言k-Shape时间序列聚类方法对股票价格时间序列聚类数据分析报告来源:大数据部落| 有问题百度一下“”就可以了这次,我们将使用k-Shape时间序列聚类方法检查与我们有业务关系的公司的股票收益率的时间序列。
企业对企业交易和股票价格在本研究中,我们将研究具有交易关系的公司的价格变化率的时间序列的相似性,而不是网络结构的分析。
由于特定客户的销售额与供应商公司的销售额之比较大,当客户公司的股票价格发生变化时,对供应商公司股票价格的反应被认为更大。
k-Shapek-Shape [Paparrizos和Gravano,2015]是一种关注时间序列形状的时间序列聚类方法。
在我们进入k-Shape之前,让我们谈谈时间序列的不变性和常用时间序列之间的距离。
时间序列距离测度欧几里德距离(ED)和动态时间扭曲(DTW)通常用作距离测量值,用于时间序列之间的比较。
咨询QQ:3025393450有问题百度搜索“”就可以了欢迎登陆官网:/datablog两个时间序列x =(x1,...,xm)和y =(y1,...,ym)的ED,其中m是系列的长度如下。
DTW是ED的扩展,允许局部和非线性对齐。
k-Shape提出称为基于形状的距离(SBD)的距离。
k-Shape算法k-Shape聚类侧重于缩放和移位的不变性。
k-Shape有两个主要特征:基于形状的距离(SBD)和时间序列形状提取。
SBD互相关是在信号处理领域中经常使用的度量。
使用FFT(+α)代替DFT来提高计算效率。
归一化互相关(系数归一化)NCCc是互相关系列除以单个系列自相关的几何平均值。
检测NCCc最大的位置ω。
咨询QQ:3025393450有问题百度搜索“”就可以了欢迎登陆官网:/datablogSBD取0到2之间的值,两个时间序列越接近0就越相似。
形状提取通过SBD找到时间序列聚类的质心向量有关详细的表示法,请参阅文章。
R软件在多元统计分析教学中的应用研究摘要:本文结合实例介绍了R软件在多元统计分析中的应用,具体内容包括R软件在聚类分析、主成分分析、典型相关分析等方面的应用。
关键词:R软件聚类分析主成分分析典型相关分析在统计软件方面,常用的统计软件有SPSS、SAS、STAT、R、S-PLUS等。
R软件是一个自由、免费、开源的软件,是一个具有强大统计分析功能和优秀统计制图功能的统计软件,现已是国内外众多统计学者喜爱的数据分析工具。
本文结合实例介绍了R软件在多元统计分析中的应用,具体内容包括R软件在聚类分析、主成分分析、对应分析等方面的应用。
1 在聚类分析教学中的应用聚类分析又称群分析,它是研究(样品或指标)分类问题的一种多元统计方法,所谓类,通俗地说,就是指相似元素的集合。
在社会经济领域中存在着大量分类问题,比如若对某些大城市的物价指数进行考察,而物价指数很多,有农用生产物价指数、服务项目价指数、食品消费物价指数、建材零售价格指数等等。
由于要考察的物价指数很多,通常先对这些物价指数进行分类。
总之,需要分类的问题很多,因此聚类分析这个有用的工具越来越受到人们的重视,它在许多领域中都得到了广泛的应用。
聚类分析内容非常丰富,有系统聚类法、有序样品聚类法、动态聚类法、模糊聚类法、图论聚类法、聚类预报法等。
R软件及其相关包提供了各种聚类方法,主要是系统聚类方法、快速聚类方法、模糊聚类方法,常用的是系统聚类方法。
R软件实现系统聚类的程序如下:Hclust(d,method=“complete”)其中d是由“dist”构成的距离结构,具体包括绝对值距离、欧氏距离、切比雪夫距离、马氏距离、兰氏距离等,默认为欧氏距离;method 包括类平均法、重心法、中间距离法最长距离法最短距离法、离差平方和法等,默认是最长距离法。
例1:表1是广东省2008年各市居民家庭平均每人全年消费性支出,利用所给数据对各市进行系统聚类。
R语言程序如下:> X<-read.delim(“clipboard”,header=T)> s(X)<-c(“广州”,“深圳”,“佛山”,“东莞”,“顺德”,“中山”,“江门”,“茂名”,“湛江”,“珠海”,“汕头”,“惠州”,“肇庆”,“揭阳”,“韶关”,“梅州”,“阳江”)> d<-dist(scale(X))> hc1<-hc lust(d,”single”)#最短距离法> hc2<-hclust(d,”complete”)#最长距离法> hc3<-hclust(d,”median”)#中间距离法> hc4<-hclust(d,”ward”)#Ward法> opar<-par(mfrow=c(2,2))> plot(hc1,hang=-1);plot(hc2,hang=-1)> plot(hc3,hang=-1);plot(hc4,hang=-1)2 在主成分分析教学中的应用在实际经济生活中,有时需要处理的是多变量(多指标)问题。
有问题到百度搜索“大数据部落”就可以了欢迎登陆官网:/datablog我国城镇居民人均消费支出研究有问题到百度搜索“大数据部落”就可以了欢迎登陆官网:/datablog摘要:近年来,随着我们经济的快速发展,居民的消费结构也发生了巨大变化,人们开始根据自身的需求选择多种多样的商品,而且人们在实现物质需求满足的同时,还在不断追求精神需求的满足。
对此,本文先使用R语言对城镇居民人均总消费支出以及恩格尔系数的总体现状进行数据可视化,接着运用主成分和聚类分析法对我国31个省级行政区(不含港澳台)城镇居民消费结构进行综合评价。
共提取2个主成分,分别命名为日常必需品消费成分、非日常必需品成分,并将31个省区市主成分综合得分进行排名和聚类分析,结果分为四类。
最终得出相关结论,体现不同地区的经济发展、城镇居民消费结构、消费偏好的差异性以及其中的联系。
