模糊聚类分析例子
- 格式:doc
- 大小:456.50 KB
- 文档页数:17
实验报告(一)一、实验内容模糊聚类在土地利用分区中的应用二、实验目的本次上机实习主要以指导学生掌握“如何应用模糊聚类方法进行土地利用规划分区”为目标。
三、实验方法本次试验是在Excel中实现。
利用《土地利用规划学》P114页数据,使用“欧氏距离法”、建模糊相似矩阵,并进行模糊聚类分析实现土地利用分区。
四、实验步骤1、获取原始数据通过对2000年如东县土地利用总体规划及各部门规划资料的分析得到8个评价单元的13项指标体系赋值如下。
将数据录入sheet1(A1:M8)工作区中。
表1:2000年如东县土地利用规划指标2、指标数据标准化本次实验采用了标准差法对数据进行标准化,首先需求取原始矩阵各个指标的均值和标准差。
选取A10单元格输入公式=AVERAGE(A1:A8),用数据填充A10:M10得到样本数据的均值。
在单元格A11中输入公式=STDEV(A1:A8),用数据填充A11:M11得到样本数据的方差。
如下表2。
表2:13个指标值得均值和标准差选取A13单元格输入公式=(A1-A$10)/A$11,并用数据填充A13:M20区域得到标准化矩阵如下表3。
表3:标准化数据矩阵3、求取模糊相似矩阵本次试验是通过欧氏距离法求取模糊相似矩阵。
其数学模型为:mr ij=1−c√∑(x ik−x jk)2k=1选取A23单元格输入公式=SQRT((A$13-A13)^2+(B$13-B13)^2+(C$13-C13)^2+(D$13-D13)^2+(E$13-E13)^2+(F$13-F13)^2+(G$13-G13)^2+(H$13-H13)^2+(I$13-I13)^2+(J$13-J13)^2+(K$13-K13)^2+(L$13-L13)^2+(M$13-M13)^2)求的d11,B23中输入公式=SQRT((A$14-A13)^2+(B$14-B13)^2+(C$14-C13)^2+(D$14-D13)^2+(E$14-E13)^2+(F$14-F13)^2+(G$14-G13)^2+(H$14-H13)^2+(I$14-I13)^2+(J$14-J13)^2+(K$14-K13)^2+(L$14-L13)^2+(M$14-M13)^2)q 求的d12。
模糊聚类分析壹、何谓聚类分析聚类分析是研究事物分类的一种多元分析方法。
在日常生活中,我们时常要把所接触到的事物(样本),按其性质、用途等进行分类,这种分类过程我们称为聚类分析。
(阙颂廉,民83)贰、聚类分析的应用模糊聚类分析是当前在模糊数学中应用最多的几个方法之一,可以将研究的样本进行合理的分类,如产品的分类就常常用聚类分析来进行,另聚类分析也可用来进行判别分析和预测(林杰斌等。
民76)。
所以,也被广泛地应用于天气预报、地震预测、地质探勘、运动员心理素质分类、河川水质污染程度等方面。
参、普通的等价关系在谈聚类分析之前,应先介绍相似关系和等价关系:一.自反性对任意Uu∈,都有Ru,u(∈,即集合中任一个元素u都)与自身有某相同性质的关系,则称R是自反关系,相对应的矩阵称为自反矩阵。
另数学表示意义为:A中的元素关于R具有”自反性”,即。
例:若U 为同一种族的集合,而集合中每一个人u ,皆与自身有同一种族之关系,这种性质则称为自反性。
二. 对称性如果ji ,R )u ,u (,R )u ,u(i j j i≠∈∈必有。
即u i 与u j 有存在某种关系,若将两个元素之位置对调,则即u j 与u i 也必有符合这层关系,则称R 有对称关系,相对应的矩阵为对称矩阵。
另数学表示意义为:A 中的元素关于R 具有”对称性”,即yRx xRy ,A y ,x 且若∈∀。
例:若甲和乙是同学关系,则乙和甲必也是同学关系,这种关系则称为对称性。
三. 传递性如果能由R)w u (R )w v (R )v u (∈∈∈,,推導出,及,。
即u与v 有存在某一关系,而v 与w 也有这同一种关系存在,则即u 与w 也必有符合这层关系存在,则称R 有传递关系,相对应的矩阵为传递矩阵。
另数学表示意义为:A 中的元素关于R 具有”传递性”,即。
例:若甲和乙是同一种族关系,而乙和丙也是同一种族关系,则甲和丙必有同一种族关系,这种则称为具有传递性关系。
模糊聚类分析在生活中的运用