关键词:城镇居民人均消费;数据可视化;主成分分析;聚类分析有问题到百度搜索“大数据部落”就可以了欢迎登陆官网:/datablog有问题到百度搜索“大数据部落”就可以了欢迎登陆官网:/datablog目录一、引言 (4)1.1研究背景及意义 (4)1.2研究方法及数据来源 (4)二、我国城镇居民人均消费支出现状分析 (5)2.1各地区城镇居民人均总消费支出 (5)2.2恩格尔系数分析 (6)三、城镇居民人均消费支出的统计建模分析 (8)3.1主成分分析 (8)3.1.1计算相关矩阵 (8)3.1.2计算相关矩阵的特征值和主成分负荷 (8)3.1.3确定主成分 (9)3.1.4主成分得分 (9)3.1.5计算主成分C1,C2的系数 (10)3.1.6各省、市、自治区的主成分得分排名 (10)3.1.7主成分作图 (12)3.2聚类分析 (13)3.2.1聚类分析结果分析 (13)四、结论及建议 (16)有问题到百度搜索“大数据部落”就可以了欢迎登陆官网:/datablog附录: (17)―、引言1.1研究背景及意义人均消费支出指居民用于满足家庭日常生活消费的全部支出,包括购买实物支出和服务性消费支出。
聚类分析目录一.系统聚类 (1)二.快速聚类(k均值聚类) (7)一.系统聚类R中,系统聚类的函数为hclust(),dist()函数用来计算距离矩阵,plot()函数可以画出系统聚类的谱系图,rect.hclust()函数用来给定类的个数或给定阈值来确定聚类的情况。
(1)dist()的使用方法:dist(x,method="euclidean",diag=F,upper=F,p=2)其中,x为数据矩阵或数据框。
method为计算方法,包括:euclidean(欧氏距离)、maximum (切比雪夫距离)、manhattan(绝对值距离)、nberra(兰氏距离)、minkoeski(明氏距离)。
diag为是否包含对角线元素。
upper为是否需要上三角。
p为明氏距离的幂次。
(2)hclust()的使用方法:hclust(d,method="ward.D",….)其中,d为距离矩阵。
method为系统聚类方法:single(最短距离法)、complete(最长距离法,缺省)、average(类平均法)、median(中间距离法)、centroid(重心法)、ward.D(ward 法)。
(3)plot()的使用方法:plot(x, labels = NULL, hang = 0.1,axes = TRUE, frame.plot = FALSE, ann = TRUE,main = "Cluster Dendrogram",sub = NULL, xlab = NULL, ylab = "Height", ...)其中,x是由hclust()函数生成的对象。
hang是表明谱系图中各类所在的位置,当hang取负值时,谱系图中的类从底部画起。
其他参数见帮助文档。
(4)rect.hclust()的使用方法:rect.hclust(tree, k = NULL, which = NULL, x = NULL, h = NULL,border = 2, cluster = NULL)其中,tree是由hclust()生成的结构。
####################################################################### ############ 聚类分析####################################################################### a=cbind(农业总产值 ,林业总产值, 牧业总产值, 渔业总产值, 农村居民家庭拥有生产性固定资产原值, 农村居民家庭经营耕地面积)# ⭞↚⭞Ѡ⭞䠅㚐㊱rownames(a)=mydata$地区detach(mydata)hc1=hclust(dist(scale(a)),"ward.D2")cbind(hc1$merge,hc1$height)### [,1] [,2] [,3]## [1,] -22 -24 0.1562347## [2,] -2 -29 0.4954046## [3,] -12 -20 0.6158525## [4,] -4 1 0.7459837## [5,] -5 -7 0.8431761## [6,] -27 4 0.8502919## [7,] -28 -30 0.9238256## [8,] 2 7 0.9982795## [9,] -1 -9 1.0586066## [10,] -14 3 1.0996796## [11,] -16 -23 1.1292437## [12,] -25 10 1.2758523## [13,] -13 -19 1.4055256## [14,] -3 11 1.4555952## [15,] -21 6 1.6495578## [16,] -10 -17 1.7462669## [17,] 9 15 1.7988319## [18,] -18 12 1.8498860## [19,] -6 -11 1.9536216## [20,] -8 5 2.1881307## [21,] -15 16 2.5009589## [22,] -31 20 2.7312571## [23,] 13 18 3.0129164## [24,] 8 17 3.0616119## [25,] 19 23 3.2580779## [26,] 14 21 4.3774794## [27,] -26 22 5.2122229## [28,] 25 26 6.0403304## [29,] 24 27 8.3310723## [30,] 28 29 