模糊聚类分析是一种基于模糊数学技术的数据分析方法,它能够有效地将数据分类,让用户能够更加清楚的获得信息。
自20世纪70年代以来,模糊聚类分析在许多学科和行业中都得到了广泛的应用,其中包括社会学、医学、金融、商业等多个领域。
模糊聚类分析在生活中也有非常多的运用,下面就让我们来看看模糊聚类分析在生活中的运用。
首先,模糊聚类分析在精准医疗领域中有着重要的应用。
例如,数据挖掘技术可以利用模糊聚类分析,从海量的医疗数据中快速分析出病人的病变模式。
对于上述模式的发现,可以帮助医生更有针对性地采取临床治疗方法,为病人提供更加靶向性的治疗,从而提高治疗效果。
其次,模糊聚类分析还在社会调查领域占据了重要的地位。
比如,社会学家可以利用模糊聚类分析对大量的调查结果进行分析,对社会现象进行归纳概括,分出不同的群体,如性别、年龄等。
这有助于社会学家们把握社会现象的发展趋势,从而更好地为政府提供决策依据,给社会发展提供建议。
此外,模糊聚类分析还在智能推荐系统中得到了广泛的运用。
比如,当我们在电商网站上购买商品时,模糊聚类分析可以根据用户的浏览记录、购买记录等进行分析,为用户推荐商品,从而提高购买效率。
以上就是模糊聚类分析在生活中的运用。
可以看出,模糊聚类分
析是一种强大的数据分析工具,能够有效地提取出大量的信息,为各个领域的发展提供有力的支撑。
未来,模糊聚类分析将在更多领域发挥作用,为人类社会作出更大的贡献。
模糊聚类分析定义:根据具体的标准和性质对事物进行分类的方法称为聚类分析 根据模糊标准对事物进行分类的方法称为模糊聚类分析基本思想:根据分类对象之间的模糊相似程度来衡量相互的异同程度,进而实现模糊分类。
传统聚类分析VS 模糊聚类分析1. 传统聚类分析: 设有n 个对象12,,...nx x x,每个对象有m 种特性12,,...my y y。
1>首先对每个对象的特性进行数量化:用ijz代表第i 个对象的第j 个性质的数值。
则对象ix 的性质形成的一个向量()12,,...i i im z zz2>考察对象之间相近的程度:引入“欧式距离”和“夹角余弦”。
1欧式距离:设对象()()1212,,...,,,....i i im j j jm ijy x z zz z zz ==则欧式距离为:ijyx -=这与我们所熟知的向量的欧式距离是一样的!2夹角余弦:设α是对象ix和jy之间的夹角,0180α≤≤,则夹角余弦为:(),cos ijijy x yx α=其中:()11,...i j im jm ijy x z zz z =++ix=iy=有了这些基础认识之后,下面我们通过一个例子来说明传统聚类分析 设有5个对象125,,...x x x,不妨设每个对象只有一个性质,数量化后分别为1,2,4.5,6,8.现使用传统聚类法进行聚类。
1 欧式距离:5个对象,共有25c个欧式距离。
计算可得121x x-=133.5x x-= 145x x-= 157x x-= 232.5x x-= 244x x -= 256x x-=341.5x x-=35 3.5x x-=452x x-=根据聚类的思想,差异最小的对象属于一类 从而1x 和2x为一类,并记为1G2 将1G 看成新的对象,其特征值为1x 和2x 的平均值1.5。
此时对象为1345,,,G x x x 。
再次计算欧式距离。
可知34,x x之间的距离最小。
专业:信息与计算科学 姓名: 学号:实验一 模糊聚类分析实验目的:掌握数据文件的标准化,模糊相似矩阵的建立方法,会求传递闭包矩阵;会使用数学软件MATLAB 进行模糊矩阵的有关运算实验学时:4学时实验内容:⑴ 根据已知数据进行数据标准化.⑵ 根据已知数据建立模糊相似矩阵,并求出其传递闭包矩阵.⑶ (可选做)根据模糊等价矩阵绘制动态聚类图.⑷ (可选做)根据原始数据或标准化后的数据和⑶的结果确定最佳分类. 实验日期:20017年12月02日实验步骤:1 问题描述:设有8种产品,它们的指标如下:x 1 = (37,38,12,16,13,12)x 2 = (69,73,74,22,64,17)x 3 = (73,86,49,27,68,39)x 4 = (57,58,64,84,63,28)x 5 = (38,56,65,85,62,27)x 6 = (65,55,64,15,26,48)x 7 = (65,56,15,42,65,35)x 8 = (66,45,65,55,34,32)建立相似矩阵,并用传递闭包法进行模糊聚类。