11.4082257plot(hc1,hang=-2,ylab="欧氏距离",main="ward ")cutree(hc1,3)## 北京天津河北山西内蒙辽宁吉林黑龙江上海江苏## 1 1 2 1 3 2 3 3 1 2## 浙江安徽福建江西山东河南湖北湖南广东广西## 2 2 2 2 2 2 2 2 2 2## 海南重庆四川贵州云南西藏陕西甘肃青海宁夏## 1 1 2 1 2 3 1 1 1 1## 新疆## 3library(NbClust)# 加载包res<-NbClust(a, distance ="euclidean", min.nc=2, max.nc=8,method ="complete", index ="ch")res$All.index## 2 3 4 5 6 7 8## 22.4859 64.2952 95.0505 91.2070 112.2167 126.6607 125.0580res$Best.nc## Number_clusters Value_Index## 7.0000 126.6607res$Best.partition## 北京天津河北山西内蒙辽宁吉林黑龙江上海江苏## 1 2 2 3 4 5 5 4 6 1## 浙江安徽福建江西山东河南湖北湖南广东广西## 5 1 1 3 2 1 3 3 3 1## 海南重庆四川贵州云南西藏陕西甘肃青海宁夏## 1 1 1 1 2 7 1 2 5 5## 新疆## 4####################################################################### ############ 因子分析####################################################################### x=ascale(x,center=T,scale=T)## 农业总产值林业总产值牧业总产值渔业总产值## 北京 -1.22777296 -0.68966546 -1.0576108 -0.717868590## 天津 -1.20072019 -1.32628581 -1.1287831 -0.587405030## 河北 1.44015787 -0.40768816 1.2735925 -0.276307864## 山西 -0.60736290 -0.39313054 -0.8459665 -0.730089499## 内蒙 -0.31173176 -0.16449038 0.3536925 -0.682760278## 辽宁 0.02317599 0.21376291 1.0886323 0.905582647## 吉林 -0.31664133 -0.16033106 0.3705164 -0.661159286## 黑龙江 0.73000004 0.28496065 0.6928325 -0.543827843## 上海 -1.22304555 -1.24358878 -1.1769433 -0.598687930## 江苏 1.32304764 -0.14014613 0.5106958 2.558246143## 浙江 -0.25945707 0.37842297 -0.4799669 1.088655075## 安徽 0.32193142 1.20245730 0.3549653 0.277626262## 福建 -0.22816878 1.77681021 -0.5790521 1.668371030## 江西 -0.46544975 1.43990544 -0.1820088 0.139953438## 山东 2.22835882 -0.05133246 2.0610374 2.643122498## 河南 2.22683767 0.36264203 2.0166955 -0.521101240## 湖北 0.88705181 -0.13647615 0.6684891 0.925656025## 湖南 1.03609706 1.81987138 0.8945726 -0.002409428## 广东 0.65132842 1.36442604 0.3760463 1.697020485## 广西 0.19109441 1.64358969 0.2862654 0.136415807## 海南 -0.95958625 0.32594217 -0.9698633 -0.119446069## 重庆 -0.61246376 -0.82851329 -0.6191076 -0.632081027## 四川 1.13921636 0.49292656 2.0375425 -0.313747797## 贵州 -0.59146827 -0.69749477 -0.6664339 -0.677051827## 云南 -0.10569354 1.40222691 0.0524867 -0.583545796## 西藏 -1.33060989 -1.32909946 -1.1967954 -0.752065694## 陕西 0.01099770 -0.64550329 -0.4072439 -0.713500151## 甘肃 -0.48272891 -1.11489458 -0.9441448 -0.747831257## 青海 -1.27264229 -1.30451055 -1.0825979 -0.751154486## 宁夏 -1.16021392 -1.24089745 -1.1284759 -0.716850181## 新疆 0.14646191 -0.83389594 -0.5730687 -0.711758136## 农村居民家庭拥有生产性固定资产原值农村居民家庭经营耕地面积## 北京 -0.521919855 -0.69519658 ## 天津 -0.036498322 -0.33578982 ## 河北 0.004069841 -0.23262677 ## 山西 -0.824825602 -0.02962851 ## 内蒙 1.179852466 2.59936535## 辽宁 0.730243656 0.39633505## 吉林 0.724094855 1.89053536## 黑龙江 1.396721068 3.65096289## 上海 -1.404513394 -0.77506475 ## 江苏 -0.340308064 -0.44560856 ## 浙江 0.499884752 -0.68188522 ## 安徽 -0.279565363 -0.23262677 ## 福建 -0.618739413 -0.61865625 ## 江西 -0.805278639 -0.33911766 ## 山东 0.133404538 -0.31582278 ## 河南 -0.500048919 -0.32247846 ## 湖北 -0.721961668 -0.29252790 ## 湖南 -0.917381131 -0.45559208 ## 广东 -0.957062704 -0.68521306 ## 广西 -0.615649655 -0.40567447 ## 海南 -0.663204069 -0.58537785 ## 重庆 -0.570175555 -0.43229719 ## 四川 -0.420353046 -0.48221480 ## 贵州 -0.604823220 -0.46890344 ## 云南 0.118332502 -0.32913414 ## 西藏 3.590383141 -0.23262677 ## 陕西 -0.572497480 -0.35575687 ## 甘肃 0.165991341 0.04358397## 青海 0.415065901 -0.25259382 ## 宁夏 0.655330865 0.36638449## 新疆 1.761431173 1.05524743 ## attr(,"scaled:center")## 农业总产值林业总产值## 1514.206129 111.20612 9## 牧业总产值渔业总产值## 877.092581 280.83903 2## 农村居民家庭拥有生产性固定资产原值农村居民家庭经营耕地面积## 17865.076774 2.58903 2## attr(,"scaled:scale")## 农业总产值林业总产值## 1097.854553 81.74416 7## 牧业总产值渔业总产值## 683.552567 373.13101 0## 农村居民家庭拥有生产性固定资产原值农村居民家庭经营耕地面积## 9767.757883 3.00495 2cor(x)### 农业总产值林业总产值牧业总产值## 农业总产值 1.00000000 0.4304367 0.9148545 ## 林业总产值 0.43043666 1.0000000 0.4593615 ## 牧业总产值 0.91485445 0.4593615 1.0000000 ## 渔业总产值 0.51598365 0.4351225 0.4103977 ## 农村居民家庭拥有生产性固定资产原值 -0.16652881 -0.3495913 -0.1017802## 农村居民家庭经营耕地面积 0.04040478 -0.0961515 0.1426829## 渔业总产值## 农业总产值 0.5159836## 林业总产值 0.4351225## 牧业总产值 0.4103977## 渔业总产值 1.0000000## 农村居民家庭拥有生产性固定资产原值 -0.2131248## 农村居民家庭经营耕地面积 -0.2669966## 农村居民家庭拥有生产性固定资产原值## 农业总产值 -0.1665288 ## 林业总产值 -0.3495913 ## 牧业总产值 -0.1017802 ## 渔业总产值 -0.2131248 ## 农村居民家庭拥有生产性固定资产原值 1.0000000 ## 农村居民家庭经营耕地面积 0.5316341 ## 农村居民家庭经营耕地面积## 农业总产值 0.04040478## 林业总产值 -0.09615150## 牧业总产值 0.14268286## 渔业总产值 -0.26699659## 农村居民家庭拥有生产性固定资产原值 0.53163410## 农村居民家庭经营耕地面积 1.00000000FA=factanal(x,3,scores="regression")FA#### Call:## factanal(x = x, factors = 3, scores = "regression")#### Uniquenesses:## 农业总产值林业总产值## 0.134 0.64 9## 牧业总产值渔业总产值## 0.005 0.00 5## 农村居民家庭拥有生产性固定资产原值农村居民家庭经营耕地面积## 0.005 0.61 0#### Loadings:## Factor1 Factor2 Factor3## 农业总产值 0.902 0.231## 林业总产值 0.460 -0.274 0.253## 牧业总产值 0.989 0.100## 渔业总产值 0.335 -0.172 0.924## 农村居民家庭拥有生产性固定资产原值 -0.185 0.980## 农村居民家庭经营耕地面积 0.120 0.569 -0.227#### Factor1 Factor2 Factor3## SS loadings 2.164 1.396 