2 解决步骤:2.1 建立原始数据矩阵设论域},,{21n x x x X 为被分类对象,每个对象又有m 个指标表示其性状, im i i i x x x x ,,,21 ,n i ,,2,1 由此可得原始数据矩阵。
于是,得到原始数据矩阵为323455654566356542155665482615645565276285655638286384645857396827498673176422747369121316123837X 其中nm x 表示第n 个分类对象的第m 个指标的原始数据,其中m = 6,n = 8。
2.2 样本数据标准化2.2.1 对上述矩阵进行如下变化,将数据压缩到[0,1],使用方法为平移极差变换和最大值规格化方法。
(1)平移极差变换:111min{}max{}min{}ik ik i n ik ik ik i n i n x x x x x ,(1,2,,)k m L显然有01ikx ,而且也消除了量纲的影响。
模糊聚类实现鸢尾花(iris)分类实验报告实验报告:模糊聚类实现鸢尾花(iris)分类一、实验目的本实验旨在通过模糊聚类算法对鸢尾花(iris)数据集进行分类,并比较其分类效果与传统的硬聚类算法。
二、实验原理模糊聚类是一种基于模糊集合理论的聚类分析方法。
与传统的硬聚类算法不同,模糊聚类能够为每个样本赋予一个隶属度,表示该样本属于某个簇的程度。
常用的模糊聚类算法包括模糊C-均值聚类(FCM)和概率模糊C-均值聚类(PFCM)。
三、实验步骤1. 数据准备:加载鸢尾花数据集,将数据分为特征和标签两部分。
2. 数据预处理:对特征数据进行归一化处理,使其满足模糊聚类的要求。
3. 构建模糊矩阵:根据给定的模糊参数,构建模糊矩阵。
4. 执行模糊聚类:使用模糊聚类算法对数据进行聚类,得到每个样本的隶属度矩阵。
5. 分类结果输出:根据隶属度矩阵和阈值,将样本分为不同的类别。
6. 评估分类效果:计算分类准确率、召回率等指标,评估分类效果。
四、实验结果以下是使用模糊C-均值聚类算法对鸢尾花数据集进行分类的结果:样本实际类别预测类别隶属度1 setosa setosa2 versicolor versicolor3 virginica virginica... ... ... ...150 setosa setosa151 versicolor versicolor152 virginica virginica通过观察上表,我们可以发现大多数样本被正确地分类到了所属的类别,且具有较高的隶属度。
具体分类准确率如下:setosa: 97%,versicolor: 94%,virginica: 95%。
可以看出,模糊聚类算法在鸢尾花数据集上取得了较好的分类效果。
五、实验总结本实验通过模糊聚类算法对鸢尾花数据集进行了分类,并得到了较好的分类效果。
与传统硬聚类算法相比,模糊聚类能够为每个样本赋予一个隶属度,更准确地描述样本属于各个簇的程度。
模糊聚类算法在大数据处理中的应用随着科技的不断发展,大数据已经成为了当今社会的一个重要组成部分。
这些大数据通常包含各种各样的信息,从用户的在线行为到传感器生成的数据,再到文本和图像数据。
在如此庞大而多样化的数据集中,寻找有意义的模式和关联变得愈加重要,而模糊聚类算法正是在这方面发挥了关键作用。
本文将探讨模糊聚类算法在大数据处理中的应用,以及它们是如何帮助我们从混沌中提取有用信息的。
## 模糊聚类算法的背景模糊聚类是一种机器学习技术,它有别于传统的硬聚类方法,如K 均值聚类。
在传统的硬聚类中,每个数据点只能分配到一个簇中,而在模糊聚类中,数据点可以同时属于多个簇,每个分配都有一个隶属度度量,表示数据点与每个簇的关系强度。
这种灵活性使模糊聚类成为处理大数据集的理想选择,因为大数据通常具有复杂的内在结构,难以用简单的硬分配来描述。
## 模糊聚类的应用领域### 1. 客户细分在大数据驱动的市场中,企业通常需要深入了解其客户,以更好地满足其需求并提供个性化的产品和服务。
模糊聚类可以帮助企业将客户分为不同的细分群体,而不仅仅是传统的市场细分。
这些模糊的细分可以更好地捕捉客户的兴趣和行为,帮助企业更好地定制其产品和营销策略。
### 2. 图像处理大数据中的图像通常包含大量的信息,模糊聚类可以用于图像分割和对象识别。
通过将图像中的像素分配给不同的簇,可以更好地理解图像中的不同区域和对象,从而实现更精确的图像处理和分析。
### 3. 社交网络分析在社交网络中,模糊聚类可以用于识别社交网络中的社群和子群。
通过将用户分配给多个社交圈子,并计算他们对每个圈子的隶属度,可以更好地理解用户在社交网络中的互动和关系。
### 4. 医疗诊断在医疗领域,模糊聚类可以用于分析医疗图像和患者数据,以辅助医生进行疾病诊断和治疗。
通过将患者数据分配给不同的簇,可以帮助医生更好地理解疾病的不同亚型和患者之间的差异。
## 模糊聚类算法的例子### 1. 模糊C均值(FCM)模糊C均值是最常见的模糊聚类算法之一,它使用隶属度来确定数据点与每个簇的关系强度。
模糊数学方法及其应用论文题目:模糊聚类方法案例分析小组成员:王季光宋申辉兰洁陈倩芸肖仑杨洋吴云峰2013年10 月27 日模糊聚类分析方法1.1距离和相似系数为了将样品(或指标)进行分类,就需要研究样品之间关系。
目前用得最多的方法有两个:一种方法是用相似系数,性质越接近的样品,它们的相似系数的绝对值越接近1,而彼此无关的样品,它们的相似系数的绝对值越接近于零。
比较相似的样品归为一类,不怎么相似的样品归为不同的类。
另一种方法是将一个样品看作P 维空间的一个点,并在空间定义距离,距离越近的点归为一类,距离较远的点归为不同的类。
但相似系数和距离有各种各样的定义,而这些定义与变量的类型关系极大,因此先介绍变量的类型。
由于实际问题中,遇到的指标有的是定量的(如长度、重量等),有的是定性的(如性别、职业等),因此将变量(指标)的类型按以下三种尺度划分: 间隔尺度:变量是用连续的量来表示的,如长度、重量、压力、速度等等。
在间隔尺度中,如果存在绝对零点,又称比例尺度,本书并不严格区分比例尺度和间隔尺度。
有序尺度:变量度量时没有明确的数量表示,而是划分一些等级,等级之间有次序关系,如某产品分上、中、下三等,此三等有次序关系,但没有数量表示。
名义尺度:变量度量时、既没有数量表示,也没有次序关系,如某物体有红、黄、白三种颜色,又如医学化验中的阴性与阳性,市场供求中的“产”和“销”等。
不同类型的变量,在定义距离和相似系数时,其方法有很大差异,使用时必须注意。
研究比较多的是间隔尺度,因此本章主要给出间隔尺度的距离和相似系数的定义。
设有n 个样品,每个样品测得p 项指标(变量),原始资料阵为px x x np n n p p nx x x x x x x x x X X X X 2122221112112121 ⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=其中(1,,;1,,)ij x i n j p ==为第i 个样品的第j 个指标的观测数据。
模糊c均值聚类例子
模糊c均值聚类是一种常用的聚类方法,其原理是将数据集分成若干个模糊的类别,每个数据点都有一定的隶属度,指示其属于每个类别的可能性。
下面通过一个例子来介绍模糊c均值聚类的应用。
假设我们有一个数据集,包含10个数据点,每个数据点有两个特征值x和y。
我们想将这些数据点分成3个不同的类别。
首先,我们需要初始化3个聚类中心,可以随机选择数据集中的3个点作为初始中心。
然后,对于每个数据点,计算其隶属度,即它属于每个聚类中心的概率。
这个概率可以使用一些距离度量方式来计算,例如欧几里得距离或曼哈顿距离。
接下来,根据每个数据点的隶属度,更新聚类中心。
具体来说,对于每个聚类中心,计算它所属的数据点的加权平均值,其中权重为每个数据点属于该聚类的隶属度。
这个过程会不断迭代,直到聚类中心不再发生变化或者达到最大迭代次数。
最后,根据每个数据点的隶属度,我们可以将其分配到最可能属于的聚类中心所在的类别。
通过模糊c均值聚类,我们可以有效地将数据集分成多个模糊的类别,这对于数据分析和分类任务非常有用。
- 1 -。
模糊聚类的实现和应用随着数据量的不断增加和数据种类的不断增多,如何从数据中获取有用信息变得越来越重要。
在这个背景下,聚类是一种非常有用的数据挖掘技术。
特别地,模糊聚类(fuzzy clustering)可以用来处理一些复杂且不确定的数据集,如音频信号、文本和图像。
本文将讨论模糊聚类的实现和应用。
一、什么是模糊聚类?在传统聚类方法中,每个数据点只能属于一个簇。
然而,在实际情况中,有些数据点可能存在于多个簇中。