1.032## Proportion Var 0.361 0.233 0.172## Cumulative Var 0.361 0.593 0.765#### The degrees of freedom for the model is 0 and the fit was 0.0338A=FA$loadings#D=diag(FA$uniquenesses)#cancha=cor(x)-A%*%t(A)-Dsum(cancha^2)## [1] 0.01188033FA$scores## Factor1 Factor2 Factor3## 北京 -0.9595745 -0.700059511 -0.55760316## 天津 -1.0947804 -0.236528598 -0.28377148## 河北 1.3398849 0.269241913 -0.72734450## 山西 -0.6949304 -0.952525400 -0.71168863## 内蒙 0.3022926 1.274620864 -0.61477840## 辽宁 0.9086974 0.898645857 0.80686141## 吉林 0.3617131 0.823049845 -0.69568729## 黑龙江 0.6377695 1.558056539 -0.53064438## 上海 -1.0020542 -1.600313046 -0.58279912## 江苏 0.2978404 -0.338175607 2.58332275## 浙江 -0.6586307 0.351125849 1.47562686## 安徽 0.3633716 -0.220261996 0.12915299## 福建 -0.7017677 -0.799773443 1.90201088## 江西 -0.1252221 -0.843258690 0.03964935## 山东 1.8098550 0.433178408 2.27098864## 河南 2.1841524 -0.072629248 -1.35570609## 湖北 0.6625677 -0.618906179 0.64211420## 湖南 1.0200226 -0.733225411 -0.50075826## 广东 0.3057090 -0.945233885 1.54225085## 广西 0.3420343 -0.562216144 -0.07785160## 海南 -0.9131785 -0.847172077 0.04381513## 重庆 -0.5087268 -0.661768675 -0.62025496## 四川 2.1397385 -0.003827953 -1.11031362## 贵州 -0.5463126 -0.703696201 -0.66210885## 云南 0.1044516 0.146947680 -0.63418799## 西藏 -1.5214222 3.342858193 0.36144124## 陕西 -0.2687306 -0.616728372 -0.78286620## 甘肃 -0.8904189 0.010720625 -0.48059064## 青海 -1.0791206 0.225711752 -0.37974261## 宁夏 -1.1481591 0.456190239 -0.27546552## 新疆 -0.6670714 1.665952673 -0.21307102FA=factanal(x,3,scores="regression")#FA#### Call:## factanal(x = x, factors = 3, scores = "regression")#### Uniquenesses:## 农业总产值林业总产值## 0.134 0.64 9## 牧业总产值渔业总产值## 0.005 0.00 5## 农村居民家庭拥有生产性固定资产原值农村居民家庭经营耕地面积## 0.005 0.61 0#### Loadings:## Factor1 Factor2 Factor3## 农业总产值 0.902 0.231## 林业总产值 0.460 -0.274 0.253## 牧业总产值 0.989 0.100## 渔业总产值 0.335 -0.172 0.924## 农村居民家庭拥有生产性固定资产原值 -0.185 0.980## 农村居民家庭经营耕地面积 0.120 0.569 -0.227#### Factor1 Factor2 Factor3## SS loadings 2.164 1.396 1.032## Proportion Var 0.361 0.233 0.172## Cumulative Var 0.361 0.593 0.765#### The degrees of freedom for the model is 0 and the fit was 0.0338 biplot(FA$scores,FA$loadings)######################################################################## ########## 主成分分析####################################################################### # mydata<-read.csv("cosume.csv",header=TRUE)x=aPCA=princomp(x)# 分分析summary(PCA)## Importance of components:## Comp.1 Comp.2 Comp.3 Comp.4## Standard