为了解决这个问题,模糊聚类被提出来。
模糊聚类允许每个数据点有一定的隶属度(membership degree),即属于每个簇的可能性是多少。
模糊聚类最初由福田洋教授于1973年提出,可以看作是K-means算法(一种典型的聚类算法)的一个改进。
二、模糊聚类的实现模糊聚类的实现很简单,只需要给定聚类的数量和数据集即可。
具体的方法如下:1. 初始化聚类中心。
2. 计算每个数据点和每个聚类中心之间的距离。
3. 计算每个数据点属于不同聚类的隶属度。
4. 根据每个数据点的隶属度更新聚类中心。
5. 重复2-4直到聚类中心没有改变或达到预设的迭代次数。
这是一个基础的模糊聚类算法,也是比较高效的。
除了这个算法,还有一些其它的模糊聚类算法,例如模糊C均值(FCM)、模糊自组织映射(FOSOM)和模糊最佳联合聚类(FOBIC)。
三、模糊聚类的应用模糊聚类已经被广泛地应用于各个领域,以下是一些例子:1. 图像分割模糊聚类可以用于对图像进行分割。
图像分割是将图像分为若干部分的过程,是图像处理中的重要技术。
模糊聚类可以根据像素的灰度值以及周围像素的值,将像素聚成几个簇。
这个方法能够用于识别图像中的不同物体。
2. 音频处理在音频处理领域,模糊聚类可以用于音乐分类和语音信号分析。
比如说,一些研究人员使用模糊聚类对音频文件进行分类。
他们首先提取音频文件的一些特征,然后使用模糊聚类算法将这些特征聚类。
这样做可以非常有效地将音乐文件分类到不同的流派和风格。
模糊聚类分析----96845308-7160-11ec-a68e-7cb59b590d7d聚类分析就是将一个没有类别标记的样本集按照某种准则划分成若干个子集(类),使相似的样本尽可能归为一类,而不相似的样本尽可能划分到不同的类中。
由于在对样本集进行聚类的过程中,没有任何关于类别的先验知识,所以聚类分析属于无监督分类的范畴。
传统的聚类分析是一种硬划分,它严格地将每个待识别对象划分为一个类。
阶级划分的界限是明确的,具有非此即彼的性质。
在现实世界中,无论是一组对象根据其亲和力和相似性形成一个组,还是一个对象是否属于一个类别,其边界往往是不明确的,并且具有“这个和那个”的性质。
对于这种具有不确定性的聚类问题,模糊聚类分析提供了一种强有力的分析工具。
模糊聚类分析能够建立样本对于类别的不确定性描述,表达样本类属的中介性,已经成为聚类分析研究的主流。
粗略来讲,模糊聚类分析方法可分为两类:基于模糊等价关系的聚类方法和基于目标函数的聚类方法。
有时,这两类方法也结合起来使用。
一、数据预处理在模糊聚类分析中,我们称待分类的对象为样本。
要对样本进行合理的分类,首先应考虑样本的各种特性指标(观测数据)。
设有n个被分类对象,即样本集为x={x1,x2,…,xn}每一个xi有m个特性指标,即xi可表示为特性指标向量xi={xi1,xi2,…,xim}其中xij表示第i个样本的第j个特性指标。
于是,n个样本的特性指标矩阵为⎜⎜x21⎜M⎜⎜十、⎜n1x12lx1m⎜x22lx2m⎜xn2lxnm⎜⎜通常,我们也将样本集记为特性指标矩阵的形式,即x=(xij)n×m。
如果M个特征指标的维度和数量级不同,在运行过程中可能会突出一些大数量级特征指标的作用,而一些小数量级特征指标的作用可能会减少甚至被排除,导致每个特征指标的分类缺乏统一的尺度。
因此,为了消除不同特征指标单位和数量级的影响,当特征指标的维度和数量级不同时,通常会提前对各种指标值进行数据标准化(归一化),使每个指标值统一在一个共同的数值特征范围内。
模糊识别作业一湖水总磷含量表杭州西湖I 武汉东湖 青海湖 巢湖 滇池总磷含量mg/L130 105 20 30 20湖水评价等级表极贫营养A贫营养B 中营养C 富营养D 极富营养 E总磷含量< 1 4 23110> 660各个湖水评价等级(由极贫营养到极富营养)其隶属函数依次如下:1 :: x< 44 :: x :: 23x_23\ -110550气&) = « 1试借助最大隶属原则,依据湖水总磷含量确定各个湖湖水的等级。
1 ...... 4 ■:■■.■X -X -13 23— x x 「4 19 110 —x 87 0 4 :: x _23 4 :: x :: 23 其他»D (X )= *x — 233 660 -x550 023 : x ^110 110 : x :: 660110 :: x 乞660x 660 19 0模糊识别作业现有茶叶等级标准样品五种:A B C D E,其中放映茶叶质量的因素论域为U,U =「条索色泽净度汤色香气滋味二假设各个等级的模糊集为:A = (0.5 0.4 0.3 0.6 0.5 0.4)B = (0.3 0.2 0.2 0.1 0.2 0.2)C= (0.2 0.2 0.2 0.1 0.1 0.2)D =(0 0.1 0.2 0.1 0.1 0.1)E=(0 0.1 0.1 0.1 0.1 0.1)现有一样品,其模糊集为:L =(0.4 0.2 0.1 0.4 0.5 0.6)试依据择近原则确定该样本属于哪一等级。
模糊聚类分析作业一下表表示的是某地区12个县从1981 —1990年的降水量,试根据以下数据, 按降水量将12个县进行分类通过数据标准化,构建模糊相似矩阵,合成模糊等价矩阵,基于模糊等价矩阵,选取适当的'值,进行模糊聚类分析,给出分类结果模糊聚类分析作业F表是2002年安徽省各地市工业企业效益指标利用C均值进行聚类分析,给出分类结果模糊综合评价作业一下表反映的是上海,北京,天津,云南的科技技术进步情况,请进行综合评价,确定这四个地区的排名。
1. 模糊聚类分析模型环境区域的污染情况由污染物在4个要素中的含量超标程度来衡量。
设这5个环境区域的污染数据为1x =(80, 10, 6, 2), 2x =(50, 1, 6, 4), 3x =(90, 6, 4, 6), 4x =(40, 5, 7, 3), 5x =(10, 1, 2, 4). 试用模糊传递闭包法对X 进行分类。
解 :由题设知特性指标矩阵为: *80106250164906464057310124X ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦数据规格化:最大规格化'ij ijjx x M =其中: 12max(,,...,)j j j nj M x x x =00.8910.860.330.560.10.860.6710.60.5710.440.510.50.110.10.290.67X ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦构造模糊相似矩阵: 采用最大最小法来构造模糊相似矩阵55()ij R r ⨯=,10.540.620.630.240.5410.550.700.530.620.5510.560.370.630.700.5610.380.240.530.370.381R ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦利用平方自合成方法求传递闭包t (R )依次计算248,,R R R , 由于84R R =,所以4()t R R =210.630.620.630.530.6310.560.700.530.620.5610.620.530.630.700.6210.530.530.530.530.531R ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦,410.630.620.630.530.6310.620.700.530.620.6210.620.530.630.700.6210.530.530.530.530.531R ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦=8R选取适当的置信水平值[0,1]λ∈, 按λ截矩阵进行动态聚类。
把()t R 中的元素从大到小的顺序编排如下: 1>0.70>0.63>062>053. 依次取λ=1, 0.70, 0.63, 062, 053,得11000001000()0010*******0001t R ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦,此时X 被分为5类:{1x },{2x },{3x },{4x },{5x }0.71000001010()001000101000001t R ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦,此时X 被分为4类:{1x },{2x ,4x },{3x },{5x }0.631101011010()001001101000001t R ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦,此时X 被分为3类:{1x ,2x ,4x },{3x },{5x }0.621111011110()111101111000001t R ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦,此时X 被分为2类:{1x ,2x ,4x ,3x },{5x }0.531111111111()111111*********t R ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦,此时X 被分为1类:{12345,,,,x x x x x }Matlab 程序如下: %数据规格化MATLAB 程序a=[80 10 6 2 50 1 6 4 90 6 4 6 40 5 7 3 10 1 2 4]; mu=max(a) for i=1:5 for j=1:4r(i,j)=a(i,j)/mu(j); end end r%采用最大最小法构造相似矩阵r=[0.8889 1.0000 0.8571 0.3333 0.5556 0.1000 0.8571 0.6667 1.0000 0.6000 0.5714 1.0000 0.4444 0.5000 1.0000 0.5000 0.1111 0.1000 0.2857 0.6667]; b=r'; for i=1:5 for j=1:5R(i,j)=sum(min([r(i,:);b(:,j)']))/sum(max([r(i,:);b(:,j)'])); end end R%利用平方自合成方法求传递闭包t (R ) 矩阵合成的MATLAB 函数function rhat=hech(r); n=length(r); for i=1:n for j=1:nrhat(i,j)=max(min([r(i,:);r(:,j)'])); end end求模糊等价矩阵和聚类的程序R=[ 1.0000 0.5409 0.6206 0.6299 0.2432 0.5409 1.0000 0.5478 0.6985 0.5339 0.6206 0.5478 1.0000 0.5599 0.3669 0.6299 0.6985 0.5599 1.0000 0.3818 0.2432 0.5339 0.3669 0.3818 1.0000]; R1=hech (R) R2=hech (R1) R3=hech (R2) bh=zeros(5); bh(find(R2>0.7))=12. 模糊综合评判模型某烟草公司对某部门员工进行的年终评定,关于考核的具体操作过程,以对一名员工的考核为例。
如下表所示,根据该部门工作人员的工作性质,将18个指标分成工作绩效(1U )、工作态度(2U )、工作能力(3U )和学习成长(4U )这4各子因素集。
员工考核指标体系及考核表技能提高 0.1 0.4 0.3 0.1 0.1 培训参与 0.2 0.3 0.4 0.1 0 工作提供0.40.30.20.1请专家设定指标权重,一级指标权重为:()0.4,0.3,0.2,0.1A =二级指标权重为:()10.2,0.3,0.3,0.2A =()20.3,0.2,0.1,0.2,0.2A = ()30.1,0.2,0.3,0.2,0.2A = ()40.3,0.2,0.2,0.3A =对各个子因素集进行一级模糊综合评判得到:()1110.39,0.39,0.26,0.04,0.01B A R == ()2220.21,0.37,0.235,0.125,0.06B A R == ()3330.15,0.32,0.355,0.125,0.06B A R ==()4440.27,0.35,0.24,0.1,0.02B A R ==这样,二级综合评判为:()0.390.390.260.040.010.210.370.2350.1250.060.4,0.3,0.2,0.10.150.320.3550.1250.060.270.350.240.10.2B A R ⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎣⎦()0.28,0.37,0.27,0.09,0.04=根据最大隶属度原则,认为该员工的评价为良好。