deviation 9611.2440729 1.248877e+03 3.201426e+02 2.211289e+02## Proportion of Variance 0.9817713 1.657641e-02 1.089277e-03 5.1968 75e-04## Cumulative Proportion 0.9817713 9.983477e-01 9.994370e-01 9.9995 67e-01## Comp.5 Comp.6## Standard deviation 6.377898e+01 2.299907e+00## Proportion of Variance 4.323210e-05 5.621753e-08## Cumulative Proportion 9.999999e-01 1.000000e+00plot(PCA)screeplot(PCA,type="lines")# ⻄⭞ഴPCA$loadings##### Loadings:## Comp.1 Comp.2 Comp.3 Comp.4 Comp. 5## 农业总产值 0.847 0.529 ## 林业总产值 -0.994 ## 牧业总产值 0.510 0.340 -0.786 ## 渔业总产值 0.147 -0.939 -0.304 ## 农村居民家庭拥有生产性固定资产原值 1.000 ## 农村居民家庭经营耕地面积## Comp.6## 农业总产值## 林业总产值## 牧业总产值## 渔业总产值## 农村居民家庭拥有生产性固定资产原值## 农村居民家庭经营耕地面积 1.000#### Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6## SS loadings 1.000 1.000 1.000 1.000 1.000 1.000## Proportion Var 0.167 0.167 0.167 0.167 0.167 0.167## Cumulative Var 0.167 0.333 0.500 0.667 0.833 1.000diag(1/sqrt(diag(cor(x))))%*%eigen(cor(x))$vectors%*%diag(sqrt(eigen(co r(x))$values))# ⭞⭞䠅фѱᡆ分的⭞ީ⭞䱫## [,1] [,2] [,3] [,4] [,5]## [1,] 0.8748914 0.33002393 -0.05962134 -0.2919961 0.03333473## [2,] 0.7199843 -0.09695761 0.39747812 0.5280225 0.18691501## [3,] 0.8358325 0.42778470 0.06215717 -0.2657004 0.10009450## [4,] 0.7239860 -0.13749802 -0.54651176 0.3113087 -0.24595467## [5,] -0.4283184 0.72257821 -0.37626680 0.2240839 0.32017966## [6,] -0.1942551 0.86197649 0.26492953 0.1648656 -0.34904716## [,6]## [1,] 0.189001599## [2,] 0.022088666## [3,] -0.184133750## [4,] -0.029268951## [5,] 0.010900009## [6,] 0.007698218print(-loadings(PCA),cutoff=0.001)#### Loadings:## Comp.1 Comp.2 Comp.3 Comp.4 Comp. 5## 农业总产值 0.019 -0.847 0.041 -0.529 0.027 ## 林业总产值 0.003 -0.026 0.036 0.096 0.994 ## 牧业总产值 0.007 -0.510 -0.340 0.786 -0.077 ## 渔业总产值 0.008 -0.147 0.939 0.304 -0.068 ## 农村居民家庭拥有生产性固定资产原值 -1.000 -0.021 0.006 -0.002 0.002 ## 农村居民家庭经营耕地面积 -0.003 0.003 ## Comp.6## 农业总产值## 林业总产值 0.003## 牧业总产值 0.001## 渔业总产值 -0.002## 农村居民家庭拥有生产性固定资产原值## 农村居民家庭经营耕地面积 -1.000#### Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6## SS loadings 1.000 1.000 1.000 1.000 1.000 1.000## Proportion Var 0.167 0.167 0.167 0.167 0.167 0.167## Cumulative Var 0.167 0.333 0.500 0.667 0.833 1.000####################################################################### ##### 条形图####################################################################### country<-mydata$地区percent<-mydata$农业总产值d<-data.frame(country,percent)# png("d:\\test2.png",width=2048,height=2048)f<-function(name,value) {xsize=200plot(0, 0,xlab="",ylab="",axes=FALSE,xlim=c(-xsize,xsize),ylim=c(-xsize,xsize))for(i in 1:length(name)){info =name[i]percent =value[i]k =(1:(360*percent/100)*10)/10r=xsize*(length(name)-i+1)/length(name)#print(r)x=r*sin(k/180*pi)y=r*cos(k/180*pi)text(-18,r,info,pos=2,cex=0.7)text(-9,r,paste(percent,"%"),cex=0.7)lines(x,y,col="red")}}f(country,percent)####################################################################### ###### 柱状图####################################################################### library(RColorBrewer)pv<-percentid<-countrycol<-c(brewer.pal(9, "YlOrRd")[1:9],brewer.pal(9, "Blues")[1:9]) barplot(pv,col=col,horiz =TRUE,xlim=c(-8000.00,5000))title(main=list("农业总产值",cex=2),sub="",ylab="地区")text(y=seq(from=0.7,length.out=31,by=1.2),x=-450.00,labels=id)legend("topleft",legend=rev(id),pch=10,col=rev(col),ncol=2)。
R语言中不同类型的聚类方法比较原文链接:聚类方法用于识别从营销,生物医学和地理空间等领域收集的多变量数据集中的相似对象。
它们是不同类型的聚类方法,包括:•划分方法•分层聚类•模糊聚类•基于密度的聚类•基于模型的聚类数据准备•演示数据集:名为USArrest的内置R数据集•删除丢失的数据•缩放变量以使它们具有可比性# Load and prepare the data my_data <- USArrests %>% na.omit()%>%# Remove missing values (NA) scale()# Scale variables# View the firt 3 rows head(my_data, n =3)## Murder Assault UrbanPop Rape ## Alabama 1.2426 0.783 -0.521 -0.00342 ## Alaska 0.5079 1.107 -1.212 2.48420 ## Arizona 0.0716 1.479 0.999 1.04288距离•get_dist():用于计算数据矩阵的行之间的距离矩阵。
与标准dist()功能相比,它支持基于相关的距离测量,包括“皮尔逊”,“肯德尔”和“斯皮尔曼”方法。
•fviz_dist():用于可视化距离矩阵res.dist <- get_dist(U gradient = list(low ="#00AFBB", mid ="white", high ="#FC4E07"))划分聚类、算法是将数据集细分为一组k个组的聚类技术,其中k是分析人员预先指定的组的数量。
k-means聚类的替代方案是K-medoids聚类或PAM (Partitioning Around Medoids,Kaufman和Rousseeuw,1990),与k-means相比,它对异常值不太敏感。
r语言单细胞聚类计算ari在R语言中,可以使用Seurat包进行单细胞聚类并计算Adjusted Rand Index (ARI)。
以下是一个简单的示例:首先,安装和加载Seurat包:```r("Seurat")library(Seurat)```然后,加载数据:```r假设你的数据存在一个名为"data"的矩阵中,每一行代表一个细胞,每一列代表一个基因。
细胞特征信息(如批次、组织类型等)存储在名为"metadata"的向量中。
data <- ... 加载你的数据metadata <- ... 加载你的细胞特征信息接下来,对数据进行质控和标准化:```r创建一个Seurat对象seurat_obj <- CreateSeuratObject(counts = data, = 3)添加批次效应和RNA降解指数等质量控制特征seurat_obj <- AddMetaData(seurat_obj, rownames(data), columnnames(data), metadata)选择用于聚类的基因,这里选择前1000个基因seurat_obj <- ScaleData(seurat_obj, = 10000)seurat_obj <- NormalizeData(seurat_obj)seurat_obj <- FindVariableFeatures(seurat_obj, = "vst") seurat_obj <- RunPCA(seurat_obj, features = VariableFeatures(seurat_obj))seurat_obj <- ScaleData(seurat_obj)```然后,进行聚类:```r进行聚类,这里使用K=5作为聚类数量作为示例,你可以根据实际需要进行调整。