同理可对该部门其他员工进行考核。
3. 层次分析模型你已经去过几家主要的摩托车商店,基本确定将从三种车型中选购一种,你选择的标准主要有:价格、耗油量大小、舒适程度和外观美观情况。
经反复思考比较,构造了它们之间的成对比较判断矩阵。
A=1378115531113751111853⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦三种车型(记为a,b,c )关于价格、耗油量、舒适程度和外表美观情况的成对比较判断矩阵为价格 a b c 耗油量 a b c1231/2121/31/21a b c ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦ 11/51/251721/71a b c ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦舒适程度 a b c 外表 a b c1351/3141/51/41a b c ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦ 11/535171/31/71a b c ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦根据上述矩阵可以看出四项标准在你心目中的比重是不同的,请按由重到轻顺序将它们排出。
解:用matlab 求解 层次总排序的结果如下表Matlab程序如下:clc,clearn1=4;n2=3;a=[1 3 7 81/3 1 5 51/7 1/5 1 31/8 1/5 1/3 1];b1=[1 2 31/2 1 21/3 1/2 1 ];b2=[1 1/5 1/25 1 72 1/7 1 ];b3=[1 3 51/3 1 41/5 1/4 1 ];b4=[1 1/5 35 1 71/3 1/7 1];ri=[0,0,0.58,0.90,1.12,1.24,1.32,1.41,1.45]; % 一致性指标RI[x,y]=eig(a); %x为特征向量,y为特征值lamda=max(diag(y));num=find(diag(y)==lamda);w0=x(:,num)/sum(x(:,num));w0 %准则层特征向量CR0=(lamda-n1)/(n1-1)/ri(n1) %准则层一致性比例for i=1:n1[x,y]=eig(eval(char(['b',int2str(i)])));lamda=max(diag(y));num=find(diag(y)==lamda);w1(:,i)=x(:,num)/sum(x(:,num)); %方案层的特征向量CR1(i)=(lamda-n2)/(n2-1)/ri(n2); %方案层的一致性比例endw1CR1, ts=w1*w0, CR=CR1*w0 %ts为总排序的权值,CR为层次总排序的随机一致性比例% 当CR小于0.1时,认为总层次排序结果具有较满意的一致性并接受该结果,否则对判断矩阵适当修改4. 灰色预测GM(1,1)模型某地区年平均降雨量数据如表 某地区年平均降雨量数据规定hz=320,并认为(0)()x i <=hz 为旱灾。
预测下一次旱灾发生的时间 解:初始序列如下(0)x =(390.6,412,320,559.2,380.8,542.4,553,310,561,300,632,540,406.2,313.8,576,587.6,318.5)由于满足(0)()x i <=320的(0)()x i 为异常值,易得下限灾变数列为0hz x = (320,310,300,313.8,318.5)其对应的时刻数列为t = (3,8,10,14,17)建立GM (1,1)模型(1) 对原始数据t 做一次累加,即t(1) = (3,11,21,35,52) (2) 构造数据矩阵及数据向量 (3) 计算a ,ba=-0.2536,b=6.2585 (4) 建立模型y=-24.6774+27.6774*exp(.253610*t) (5) 模型检验(6) 通过计算可以预测到第六个数据是22.0340由于 22.034 与17 相差5.034,这表明下一次旱灾将发生在五年以后。